Skip to main content

Removal of Personal Care Products Through Ferrate(VI) Oxidation Treatment

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 36)

Abstract

Personal care products (PCPs) have been widely used in daily life and continually introduced to the aquatic environment, posing potential risks to the aquatic ecosystem and human health. Due to incomplete removal of PCPs in traditional wastewater and water treatment systems, advanced oxidation technologies can be applied to increase the removal efficiency of those PCPs. As a powerful oxidant, ferrate(VI) (Fe(VI)) has a great potential for removal of PCPs during water treatment. In this chapter, we firstly introduced the aqueous chemistry of Fe(VI); then critically reviewed the reaction mechanisms of Fe(VI) with typical PCPs by using removal rates, reaction kinetics, linear free-energy relationships, products identification, and toxicity evaluation; and finally discussed the removal of PCPs during water treatment by Fe(VI). Published phenolic and nitrogen-containing PCPs can be completely removed by Fe(VI) oxidation treatment except triclocarban. The reactions between the PCPs and Fe(VI) follows second-order reaction kinetics with the apparent second-order rate constants (k app) ranging from 7 to 1,111 M−1 s−1 at pH 7.0. The reactivity of Fe(VI) species with the PCPs has the following decreasing order of H2FeO4 > HFeO4  > FeO4 2−, through the electrophilic oxidation mechanism. The phenolic PCPs can be transformed by Fe(VI) oxidation based on phenoxyl radical reaction, degradation, and coupling reaction. More importantly, the oxidation of each phenolic PCPs by Fe(VI) leads to the loss of its corresponding toxicity. The coexisting constituents present in source water have significant effects on PCP removal during Fe(VI) oxidation treatment. In practical applications, in situ production of Fe(VI) solution appears to be a promising technology for removal of PCPs during pilot and full-scale water treatment.

Keywords

  • Coexisting constituents
  • Ferrate(VI)
  • In situ
  • Oxidation
  • Personal care products
  • Reaction mechanisms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/698_2014_285
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-18809-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

5CBT:

5-Chloro-1H-benzotriazole

5MBT:

5-Methyl-1H-benzotriazole

ABTS:

2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulfonate)

AHTN:

7-Acetyl-1,1,3,4,4,6-hexamethyl-tetralin

BP-3:

Benzophenone-3

BT:

1H-benzotriazole

BTs:

Benzotriazoles

DMBT:

5,6-Dimethyl-1H-benzotriazole hydrate

DOC:

Dissolved organic carbon

Fe(III):

Ferric hydroxide

Fe(V):

Ferrate(V)

Fe(VI):

Ferrate(VI)

GC–MS:

Gas chromatography–mass spectrometry

HA:

Humic acid

HBT:

1-Hydroxybenzotriazole

HHCB:

1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyrane

I :

Iodide

k app :

Apparent second-order rate constants

PCPs:

Personal care products

pK a :

Acid dissociation constants

RRLC–MS/MS:

Rapid resolution liquid chromatography–tandem mass spectrometry

t 1/2 :

Half-life

TCC:

Triclocarban

TCS:

Triclosan

References

  1. Chen Z-F, Ying G-G, Lai H-J, Chen F, Su H-C, Liu Y-S, Peng F-Q, Zhao J-L (2012) Determination of biocides in different environmental matrices by use of ultra-high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 404(10):3175–3188

    CAS  CrossRef  Google Scholar 

  2. Bu Q, Wang B, Huang J, Deng S, Yu G (2013) Pharmaceuticals and personal care products in the aquatic environment in China: a review. J Hazard Mater 262:189–211

    CAS  CrossRef  Google Scholar 

  3. Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224

    CAS  CrossRef  Google Scholar 

  4. Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82(11):1518–1532

    CAS  CrossRef  Google Scholar 

  5. Witorsch RJ, Thomas JA (2010) Personal care products and endocrine disruption: a critical review of the literature. Crit Rev Toxicol 40:1–30

    CAS  CrossRef  Google Scholar 

  6. Jiang JQ, Lloyd B (2002) Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res 36(6):1397–1408

    CAS  CrossRef  Google Scholar 

  7. Sharma VK (2002) Potassium ferrate(VI): an environmentally friendly oxidant. Adv Environ Res 6(2):143–156

    CAS  CrossRef  Google Scholar 

  8. Lee Y, Cho M, Kim JY, Yoon J (2004) Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical. J Ind Eng Chem 10(1):161–171

    CAS  Google Scholar 

  9. Lee Y, Zimmermann SG, Kieu AT, von Gunten U (2009) Ferrate (Fe(VI)) application for municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal. Environ Sci Technol 43(10):3831–3838

    CAS  CrossRef  Google Scholar 

  10. Yang B, Ying G-G, Zhao J-L, Liu S, Zhou L-J, Chen F (2012) Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents. Water Res 46(7):2194–2204

