Skip to main content

Environmental Risk Assessment of Personal Care Products

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 36)

Abstract

Extensive usage and continuous release of personal care products (PCPs) lead to ubiquitous contamination of aquatic environment. As PCPs are mainly intended for external use on the human body, they are not subjected to metabolic alterations; therefore, large quantities enter the environment as such. Being biologically active and persistent, they are expected to pose a wide range of risks to aquatic habitat. Although studies on environmental concentration and toxicity endpoints are available for many PCPs, environmental risk assessment (ERA) was scantily reported. It was observed that most of the ERAs were based on hazard/risk quotient approach and not following three-tier approach due to lack of sufficient toxicological data (i.e., long-term toxicity at environmentally relevant (ppt–ppb) concentrations). From the ERA reports, it was understood that disinfectants, triclosan and triclocarban, cause high risk to aquatic organisms. In case of preservatives (parabens), the risk was low. Some fragrances (synthetic musks) and UV filters were also shown to be toxic in the aquatic habitat; however, majority of them are categorized as less risky. Other than the risk to macro forms, the antibacterial PCPs are likely to affect the community structure of nontarget (nonpathogenic) bacteria and may aid in developing (multidrug) resistance among pathogenic and nonpathogenic species. Therefore, for better risk assessment, environmentally relevant studies on nontarget organisms are to be given due importance, and it may include interactions of chemical mixture, degradation products, and bioavailability criterion as well.

Keywords

  • Antimicrobials
  • Bacterial resistance
  • Environmental risk assessment
  • Hazard quotient
  • Personal care products

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/698_2014_297
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-18809-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. GIA (2012) Global personal care products market to reach $333bn by 2015 says GIA. In: cosmeticsdesign-asia.com. http://www.cosmeticsdesign-asia.com/Market-Trends/Global-personal-care-products-market-to-reach-333bn-by-2015-says-GIA. Accessed 14 June 2014

  2. Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res Int 19:1044–1065

    CAS  CrossRef  Google Scholar 

  3. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938

    CAS  CrossRef  Google Scholar 

  4. Hernando MD, Mezcua M, Fernandez-Alba AR, Barcelo D, Fern AR, Barcelo D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342

    CAS  CrossRef  Google Scholar 

  5. Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532

    CAS  CrossRef  Google Scholar 

  6. Ramaswamy BR, Shanmugam G, Velu G, Rengarajan B, Larsson DGJ (2011) GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J Hazard Mater 186:1586–1593

    CAS  CrossRef  Google Scholar 

  7. Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123

    CAS  CrossRef  Google Scholar 

  8. Marathe NP, Regina VR, Walujkar SA, Charan SS, Moore ERB, Larsson DGJ, Shouche YS (2013) A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. PLoS One 8:e77310

    CAS  CrossRef  Google Scholar 

  9. Young TA, Heidler J, Matos-Perez CR, Sapkota A, Toler T, Gibson KE, Schwab KJ, Halden RU (2008) Ab initio and in situ comparison of caffeine, triclosan, and triclocarban as indicators of sewage-derived microbes in surface waters. Environ Sci Tech 42:3335–3340

    CAS  CrossRef  Google Scholar 

  10. Zhang XX, Zhang T, Fang HHP (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82:397–414

    CAS  CrossRef  Google Scholar 

  11. Selvaraj KK, Sivakumar S, Sampath S, Shanmugam G, Sundaresan U, Ramaswamy BR (2013) Paraben resistance in bacteria from sewage treatment plant effluents in India. Water Sci Technol 68:2067–2073

    CAS  CrossRef  Google Scholar 

  12. Mao D, Luo Y, Mathieu J, Wang Q, Feng L, Mu Q, Feng C, Alvarez PJJ (2014) Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environ Sci Tech 48:71–78

    CAS  CrossRef  Google Scholar 

  13. Ginebreda A, Kuzmanovic M, Guasch H, de Alda ML, Lopez-Doval JC, Munoz I, Ricart M, Romaní AM, Sabater S, Barcelo D (2014) Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: compound prioritization, mixture characterization and relationships with biological descriptors. Sci Total Environ 468–469:715–723

    CrossRef  Google Scholar 

  14. Hirsch (2013) Pharmaceuticals and personal care products. http://serc.carleton.edu/NAGTWorkshops/health/case_studies/pharmaceutical.html. Accessed 15 June 2014

  15. Capdevielle M, Egmond ARV, Whelan M, Versteeg D, Hofmann-kamensky M, Inauen J, Cunningham V, Woltering D (2008) Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integr Environ Assess Manag 4:15–23

