Biological Indices Based on Macrophytes: An Overview of Methods Used in Catalonia and the USA to Determine the Status of Rivers and Wetlands

  • Siobhan Fennessy
  • Carles Ibañez
  • Antoni Munné
  • Nuño Caiola
  • Nicole Kirchner
  • Carolina Sola
Chapter

Abstract

Aquatic macrophytes are commonly used as the basis for assessing the ecological condition of wetlands and rivers and are considered the basis for some of the best indicators of these ecosystems within their landscape. We review key approaches that utilize plant traits as the basis for water resource assessment, including the floristic quality assessment index (FQAI), the Qualitat del Bosc de Ribera (riparian forest quality index or QBR), indicator species analysis (IndVal), and multimetric indexes of ecological integrity (MMIs). The FQAI quantifies how “conservative” a plant species is by evaluating the degree to which it is adapted to a specific set of environmental conditions and then uses that information to assess plant community response by examining the aggregate degree of “conservatism” for all species in a community. The index codifies expert opinion a priori on the ecological nature and tolerance of macrophyte species and has been shown to be sensitive to human activities. Plant traits can also form the basis for assessment using indicator species analysis (IndVal), which allows the environmental preferences of target species to be identified and related to habitat type, site characteristics, environmental change, or gradients of human disturbance. We applied this technique to identify indicator species for river ecosystems in Catalonia. Finally, assessment approaches based on multiple plant-based metrics are illustrated. Species traits used in multimetric indexes (MMIs) are based on testable hypotheses about how plant communities change along human disturbance gradients. These approaches and their application to Catalan and US wetlands and rivers are explored.

