Mercury Soil Pollution in Spain: A Review

  • Pablo HiguerasEmail author
  • Rodolfo Fernández-Martínez
  • José María Esbrí
  • Isabel Rucandio
  • Jorge Loredo
  • Almudena Ordóñez
  • Rodrigo Álvarez
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 32)


Spain has been the main mercury producer worldwide, with mines or mining districts scattered across its geography. In particular, two main areas show generally higher contents of this element in the soils, namely, Asturias (or the Cantabrian Zone in geological terms) and the Almadén area in the Southern Central Iberian Zone. In this review six different aspects are considered: (1) distribution of total concentrations, (2) mercury mobility and availability, (3) soil to plant transfer, (4) mercury transfer to animal biota, (5) soil to atmosphere transfer and (6) possibility of remediation for sites polluted by mercury. The conclusions drawn from the available results highlight significant differences in contents, mobility and transfer processes depending on the different types of mercury pollution and different climatic conditions. A general background level for Spanish soils can be established at 20 μg kg−1, but very different ranges can be found in different areas according to the volumetric importance of each source and depending on other local factors. Mercury mining appears to be the most important source of soil pollution, and studies on the possible mobility and transfer to other environmental compartments demonstrate the highest levels at which mercury affects the population living in the proximity of such sources.


Availability Mercury Plants Soil pollution Spain 


  1. 1.
    Kurland LT, Faro SN, Siedler H (1960) Minamata disease. The outbreak of a neurologic disorder in Minamata, Japan, and its relationship to the ingestion of seafood contaminated by mercuric compounds. World Neurol 1:370–395Google Scholar
  2. 2.
    Rustam H, Hamdi T (1974) Methyl mercury poisoning in Iraq. A neurological study. Brain 97(3):499–510CrossRefGoogle Scholar
  3. 3.
    Pavlish JH, Sondreal EA, Mann MD, Olson ES, Galbreath KC, Laudal DL, Benson SA (2003) Status review of mercury control options for coal-fired power plants (Review). Fuel Process Technol 82:89–165CrossRefGoogle Scholar
  4. 4.
    Díaz-Somoano M, Unterberger S, Hein KRG (2007) Mercury emission control in coal-fired plants: the role of wet scrubbers. Fuel Process Technol 88(3):259–263CrossRefGoogle Scholar
  5. 5.
    Widmer NC, Cole JA, Seeker WR, Gaspar JA (1998) Practical limitation of mercury speciation in simulated municipal waste incinerator flue gas. Combust Sci Technol 134(1–6):315–326CrossRefGoogle Scholar
  6. 6.
    Saupé F (1990) Geology of the Almaden mercury deposit, province of Ciudad Real, Spain. Econ Geol 85(3):482–510CrossRefGoogle Scholar
  7. 7.
    Hernández A, Jébrak M, Higueras P, Oyarzun R, Morata D, Munhá J (1999) The Almaden mercury mining district, Spain. Miner Deposita 34(5–6):539–548Google Scholar
  8. 8.
    Fernández-Martínez R, Rucandio MI (2003) Study of extraction conditions for the quantitative determination of Hg bound to sulfide in soils from Almaden (Spain). Anal Bioanal Chem 375(8):1089–1096Google Scholar
  9. 9.
    Fernández-Martínez R, Rucandio MI (2005) Study of the suitability of HNO3 and HCl as extracting agents of mercury species in soils from cinnabar mines. Anal Bioanal Chem 381(8):1499–1506CrossRefGoogle Scholar
  10. 10.
    Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. J Geochem Explor 80(1):95–104CrossRefGoogle Scholar
  11. 11.
    Higueras P, Oyarzun R, Lillo J, Sánchez-Hernández JC, Molina JA, Esbrí JM, Lorenzo S (2006) The Almadén district (Spain): Anatomy of one of the world’s largest Hg-contaminated sites. Sci Total Environ 356(1–3):112–124CrossRefGoogle Scholar
  12. 12.