    CAS  CrossRef  Google Scholar 

  11. Jiang JQ, Zhou ZW (2013) Removal of pharmaceutical residues by Ferrate(VI). PLoS One 8(2):e55729

    CAS  CrossRef  Google Scholar 

  12. Sharma VK (2013) Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism. Coord Chem Rev 257(2):495–510

    CAS  CrossRef  Google Scholar 

  13. Sharma VK (2011) Oxidation of inorganic contaminants by ferrates (VI, V, and IV)-kinetics and mechanisms: a review. J Environ Manag 92(4):1051–1073

    CAS  CrossRef  Google Scholar 

  14. Prucek R, Tucek J, Kolarik J, Filip J, Marusak Z, Sharma VK, Zboril R (2013) Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles. Environ Sci Technol 47(7):3283–3292

    CAS  Google Scholar 

  15. Cho M, Lee Y, Choi W, Chung HM, Yoon J (2006) Study on Fe(VI) species as a disinfectant: quantitative evaluation and modeling for inactivating Escherichia coli. Water Res 40(19):3580–3586

    CAS  CrossRef  Google Scholar 

  16. Makky EA, Park GS, Choi IW, Cho SI, Kim H (2011) Comparison of Fe(VI) (FeO42-) and ozone in inactivating Bacillus subtilis spores. Chemosphere 83(9):1228–1233

    CAS  CrossRef  Google Scholar 

  17. Gombos E, Felföldi T, Barkács K, Vértes C, Vajna B, Záray G (2012) Ferrate treatment for inactivation of bacterial community in municipal secondary effluent. Bioresour Technol 107:116–121

    CAS  CrossRef  Google Scholar 

  18. Hu L, Page MA, Sigstam T, Kohn T, Mariñas BJ, Strathmann TJ (2012) Inactivation of bacteriophage MS2 with potassium Ferrate(VI). Environ Sci Technol 46(21):12079–12087

    CAS  CrossRef  Google Scholar 

  19. Hu L, Martin HM, Arcs-Bulted O, Sugihara MN, Keatlng KA, Strathmann TJ (2009) Oxidation of carbamazepine by Mn(VII) and Fe(VI): Reaction kinetics and mechanism. Environ Sci Technol 43(2):509–515

    CAS  CrossRef  Google Scholar 

  20. Sharma VK (2010) Oxidation of nitrogen-containing pollutants by novel ferrate(VI) technology: a review. J Environ Sci Health Part A Toxic 45(6):645–667

    CAS  CrossRef  Google Scholar 

  21. Luo ZY, Strouse M, Jiang JQ, Sharma VK (2011) Methodologies for the analytical determination of ferrate(VI): a review. J Environ Sci Health Part A Toxic 46(5):453–460

    CAS  CrossRef  Google Scholar 

  22. Lee Y, Yoon J, von Gunten U (2005) Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS. Water Res 39(10):1946–1953

    CAS  CrossRef  Google Scholar 

  23. Lee Y, Yoon J, Von Gunten U (2005) Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environ Sci Technol 39(22):8978–8984

    CAS  CrossRef  Google Scholar 

  24. Licht S, Yu XW (2005) Electrochemical alkaline Fe(VI) water purification and remediation. Environ Sci Technol 39(20):8071–8076

    CAS  CrossRef  Google Scholar 

  25. Rule KL, Ebbett VR, Vikesland PJ (2005) Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environ Sci Technol 39(9):3176–3185

    CAS  CrossRef  Google Scholar 

  26. Sharma VK, Burnett CR, Millero FJ (2001) Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media. Phys Chem Chem Phys 3(11):2059–2062

    CAS  CrossRef  Google Scholar 

  27. Goff H, Murmann RK (1971) Studies on mechanism of isotopic oxygen exchange and reduction of ferrate(VI) ion (FeO4 2-). J Am Chem Soc 93(23):6058–6065

    CAS  CrossRef  Google Scholar 

  28. Schreyer JM, Ockerman LT (1951) Stability of the ferrate(VI) ion in aqueous solution. Anal Chem 23(9):1312–1314

    CAS  CrossRef  Google Scholar 

  29. Yang B, Ying G-G, Zhao J-L, Zhang L-J, Fang Y-X, Nghiem LD (2011) Oxidation of triclosan by ferrate: reaction kinetics, products identification and toxicity evaluation. J Hazard Mater 186(1):227–235

    CAS  CrossRef  Google Scholar 

  30. Yang B, Ying G-G, Zhang L-J, Zhou L-J, Liu S, Fang Y-X (2011) Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles. Water Res 45(6):2261–2269

    CAS  CrossRef  Google Scholar 

  31. Yang B, Ying G-G (2013) Oxidation of benzophenone-3 during water treatment with ferrate(VI). Water Res 47(7):2458–2466

    CAS  CrossRef  Google Scholar 

  32. Kamachi T, Kouno T, Yoshizawa K (2005) Participation of multioxidants in the pH dependence of the reactivity of ferrate(VI). J Org Chem 70(11):4380–4388

    CAS  CrossRef  Google Scholar 

  33. Mvula E, von Sonntag C (2003) Ozonolysis of phenols in aqueous solution. Org Biomol Chem 1(10):1749–1756

    CAS  CrossRef  Google Scholar 

  34. Suarez S, Dodd MC, Omil F, von Gunten U (2007) Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation. Water Res 41(12):2481–2490