Keywords

Catalonia Macrophytes Rivers USA Wetlands WFD comparison 

References

  1. 1.
    Cronk JK, Fennessy MS (2001) Wetland plants: biology and ecology. Lewis, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Karr JR (1991) Biological integrity: a long-neglected aspect of water resource management. Ecol Appl 1:66–84CrossRefGoogle Scholar
  3. 3.
    Fennessy MS, Jacobs AD, Kentula ME (2007) An evaluation of rapid methods for assessing the ecological condition of wetlands. Wetlands 27:543–560CrossRefGoogle Scholar
  4. 4.
    Fennessy MS, Gernes M, Mack JJ, Wardrop DH (2002) Methods for evaluating wetland condition: using vegetation to assess environmental conditions in wetlands. EPA-822-R-02-020 U.S. Environmental Protection Agency, Office of Water, Washington, DCGoogle Scholar
  5. 5.
    Kattge J, Diaz J, Lavorel S et al (2011) TRY – a global database of plant traits. Glob Chang Biol 17:2905–2935CrossRefGoogle Scholar
  6. 6.
    Mitsch WJ, Gosselink J (2007) Wetlands, 4th edn. Wiley, HobokenGoogle Scholar
  7. 7.
    Munné A, Prat N, Sola C, Bonada N, Rieradevall M (2003) A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat Conserv 13:147–163CrossRefGoogle Scholar
  8. 8.
    Brinson MM (1993) A hydrogeomorphic classification for wetlands. Technical Report WRPDE4, U.S. Army Corps of Engineers, Engineer Waterways Experiment Station, Vicksburg, MSGoogle Scholar
  9. 9.
    Rheinhardt R, Brinson MM, Brooks R, McKenney-Easterling M et al (2007) Development of a reference-based method for identifying and scoring indicators of condition for coastal plain riparian reaches. Ecol Indic 7:339–361CrossRefGoogle Scholar
  10. 10.
    Wardrop DH, Kentula ME, Brooks R, Fennessy MS, Chamberlain S, Havens K, Hershner C (2013) Monitoring and assessment of wetlands: concepts, case-studies, and lessons learned. In: Brooks R, Wardrop DH (eds) Mid-Atlantic freshwater wetlands: advances in wetlands science, management, policy, and practice. Springer, New York, pp 381–420CrossRefGoogle Scholar
  11. 11.
    European Commission (2003) Overall approach to the classification of the ecological status and ecological potential. Water framework directive guideline. common implementation strategy, Working Group 2A, Ecological Status (ECOSTAT), 27 November 2003, p 47Google Scholar
  12. 12.
    Dallas HF (2013) Ecological status assessment in Mediterranean rivers: complexities and challenges in developing tools for assessing ecological status and defining reference conditions. Hydrobiologia 719:483–507CrossRefGoogle Scholar
  13. 13.
    Stoddard JL, Larsen DP, Hawkins CP, Johnson RK, Norris R (2006) Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol Appl 16:1267–1276CrossRefGoogle Scholar
  14. 14.
    Wilhelm G, Ladd D (1988) Natural area assessment in the Chicago region. In: Transactions of the 53rd North American Wildlife & Natural Resources Conference, pp 361–375Google Scholar
  15. 15.
    Andreas BK, Lichvar RW (1995) Floristic index for establishing assessment standards: a case study for northern Ohio. Technical Report WRP-DE-8, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MIGoogle Scholar
  16. 16.
    Lopez R, Fennessy MS (2002) Testing the floristic quality assessment index as an indicator of wetland condition along gradients of human influence. Ecol Appl 12:487–497CrossRefGoogle Scholar
  17. 17.
    Medley L, Scozzafava M (2009) Moving toward a national floristic quality assessment: considerations for the EPA National Wetland Condition Assessment. Natl Wetlands Newslett 31:6–10Google Scholar
  18. 18.
    Andreas BK, Mack JJ, McCormac JS (2004) Floristic quality assessment index (FQAI) for vascular plants and mosses for the state of Ohio. Ohio Environmental Protection Agency, ColumbusGoogle Scholar
  19. 19.
    Miller SJ, Wardrop DH (2006) Adapting the floristic quality assessment index to indicate anthropogenic disturbance in central Pennsylvania wetlands. Ecol Indic 6:313–326CrossRefGoogle Scholar
  20. 20.
    Fennessy MS, Elifritz B, Lopez R (1998) Testing the floristic quality assessment index as an indicator of riparian wetland disturbance. Ohio Environmental Protection Agency, Division of Surface Water, Wetlands Ecology Unit, Columbus, p 133Google Scholar
  21. 21.
    Keddy PA, Lee HT, Wisheu IC (1993) Choosing indicators of ecosystem integrity: wetlands as a model system. In: Ecological integrity and the management of ecosystems. Canadian Parks Service and the Heritage Resources Centre, University of Waterloo, Waterloo, pp 61–79Google Scholar
  22. 22.
    Ward E (2003) Evaluating indicators of ecological integrity in wetlands. Honors Thesis, Biology Department, Kenyon College, Gambier, p 45Google Scholar
  23. 23.
    Brown MT, Vivas MB (2007) A landscape development intensity index. Environ Monit Assess 101:289–309CrossRefGoogle Scholar
  24. 24.
    Wardrop DH, Fennessy MS, Moon JB, Britson AB (2013) Forecasting critical ecosystem services from measures of wetland condition at the watershed scale in freshwater wetlands of Pennsylvania and Ohio. Report to the U.S. Environmental Protection Agency, EPA-Star Grant R-834262-01Google Scholar
  25. 25.
    Mack JJ (2007) Integrated wetland assessment program. Part 9: field manual for the vegetation index of biotic integrity for wetlands. Ohio EPA Technical Report WET/2007-6. Ohio Environmental Protection Agency, Wetland Ecology Group, Division of Surface Water, ColumbusGoogle Scholar
  26. 26.