    CAS  CrossRef  Google Scholar 

  16. European Commission (2003) European union risk assessment report, Trichlorobenzene. http://echa.europa.eu/documents/%2010162/44180838-c246-4d42-9732-45e2af411e52. Accessed 15 June 2014

  17. USEPA (1998) Guidelines for ecological risk assessment. http://www.epa.gov/raf/publications/pdfs/ECOTXTBX.PDF. Accessed 15 June 2014

  18. Shanmugam G, Sampath S, Selvaraj KK, Larsson DGJ, Ramaswamy BR (2014) Non-steroidal anti-inflammatory drugs in Indian rivers. Environ Sci Pollut Res 21:921–931

    CAS  CrossRef  Google Scholar 

  19. Aronson D, Weeks J, Meylan B, Guiney PD, Howard PH (2012) Environmental release, environmental concentrations, and ecological risk of N, N-Diethyl-m-toluamide (DEET). Integr Environ Assess Manag 8:135–166

    CAS  CrossRef  Google Scholar 

  20. Mutiyar PK, Mittal AK (2013) Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: a case study of emerging pollutant. Desalin Water Treat 51:6158–6164

    CAS  CrossRef  Google Scholar 

  21. Kummerer K (2001) Pharmaceuticals in the environment. Springer, Berlin/Heidelberg

    CrossRef  Google Scholar 

  22. Lyndall J, Fuchsman P, Bock M, Barber T, Lauren D, Leigh K, Perruchon E, Capdevielle M (2010) Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues. Integr Environ Assess Manag 6:419–440

    CAS  CrossRef  Google Scholar 

  23. Versteeg DJ, Belanger SE, Carr GJ (1999) Understanding single-species and model ecosystem sensitivity: data-based comparison. Environ Toxicol Chem 18:1329–1346

    CAS  Google Scholar 

  24. Jjemba PK (2006) Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol Environ Saf 63:113–130

    CAS  CrossRef  Google Scholar 

  25. Cunningham VL (2001) Environmental exposure modeling: application of PhATE™ and GREAT-ER to human pharmaceuticals in the environment. In: Kummerer K (ed) Pharmaceuticals in the environment, 3rd edn. Springer, Heidelberg, pp 133–146

    Google Scholar 

  26. García ODS, Pinto GP, García-Encina PA, Mata RI (2013) Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case. J Environ Manage 129:384–397

    CrossRef  Google Scholar 

  27. Tamura I, Kagota K, Yasuda Y, Yoneda S, Morita J, Nakada N, Kameda Y, Kimura K, Tatarazako N, Yamamoto H (2012) Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol. J Appl Toxicol 33:1222–1229

    Google Scholar 

  28. Zhao J-L, Ying G-G, Liu Y-S, Chen F, Yang J-F, Wang L (2010) Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. J Hazard Mater 179:215–222

    CAS  CrossRef  Google Scholar 

  29. Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466–467:421–438

    CrossRef  Google Scholar 

  30. Dobbins LL, Usenko S, Brain RA, Brooks BW (2009) Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas. Environ Toxicol Chem 28:2744–2753

    CAS  CrossRef  Google Scholar 

  31. Yamamoto H, Tamura I, Hirata Y, Kato J, Kagota K, Katsuki S, Yamamoto A, Kagami Y, Tatarazako N (2011) Aquatic toxicity and ecological risk assessment of seven parabens: individual and additive approach. Sci Total Environ 410–411:102–111

    CrossRef  Google Scholar 

  32. Lee I-S, Kim U-J, Oh J-E, Choi M, Hwang D-W (2014) Comprehensive monitoring of synthetic musk compounds from freshwater to coastal environments in Korea: with consideration of ecological concerns and bioaccumulation. Sci Total Environ 470–471:1502–1508

    CrossRef  Google Scholar 

  33. Balk F, Ford RA (1999) Environmental risk assessment for the polycyclic musks, AHTN and HHCB. II. Effect assessment and risk characterisation. Toxicol Lett 111:81–94

    CAS  CrossRef  Google Scholar 

  34. Tsui MMP, Leung HW, Lam PKS, Murphy MB (2014) Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants. Water Res 53:58–67

    CAS  CrossRef  Google Scholar 

  35. Fent K, Kunz PY, Gomez E (2008) UV filters in the aquatic environment induce hormonal effects and affect fertility and reproduction in fish. CHIMIA Int J Chem 62:368–375

    CAS  CrossRef  Google Scholar 

  36. Fent K, Kunz PY, Zenker A, Rapp M (2010) A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnamate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor. Mar Environ Res 69(Suppl):S4–S6