    Gray JE, Hines ME, Higueras PL, Adatto I, Lasorsa BK (2004) Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén Mining District, Spain. Environ Sci Technol 38(16):4285–4292CrossRefGoogle Scholar
  13. 13.
    Sánchez DM, Quejido AJ, Fernández M, Hernández C, Schmid T, Millán R, González M, Aldea M, Martin R, Morante R (2005) Mercury and trace element fractionation in Almadén soils by application of different sequential extraction procedures. Anal Bioanal Chem 381(8):1507–1513CrossRefGoogle Scholar
  14. 14.
    Bernaus A, Gaona X, Valiente M (2005) Characterisation of Almadén mercury mine environment by XAS techniques. J Environ Monit 7(8):771–777CrossRefGoogle Scholar
  15. 15.
    Bernaus A, Gaona X, Esbrí JM, Higueras P, Falkenberg G, Valiente M (2006) Microprobe techniques for speciation analysis and geochemical characterization of mine environments: the mercury district of Almadén in Spain. Environ Sci Technol 40(13):4090–4095CrossRefGoogle Scholar
  16. 16.
    Bueno PC, Bellido E, Rubí JAM, Ballesta RJ (2009) Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environ Geol 56(5):815–824CrossRefGoogle Scholar
  17. 17.
    Esbrí JM, Bernaus A, Ávila M, Kocman D, García-Noguero EM, Guerrero B, Gaona X, Alvarez R, Perez-Gonzalez G, Valiente M, Higueras P, Horvat M, Loredo J (2010) XANES speciation of mercury in three mining districts - Almadén, Asturias (Spain), Idria (Slovenia). J Synchrotron Radiat 17(2):179–186CrossRefGoogle Scholar
  18. 18.
    Llanos W, Higueras P, Oyarzun R, Esbrí JM, López-Berdonces MA, García-Noguero EM, Martínez-Coronado A (2010) The MERSADE (European Union) project: Testing procedures and environmental impact for the safe storage of liquid mercury in the Almadén district, Spain. Sci Total Environ 408(20):4901–4905CrossRefGoogle Scholar
  19. 19.
    Millán R, Schmid T, Sierra MJ, Carrasco-Gil S, Villadóniga M, Rico C, Ledesma DMS, Puente FJD (2011) Spatial variation of biological and pedological properties in an area affected by a metallurgical mercury plant: Almadenejos (Spain). Appl Geochem 26(2):174–181CrossRefGoogle Scholar
  20. 20.
    Martínez-Coronado A, Oyarzun R, Esbrí JM, Llanos W, Higueras P (2011) Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almadén mining district (Spain): The old metallurgical precinct (1794 to 1861 AD) and surrounding areas. J Geochem Explor 109(1–3):70–77CrossRefGoogle Scholar
  21. 21.
    Lindberg SE, Jackson DR, Huckabee JW (1979) Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. J Environ Qual 8(4):572–578CrossRefGoogle Scholar
  22. 22.
    Huckabee JW, Sanz Diaz F, Janzen SA, Solomon J (1983) Distribution of mercury in vegetation at Almaden, Spain. Environ Pollut A 30(3):211–224CrossRefGoogle Scholar
  23. 23.
    Rodriguez L, Lopez-Bellido FJ, Carnicer A, Alcalde-Morano V (2003) Phytoremediation of mercury-polluted soils using crop plants. Fresen Environ Bull 12(9):967–971Google Scholar
  24. 24.
    Millán R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sánchez DM, Cardona AI, Fernandez M, Vera R (2006) Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci Total Environ 368(1):79–87CrossRefGoogle Scholar
  25. 25.
    Millán R, Lominchar MA, López-Tejedor I, Rodríguez-Alonso J, Schmid T, Sierra MJ (2012) Behavior of mercury in the Valdeazogues riverbank soil and transfer to Nerium oleander L. J Geochem Explor 123:136–142CrossRefGoogle Scholar
  26. 26.