    US Environmental Protection Agency. National wetland condition assessment 2011. Technical Report. U.S. Environmental Protection Agency, Office of Water, Washington, DCGoogle Scholar
  27. 27.
    Ward JV (1989) The four dimensional nature of lotic ecosystems. J North Am Benthol Soc 8:2–8CrossRefGoogle Scholar
  28. 28.
    Fennessy MS, Jacobs AD, Kentula ME (2004) Review of rapid methods for assessing wetland condition. EPA/620/R-04/009/ U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  29. 29.
    Suárez ML, Vidal-Abarca MR, Sánchez-Montoya MM, Aalba-Tercedor J et al (2002) Las riberas de los ríos mediterráneos y su calidad: el uso del índice QBR. Limnetica 21:135–148Google Scholar
  30. 30.
    Acosta R, Ríos B, Rieradevall M, Prat M (2009) Propuesta de un protocolo de evaluación de la calidad ecológica de ríos andinos (CERA) y su aplicación a dos cuencas en Ecuador y Perú. Limnetica 28:35–64Google Scholar
  31. 31.
    Sirombra MG, Mesa LM (2012) A method for assessing the ecological quality of riparian forests in subtropical Andean streams: QBR index. Ecol Indic 20:324–331CrossRefGoogle Scholar
  32. 32.
    Colwell SR, Hix D (2008) Adaptation of the QBR index for use in riparian forests of central Ohio. In: Proceedings of the 16th central hardwood forest conference. USDA Forest Service. GTR NRS-P-24, pp 331–340Google Scholar
  33. 33.
    Munné AL, Triapu C, Sola L, Oivella M et al (2012) Comparing chemical and ecological status in Catalan Rivers: analysis of river quality status following the water framework directive. In: Guasch H et al (eds) Emerging and priority pollutants in rivers: bringing science into river management plans, vol 19, The handbook of environmental chemistry. Springer-Verlag, Berlin/Heidelberg, pp 243–266CrossRefGoogle Scholar
  34. 34.
    Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523CrossRefGoogle Scholar
  35. 35.
    Kelly MG, Cazaubon A, Coring E, Dell’Uomo A et al (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10:215–224CrossRefGoogle Scholar
  36. 36.
    Szoszkiewicz K, Ferreira T, Korte T, Baattrup-Pedersen A et al (2006) European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566:211–234CrossRefGoogle Scholar
  37. 37.
    Pont D, Hugueny B, Rogers C (2007) Development of a fish-based index for the assessment of river health in Europe: the European Fish Index. Fish Manag Ecol 14:427–439CrossRefGoogle Scholar
  38. 38.
    Urban N, Swihart R, Malloy M, Dunning J Jr (2012) Improving selection of indicator species when detection is imperfect. Ecol Indic 15:188–197CrossRefGoogle Scholar
  39. 39.
    Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  40. 40.
    De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574CrossRefGoogle Scholar
  41. 41.
    González E, Boudreau L, Hugron S, Poulin M (2013) Can indicator species predict restoration outcomes early in the monitoring process? A case study with peatlands. Ecol Indic 32:232–238CrossRefGoogle Scholar
  42. 42.
    Anas M, Scott K, Wissel B (2013) Suitability of presence vs. absence indicator species to characterize stress gradients: lessons from zooplankton species of boreal lakes. Ecol Indic 30:90–99CrossRefGoogle Scholar
  43. 43.
    Alba-Tercedor J, Jáimez-Cuéllar P, Álvarez M, Avilés J et al (2004) Caracterización del estado ecológico de los ríos mediterráneos ibéricos mediante el índice IBMWP (antes BMWP). Limnetica 21:175–185Google Scholar
  44. 44.
    Pardo I, Álvarez M, Casas J, Moreno JL et al (2004) El hábitat de los ríos mediterráneos. Diseño de un índice de diversidad de hábitat. Limnetica 21:115–133Google Scholar
  45. 45.
    CEMAGREF (1982) Étude des méthodes biologiques d’appréciation quantitative de la qualité des eaux. Rapport Division Qualité des Eaux Cemagref Lyon. Agence de l’Eau Rhône-Méditerranée-Corse, LyonGoogle Scholar
  46. 46.
    Vieira C, Agular FC, Ferreira MT (2014) The relevance of bryophytes in the macrophyte-based reference conditions in Portuguese rivers. Hydrobiologica 737:245–264CrossRefGoogle Scholar
  47. 47.
    Guo ZH, Miao XF (2010) Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead. J Central South Univ Technol 17:770–777CrossRefGoogle Scholar
  48. 48.
    Ferreira MT, Rodriguez-Gonzalez PM, Aguiar F, Albequerque A (2005) Assessing biotic integrity in Iberian rivers: development of a multimetric plant index. Ecol Indic 5:137–149CrossRefGoogle Scholar
  49. 49.
    Hussner A (2010) NOBANIS – invasive alien species fact sheet – Azolla filiculoides. Online Database of the European Network on Invasive Alien Species – NOBANISGoogle Scholar
  50. 50.
    Garcia-Murill P, Fernandez-Zamudio R, Cirujano S, Sousa A, Espinar J (2007) The invasion of Doñana National Park by the mosquito fern Azolla filiculoides Lam. Limnetica 26:243–250Google Scholar
  51. 51.
    Mack JJ, Kentula ME (2010) Metric similarity in vegetation-based wetland assessment methods. EPA-600-R-10-140. U.S. Environmental Protection Agency, Office of Water, NHEERL CorvallisGoogle Scholar
  52. 52.
    Karr JR, Chu EW (1999) Restoring life in running waters: better biological monitoring. Island, Washington, DCGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Siobhan Fennessy
    • 1
  • Carles Ibañez
    • 2
  • Antoni Munné
    • 3
  • Nuño Caiola
    • 2
  • Nicole Kirchner
    • 1
  • Carolina Sola
    • 3
  1. 1.Department of BiologyKenyon CollegeGambierUSA
  2. 2.IRTA – Sant Carles de la Ràpita, Carretera Poble NouCatalunyaSpain
  3. 3.Catalan Water AgencyBarcelonaSpain

Personalised recommendations