    CAS  CrossRef  Google Scholar 

  35. Sharma VK, Mishra SK, Nesnas N (2006) Oxidation of sulfonamide antimicrobials by ferrate(VI) [(FeO4 2-)-O-VI]. Environ Sci Technol 40(23):7222–7227

    CAS  CrossRef  Google Scholar 

  36. Li C, Li XZ, Graham N, Gao NY (2008) The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Res 42(1–2):109–120

    CAS  CrossRef  Google Scholar 

  37. Anquandah GAK, Sharma VK, Knight DA, Batchu SR, Gardinali PR (2011) Oxidation of trimethoprim by Ferrate(VI): kinetics, products, and antibacterial activity. Environ Sci Technol 45(24):10575–10581

    CAS  CrossRef  Google Scholar 

  38. Zimmermann SG, Schmukat A, Schulz M, Benner J, Uv G, Ternes TA (2012) Kinetic and mechanistic investigations of the oxidation of tramadol by ferrate and ozone. Environ Sci Technol 46(2):876–884

    CAS  CrossRef  Google Scholar 

  39. Casbeer EM, Sharma VK, Zajickova Z, Dionysiou DD (2013) Kinetics and mechanism of oxidation of tryptophan by Ferrate(VI). Environ Sci Technol 47(9):4572–4580

    CAS  CrossRef  Google Scholar 

  40. Rush JD, Cyr JE, Zhao ZW, Bielski BHJ (1995) The oxidation of phenol by ferrate(VI) and ferrate(V) – a pulse-radiolysis and stopped-flow study. Free Radic Res 22(4):349–360

    CAS  CrossRef  Google Scholar 

  41. Huang H, Sommerfeld D, Dunn BC, Eyring EM, Lloyd CR (2001) Ferrate(VI) oxidation of aqueous phenol: kinetics and mechanism. J Phys Chem A 105(14):3536–3541

    CAS  CrossRef  Google Scholar 

  42. Lee Y, Escher BI, Von Gunten U (2008) Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. Environ Sci Technol 42(17):6333–6339

    CAS  CrossRef  Google Scholar 

  43. Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, Rice DW, Rafferty JB (1999) Molecular basis of triclosan activity. Nature 398(6726):383–384

    CAS  CrossRef  Google Scholar 

  44. Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W (2001) In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect 109(3):239–244

    CAS  CrossRef  Google Scholar 

  45. Ma RS, Cotton B, Lichtensteiger W, Schlumpf M (2003) UV filters with antagonistic action at androgen receptors in the MDA-kb2 cell transcriptional-activation assay. Toxicol Sci 74(1):43–50

    CAS  CrossRef  Google Scholar 

  46. Suzuki T, Kitamura S, Khota R, Sugihara K, Fujimoto N, Ohta S (2005) Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicol Appl Pharmacol 203(1):9–17

    CAS  CrossRef  Google Scholar 

  47. Schultz TW, Seward JR, Sinks GD (2000) Estrogenicity of benzophenones evaluated with a recombinant yeast assay: comparison of experimental and rules-based predicted activity. Environ Toxicol Chem 19(2):301–304

    CAS  Google Scholar 

  48. Lee Y, von Gunten U (2010) Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical). Water Res 44(2):555–566

    CAS  CrossRef  Google Scholar 

  49. Sharma VK, Bloom JT, Joshi VN (1998) Oxidation of ammonia by ferrate(VI). J Environ Sci Health Part A Toxic 33(4):635–650

    CrossRef  Google Scholar 

  50. Jiang J, Pang S-Y, Ma J, Liu H (2011) Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters. Environ Sci Technol 46(3):1774–1781

    CrossRef  Google Scholar 

  51. Waite TD (2012) On-site production of ferrate for water and wastewater purification. Am Lab 44(10):26–28

    CAS  Google Scholar 

  52. Jiang JQ, Stanford C, Alsheyab M (2009) The online generation and application of ferrate(VI) for sewage treatment-A pilot scale trial. Sep Purif Technol 68(2):227–231

    CAS  CrossRef  Google Scholar 

  53. Stanford C, Jiang JQ, Alsheyab M (2010) Electrochemical Production of Ferrate (Iron VI): application to the Wastewater Treatment on a Laboratory Scale and Comparison with Iron (III) Coagulant. Water Air Soil Pollut 209(1–4):483–488

    CAS  CrossRef  Google Scholar 

  54. Jiang JQ, Stanford C, Alsheyab M (2012) The application of ferrate for sewage treatment: pilot- to full-scale trials. Global NEST J 14(1):93–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Guo Ying .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, B., Ying, GG. (2014). Removal of Personal Care Products Through Ferrate(VI) Oxidation Treatment. In: Díaz‐Cruz, M., Barceló, D. (eds) Personal Care Products in the Aquatic Environment. The Handbook of Environmental Chemistry, vol 36. Springer, Cham. https://doi.org/10.1007/698_2014_285

Download citation