    Molina JA, Oyarzun R, Esbrí JM, Higueras P (2006) Mercury accumulation in soils and plants in the Almadén mining district, Spain: One of the most contaminated sites on Earth. Environ Geochem Health 28(5):487–498CrossRefGoogle Scholar
  27. 27.
    Sierra MJ, Millán R, Esteban E, Cardona AI, Schmid T (2008) Evaluation of mercury uptake and distribution in Vicia sativa L. applying two different study scales: Greenhouse conditions and lysimeter experiments. J Geochem Explor 96(2–3):203–209CrossRefGoogle Scholar
  28. 28.
    Sierra MJ, Millán R, Esteban E (2008) Potential use of Solanum melongena in agricultural areas with high mercury background concentrations. Food Chem Toxicol 46(6):2143–2149CrossRefGoogle Scholar
  29. 29.
    Sierra MJ, Millán R, Esteban E (2009) Mercury uptake and distribution in Lavandula stoechas plants grown in soil from Almadén mining district (Spain). Food Chem Toxicol 47(11):2761–2767CrossRefGoogle Scholar
  30. 30.
    Sierra MJ, Millán R, Cardona AI, Schmid T (2011) Potential cultivation of Hordeum vulgare L. in soils with high mercury background concentrations. Int J Phytoremediation 13(8):765–778CrossRefGoogle Scholar
  31. 31.
    Sierra MJ, Rodríguez-Alonso J, Millán R (2012) Impact of the lavender rhizosphere on the mercury uptake in field conditions. Chemosphere 89(11):1457–1466CrossRefGoogle Scholar
  32. 32.
    Ruiz-Díez B, Quiñones MA, Fajardo S, López-Berdonces MA, Higueras P, Fernández-Pascual M (2012) Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils. Appl Microbiol Biotechnol 96(2):543–554CrossRefGoogle Scholar
  33. 33.
    Higueras P, Amorós JA, Esbrí JM, García-Navarro FJ, Pérez de los Reyes C, Moreno G (2012) Time and space variations in mercury and other trace element contents in olive tree leaves from the Almadén Hg-mining district. J Geochem Explor 123:143–151Google Scholar
  34. 34.
    Moreno-Jiménez E, Gimeno H, Gamarra R, Esteban E (2013) Evidence of a new Hg-tolerant ecotype of Rumex induratus from Almadén (Ciudad Real, Spain). Plant Biosyst 148(1):58–63CrossRefGoogle Scholar
  35. 35.
    Quiñones MA, Ruiz-Díez B, Fajardo S, López-Berdonces MA, Higueras PL, Fernández-Pascual M (2013) Lupinus albus plants acquire mercury tolerance when inoculated with an Hg-resistant Bradyrhizobium strain. Plant Physiol Biochem 73:168–175CrossRefGoogle Scholar
  36. 36.
    Dago A, González I, Ariño C, Martínez-Coronado A, Higueras P, Díaz-Cruz JM, Esteban M (2014) Evaluation of the mercury stress produced in plants by the analysis of phytochelatins and its Hg complexes induced in Asparagus acutifolius and Retama sphaerocarpa from the Almadén mining district. Environ Sci Technol 48(11):6256–6263Google Scholar
  37. 37.
    Moreno T, Higueras P, Jones T, McDonald I, Gibbons W (2005) Size fractionation in mercury-bearing airborne particles (HgPM10) at Almadén, Spain: implications for inhalation hazards around old mines. Atmos Environ 39:6409–6419CrossRefGoogle Scholar
  38. 38.
    Berzas Nevado JJ, Rodríguez Martin-Doimeadios RC, Mateo R, Rodríguez Fariñas N, Rodríguez-Estival J, Patiño Ropero MJ (2012) Mercury exposure and mechanism of response in large game using the Almadén mercury mining area (Spain) as a case study. Environ Res 112:58–66CrossRefGoogle Scholar
  39. 39.