    CAS  CrossRef  Google Scholar 

  37. Paredes E, Perez S, Rodil R, Quintana JB, Beiras R (2014) Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata. Chemosphere 104:44–50

    CAS  CrossRef  Google Scholar 

  38. Nohynek GJ, Antignac E, Re T, Toutain H (2010) Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 243:239–259

    CAS  CrossRef  Google Scholar 

  39. Dvorak G (2005) Disinfection 101. In: center for food security and public health 2160 veterinary medicine. http://www.coastalwaters2001.ecu.edu/cs-dhs/agromedicine/upload/Disinfection101Feb2005.pdf. Accessed 16 June 2014

  40. Shanmugam G, Ramasamy K, Selvaraj KK, Sampath S, Ramaswamy BR (2014b) Triclosan in fresh water fish Gibelion catla from the Kaveri river, India and its consumption risk assessment. Environ Forensics 15:207–212

    Google Scholar 

  41. Price OR, Williams RJ, Egmond RV, Wilkinson MJ, Whelan MJ (2010) Predicting accurate and ecologically relevant regional scale concentrations of triclosan in rivers for use in higher-tier aquatic risk assessments. Environ Int 36:521–526

    CAS  CrossRef  Google Scholar 

  42. USEPA (2008) Ecological hazard and environmental revised risk assessment – Triclosan. http://www.oehha.org/prop65/public_meetings/052909coms/triclosan/ciba11.pdf. Accessed 15 June 2014

  43. USEPA (2008) Ecological hazard and environmental revised risk assessment – Triclocarbon. http://www.epa.gov/hpvis/rbp/101-20-2_Triclocarban_Web_April%202009.pdf. Accessed 15 June 2014

  44. Schebb NH, Flores I, Kurobe T, Franze B, Ranganathan A, Hammock BD, Teh SJ (2011) Bioconcentration, metabolism and excretion of triclocarban in larval Qurt medaka (Oryzias latipes). Aquat Toxicol 105:448–454

    CAS  CrossRef  Google Scholar 

  45. Reiss R, Mackay N, Habig C, Griffin J (2002) An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ Toxicol Chem 21:2483–2492

    CAS  CrossRef  Google Scholar 

  46. Wu C, Spongberg AL, Witter JD, Fang M, Czajkowski KP (2010) Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ Sci Tech 44:6157–6161

    CAS  CrossRef  Google Scholar 

  47. Sanchez-Prado L, Alvarez-Rivera G, Lamas JP, Lores M, Garcia-Jares C, Llompart M (2011) Analysis of multi-class preservatives in leave-on and rinse-off cosmetics by matrix solid-phase dispersion. Anal Bioanal Chem 401:3293–3304

    CAS  CrossRef  Google Scholar 

  48. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103:113–122

    CAS  CrossRef  Google Scholar 

  49. Rodil R, Quintana JB, Basaglia G, Pietrogrande MC, Cela R (2010) Determination of synthetic phenolic antioxidants and their metabolites in water samples by downscaled solid-phase extraction, silylation and gas chromatography–mass spectrometry. J Chromatogr A 1217:6428–6435

    CAS  CrossRef  Google Scholar 

  50. Costanzo SD, Watkinson AJ, Murby EJ, Kolpin DW, Sandstrom MW (2007) Is there a risk associated with the insect repellent DEET (N, N-diethyl-m-toluamide) commonly found in aquatic environments? Sci Total Environ 384:214–220

    CAS  CrossRef  Google Scholar 

  51. Rodil R, Moeder M (2008) Stir bar sorptive extraction coupled to thermodesorption–gas chromatography–mass spectrometry for the determination of insect repelling substances in water samples. J Chromatogr A 1178:9–16

    CAS  CrossRef  Google Scholar 

  52. Mottaleb MA, Usenko S, O’Donnell JG, Ramirez AJ, Brooks BW, Chambliss CK (2009) Gas chromatography–mass spectrometry screening methods for select UV filters, synthetic musks, alkylphenols, an antimicrobial agent, and an insect repellent in fish. J Chromatogr A 1216:815–823

    CAS  CrossRef  Google Scholar 

  53. Tas JW, Balk F, Ford RA, van de Plassche EJ (1997) Environmental risk assessment of musk ketone and musk xylene in the Netherlands in accordance with the EU-TGD. Chemosphere 35:2973–3002

    CAS  CrossRef  Google Scholar 

  54. Giokas DL, Salvador A, Chisvert A (2007) UV filters: from sunscreens to human body and the environment. TrAC Trends Anal Chem 26:360–374