    Díez S, Esbrí JM, Tobias A, Higueras P, Martínez-Coronado A (2011) Determinants of exposure to mercury in hair from inhabitants of the largest mercury mine in the world. Chemosphere 84:571–577CrossRefGoogle Scholar
  40. 40.
    Gray JE, Plumlee GS, Morman SA, Higueras PL, Crock JG, Lowers HA, Witten ML (2010) In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids. Environ Sci Technol 44(12):4782–4788CrossRefGoogle Scholar
  41. 41.
    Llanos W, Kocman D, Higueras P, Horvat M (2011) Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy. J Environ Monit 13(12):3460–3468CrossRefGoogle Scholar
  42. 42.
    Carmona M, Llanos W, Higueras P, Kocman D (2013) Mercury emissions in equilibrium: A novel approach for the quantification of mercury emissions from contaminated soils. Anal Methods 5(11):2793–2801CrossRefGoogle Scholar
  43. 43.
    Navarro A, Cardellach E, Corbella M (2009) Mercury mobility in mine waste from Hg-mining areas in Almería, Andalusia (Se Spain). J Geochem Explor 101(3):236–246CrossRefGoogle Scholar
  44. 44.
    Navarro A, Cardellach E, Cañadas I, Rodríguez J (2013) Solar thermal vitrification of mining contaminated soils. Int J Miner Process 119:65–74CrossRefGoogle Scholar
  45. 45.
    García-Rubio A, Rodríguez-Maroto JM, Gómez-Lahoz C, García-Herruzo F, Vereda-Alonso C (2011) Electrokinetic remediation: The use of mercury speciation for feasibility studies applied to a contaminated soil from Almadén. Electrochim Acta 56(25):9303–9310CrossRefGoogle Scholar
  46. 46.
    Subirés-Muñoz JD, García-Rubio A, Vereda-Alonso C, Gómez-Lahoz C, Rodríguez-Maroto JM, García-Herruzo F, Paz-García JM (2011) Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Sep Purif Technol 79(2):151–156CrossRefGoogle Scholar
  47. 47.
    Sierra C, Menéndez-Aguado JM, Afif E, Carrero M, Gallego JR (2011) Feasibility study on the use of soil washing to remediate the As-Hg contamination at an ancient mining and metallurgy area. J Hazard Mater 196:93–100CrossRefGoogle Scholar
  48. 48.
    Luque C (1985) Mercury mineralization in Cantabria mountains (Las mineralizaciones de mercurio de la Cordillera Cantábrica). PhD Dissertation, University of Oviedo, In SpanishGoogle Scholar
  49. 49.
    Luque C, Gutiérrez-Claverol M (2006) Mercury mining in Asturias; historic features (La minería del mercurio en Asturias; Rasgos históricos). Eujoa Artes Gráficas, Oviedo, In SpanishGoogle Scholar
  50. 50.
    Luque C, Martínez-Garcia E, Garcia-Iglesias J, Gutierrez-Claverol M (1991) Mineralization of Hg-As-Sb in the western edge of Central Asturias Carboniferous basin and its possible relation to tectonic: La Peña-El Terronal mine. (Mineralizaciones de Hg–As–Sb en el borde occidental de la cuenca Carbonífera central de Asturias y su posible relación con la tectónica: el yacimiento de El Terronal-La Peña). Bol Soc Esp Mineral 14:161–170, In SpanishGoogle Scholar
  51. 51.
    Loredo J, Ordóñez A, Gallego JR, Baldo C, García-Iglesias J (1999) Geochemical characterisation of mercury mining spoil heaps in the area of Mieres (Asturias, northern Spain). J Geochem Explor 67(1–3):377–390CrossRefGoogle Scholar
  52. 52.
    Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI (2005) Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Sci Total Environ 346:200–212CrossRefGoogle Scholar
  53. 53.
    Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI (2006) Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environ Pollut 142(2):217–226CrossRefGoogle Scholar
  54. 54.
    Loredo J, Ordóñez A, Álvarez R (2006) Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury-mining area (Asturias, Spain). J Hazard Mater 136(3):455–467CrossRefGoogle Scholar
  55. 55.
    Ordóñez A, Álvarez R, Loredo J (2013) Asturian mercury mining district (Spain) and the environment: A review. Environ Sci Pollut Res 20(11):7490–7508CrossRefGoogle Scholar
  56. 56.
    López Alonso M, Benedito JL, Miranda M, Castillo C, Hernández J, Shore RF (2003) Mercury concentrations in cattle from NW Spain. Sci Total Environ 302(1–3):93–100CrossRefGoogle Scholar
  57. 57.
    López Alonso M, Benedito JL, Miranda M, Fernández JA, Castillo C, Hernández J, Shore RF (2003) Large-scale spatial variation in mercury concentrations in cattle in NW Spain. Environ Pollut 125(2):173–181CrossRefGoogle Scholar
  58. 58.
    Miranda M, López-Alonso M, Castillo C, Hernández J, Prieto F, Benedito JL (2003) Some toxic elements in liver, kidney and meat from calves slaughtered in Asturias (Northern Spain). Eur Food Res Technol 216(4):284–289Google Scholar
  59. 59.
    García-Sánchez A, Murciego A, Álvarez-Ayuso E, Santa Regina I, Rodríguez-González MA (2009) Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain). J Hazard Mater 168:1319–1324CrossRefGoogle Scholar
  60. 60.
    Martínez J, Navarro A, Lunar R (1997) First reference of pyrite framboids in a Hg–Sb mineralization: the Valle del Azogue mineral deposit (SE Spain). N Jb Miner Mh Jg 4:175–184Google Scholar
  61. 61.
    Navarro A, Biester H, Mendoza JL, Cardellach E (2006) Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environ Geol 49(8):1089–1101CrossRefGoogle Scholar
  62. 62.
    Becker GF (1888) Geology of the quicksilver deposits of the Pacific Slope with Atlas. Monogr US Geol Surv 23442:27–32Google Scholar
  63. 63.
    Viladevall M, Font X, Navarro A (1999) Geochemical mercury survey in the Azogue Valley (Betic area, SE Spain). J Geochem Explor 66(1–2):27–35CrossRefGoogle Scholar
  64. 64.
    Navarro A, Martínez-Frías J, Font X, Viladevall M (2000) Modelling of modern mercury vapor transport in an ancient hydrothermal system: environmental and geochemical implications. Appl Geochem 15:281–294CrossRefGoogle Scholar
  65. 65.
    Navarro A (2008) Review of characteristics of mercury speciation and mobility from areas of mercury mining in semi-arid environments. Rev Environ Sci Biotechnol 7:287–306CrossRefGoogle Scholar
  66. 66.
    Esbrí JM, Baselga L, Higueras P (2009) Evaluation of Mercury dispersion from Chlor-alkali industries in Spain. In: Theophanides M, Theophanides T (eds) Environmental Engineering and Management. ATINER, Atenas, pp 121–128Google Scholar
  67. 67.
    Carrasco L, Díez S, Soto DX, Catalan J, Bayona JM (2008) Assessment of mercury and methylmercury pollution with zebra mussel (Dreissena polymorpha) in the Ebro River (NE Spain) impacted by industrial hazardous dumps. Sci Total Environ 407:178–184CrossRefGoogle Scholar
  68. 68.
    Navarro A, Quirós L, Casado M, Faria M, Carrasco L, Benejam L, Benito J, Díez S, Raldúa D, Barata C, Bayona JM, Piña B (2009) Physiological responses to mercury in feral carp populations inhabiting the low Ebro River (NE Spain), a historically contaminated site. Aquat Toxicol 93:150–157CrossRefGoogle Scholar
  69. 69.
    Faria M, Huertas D, Soto DX, Grimalt JO, Catalan J, Riva MC, Barata C (2010) Contaminant accumulation and multi-biomarker responses in field collected zebra mussels (Dreissena polymorpha) and crayfish (Procambarus clarkii), to evaluate toxicological effects of industrial hazardous dumps in the Ebro river (NE Spain). Chemosphere 78:232–240CrossRefGoogle Scholar
  70. 70.
    Grimalt JO, Sánchez-Cabeza JA, Palanques A, Catalán J (2003) Estudi de la dinàmica dels compostos organoclorats persistents i altres contaminants en els sistemes aquàtics continentals. Catalan Water Agency, Government of Catalonia, ACA/CIRIT, p 256; In CatalonianGoogle Scholar
  71. 71.
    FOREGS (2005) Geochemical Atlas of Europe. Part 1: background information, methodology and maps. In: Salminen R (ed) Geological survey of Finland, Espoo, p 526Google Scholar
  72. 72.
    IGME (2012) Geochemical atlas of Spain (Atlas Geoquímico de España), Instituto Geológico y Minero de España, Madrid, In SpanishGoogle Scholar
  73. 73.
    Rodríguez-Martín JA, Lopéz Arias M, Grau Corbí JM (2006) Heavy metals contents in agricultural topsoils in the Ebro basin: application of the multivariate geoestatistical methods to study spatial variations. Environ Pollut 144:1001–1012CrossRefGoogle Scholar
  74. 74.
    Gil C, Ramos-Miras J, Roca-Pérez L, Boluda R (2010) Determination and assessment of mercury content in calcareous soils. Chemosphere 78(4):409–415CrossRefGoogle Scholar
  75. 75.
    Ramos-Miras JJ, Gil C, Roca-Perez L, Boluda R (2012) Content and evolution of mercury in greenhouse soils of Almeria, Spain. Acta Hortic 927:821–826Google Scholar
  76. 76.
    Grimalt JO, Ferrer M, MacPherson E (1999) The mine tailing accident in Aznalcollar. Sci Total Environ 242:3–11CrossRefGoogle Scholar
  77. 77.
    Llanos W (2011) Modelization of gaseous mercury emissions to the atmosphere in Almadén mining district (Ciudad Real province) (Modelización de las emisiones de mercurio gaseoso a la atmosfera en el distrito minero de almadén (provincia de Ciudad Real)). PhD Dissertation, University Complutense of Madrid, In SpanishGoogle Scholar
  78. 78.
    Castillo WO (2012) Mercury in soils of Nueva Concepción mine, Almadén mining district (Spain) (Mercurio en suelos del sector de la mina la Nueva Concepción, Distrito Minero de Almadén (España)). Dissertation, University Complutense of Madrid, In SpanishGoogle Scholar
  79. 79.
    Villaseca R (2012) Study of heavy metal pollution in Usagre mercury mine (Badajoz) (Estudio de la contaminación por metales pesados en el yacimiento de mercurio de Usagre (Badajoz)). Dissertation, University of Castilla-La Mancha, In SpanishGoogle Scholar
  80. 80.
    Esbrí JM, López-Berdonces MA, Fernández-Calderón S, Higueras P, Díez S (2014) Mercury atmospheric pollution around a Chlor-Alkali plant: an integrated analysis. Environ Sci Pollut Res. doi: 10.1007/s11356-014-3305-x Google Scholar
  81. 81.
    Agencia de Residus de Catalunya (2014) NGR values for metals and metalloids and human health protection in Catalonia (Valores de los NGR para metales y metaloides y protección de la salud humana aplicables a Cataluña.), Available at GENCAT. VgnVCM1000008d0c1e0aRCRD&vgnextchannel=fd370431b17d6210VgnVCM1000008d0c1e0aRCRD&vgnextfmt=default. Accessed 21 Mar 2014, In Spanish
  82. 82.