    CAS  CrossRef  Google Scholar 

  55. Balmer ME, Buser HR, Muller MD, Poiger T (2005) Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss Lakes. Environ Sci Tech 39:953–962

    CAS  CrossRef  Google Scholar 

  56. Danovaro R, Bongiorni L, Corinaldesi C, Giovannelli D, Damiani E, Astolfi P, Greci L, Pusceddu A (2008) Sunscreens cause coral bleaching by promoting viral infections. Environ Health Perspect 116:441–447

    CAS  Google Scholar 

  57. Díaz-Cruz MS, Llorca M, Barcelo D (2008) Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment. TrAC Trends Anal Chem 27:873–887

    CrossRef  Google Scholar 

  58. Gago-Ferrero P, Díaz-Cruz MS, Barceló D (2012) An overview of UV-absorbing compounds (organic UV filters) in aquatic biota. Anal Bioanal Chem 404:2597–2610

    CAS  CrossRef  Google Scholar 

  59. Diaz-Cruz MS, Barcelo D (2009) Chemical analysis and ecotoxicological effects of organic UV-absorbing compounds in aquatic ecosystems. TrAC Trends Anal Chem 28:708–717

    CAS  CrossRef  Google Scholar 

  60. Janna H, Scrimshaw MD, Williams RJ, Churchley J, Sumpter JP (2011) From dishwasher to tap? Xenobiotic substances benzotriazole and tolyltriazole in the environment. Environ Sci Tech 45:3858–3864

    CAS  CrossRef  Google Scholar 

  61. Kim J-W, Isobe T, Ramaswamy BR, Chang K-H, Amano A, Miller TM, Siringan FP, Tanabe S (2011) Contamination and bioaccumulation of benzotriazole ultraviolet stabilizers in fish from Manila Bay, the Philippines using an ultra-fast liquid chromatography–tandem mass spectrometry. Chemosphere 85:751–758

    CAS  CrossRef  Google Scholar 

  62. Zhang Z, Qi H, Ren N, Li Y, Gao D, Kannan K (2011) Survey of cyclic and linear siloxanes in sediment from the songhua river and in sewage sludge from wastewater treatment plants, northeastern china. Arch Environ Contam Toxicol 60:204–211

    CAS  CrossRef  Google Scholar 

  63. Wang D-G, Norwood W, Alaee M, Byer JD, Brimble S (2013) Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere 93:711–725

    CAS  CrossRef  Google Scholar 

  64. Hong WJ, Jia H, Liu C, Zhang Z, Sun Y, Li YF (2014) Distribution, source, fate and bioaccumulation of methyl siloxanes in marine environment. Environ Pollut 191:175–181

    CAS  CrossRef  Google Scholar 

  65. Richardson SD, Ternes TA (2014) Water analysis: emerging contaminants and current issues. Anal Chem 86:2813–2848

    CAS  CrossRef  Google Scholar 

  66. Ricart M, Guasch H, Alberch M, Barcelo D, Bonnineau C, Geiszinger A, Farre ML, Ferrer J, Ricciardi F, Romaní AM, Morin S, Proia L, Sala L, Sureda D, Sabater S (2010) Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat Toxicol 100:346–353

    CAS  CrossRef  Google Scholar 

  67. McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532

    CAS  CrossRef  Google Scholar 

  68. Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegard B, Soderstrom H, Larsson DGJ (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One 6:e17038

    CAS  CrossRef  Google Scholar 

  69. Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362

    CrossRef  Google Scholar 

  70. European Commission (2009) Scientific Committee on Emerging and Newly Identified Health Risks, assessment of the antibiotic resistance. Effects of biocides. http://ec.europa.eu/health/scientific_committees/consultations/public_consultations/scenihr_cons_09_en.htm. Accessed 30 June 2014

  71. Middleton JH, Salierno JD (2013) Antibiotic resistance in triclosan tolerant fecal coliforms isolated from surface waters near wastewater treatment plant outflows (Morris County, NJ, USA). Ecotoxicol Environ Saf 88:79–88

    CAS  CrossRef  Google Scholar 

  72. Amin A, Chauhan S, Dare M, Bansal AK (2010) Degradation of parabens by Pseudomonas beteli and Burkholderia latens. Eur J Pharm Biopharm 75:206–212

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babu Rajendran Ramaswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ramaswamy, B.R. (2014). Environmental Risk Assessment of Personal Care Products. In: Díaz‐Cruz, M., Barceló, D. (eds) Personal Care Products in the Aquatic Environment. The Handbook of Environmental Chemistry, vol 36. Springer, Cham. https://doi.org/10.1007/698_2014_297

Download citation