    Environment Agency (2009) Soil guidance values for UK, Available at environment agency. Accessed 21 Mar 2014
  83. 83.
    Alloway BJ (1995) Heavy metals in soils, 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  84. 84.
    Senesi GS, Baldassarre G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39(2):343–377CrossRefGoogle Scholar
  85. 85.
    Bowen HJM (1979) Environmental chemistry of the elements. Academic, New YorkGoogle Scholar
  86. 86.
    Ordóñez A, Álvarez R, Charlesworth S, De Miguel E, Loredo J (2011) Risk assessment of soils contaminated by mercury mining, Northern Spain. J Environ Monit 13:128–136CrossRefGoogle Scholar
  87. 87.
    Biester H, Muller G, Scholer HF (2002) Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284:191–203CrossRefGoogle Scholar
  88. 88.
    Davies G, Ghabbour EA, Cherkasskiy A, Fataftah A (2001) Tight metal binding by solid phase peat and soil humic acids. In: Clapp CE, Hayes MHB, Senesi N, Bloom PR, Jardine PM (eds) Humic substances and chemical contaminants. Soil Science Society of America, Anaheim, pp 371–395Google Scholar
  89. 89.
    Bengtsson G, Picado F (2008) Mercury sorption to sediments: dependence on grain size, dissolved organic carbon, and suspended bacteria. Chemosphere 73:526–531CrossRefGoogle Scholar
  90. 90.
    Sahuquillo A, Rauret G, Bianchi M, Rehnert A, Muntau H (2003) Mercury determination in solid phases from application of the modified BCR-sequential extraction procedure: a valuable tool for assessing its mobility in sediments. Anal Bioanal Chem 375:578–583Google Scholar
  91. 91.
    Fernández-Martínez R, Rucandio I (2014) Total mercury, organic mercury and mercury fractionation in soil profiles from the Almadén mercury mine area. Environ Sci Process Impacts 16:333–340CrossRefGoogle Scholar
  92. 92.
    Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio I (2014) Mercury availability by operationally-defined fractionation in granulometric distributions of soils and mine wastes from an abandoned Cinnabar Mine. Environ Sci Process Impacts 16(5):1069–1075CrossRefGoogle Scholar
  93. 93.
    Fernández-Martínez R, Rucandio I (2013) Assessment of a sequential extraction method to evaluate mercury mobility and geochemistry in solid environmental samples. Ecotoxicol Environ Saf 97:196–203CrossRefGoogle Scholar
  94. 94.
    Carrasco-Gil S, Álvarez-Fernández A, Sobrino-Plata J, Millán R, Carpena-Ruiz RO, Leduc DL, Andrews JC, Abadia J, Hernández LE (2011) Complexation of hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34(5):778–791CrossRefGoogle Scholar
  95. 95.
    Higueras P, Oyarzun R, Kotnik J, Esbrí JM, Martínez-Coronado A, Horvat M, López-Berdonces MA, Llanos W, Vaselli O, Nisi B, Mashyanov N, Ryzov V, Spiric Z, Panichev N, McCrindle R, Feng XB, Fu XW, Lillo J, Loredo J, García ME, Alfonso P, Villegas K, Palacios S, Oyarzún J, Maturana H, Contreras F, Adams M, Ribeiro-Guevara S, Niecenski LF, Giammanco S, Huremović J (2014) A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa, and China: separating fads from facts. Environ Geochem Health 36:713–734Google Scholar
  96. 96.
    Herrera EA (2013) Mercury in air and lichens (Evernia Prunastri) in La Nueva Concepción mine, Almadén mining district (Spain). (Mercurio en aire y líquenes (Evernia prunastri) en el sector de la mina La Nueva Concepción, distrito minero de Almadén (España)). Dissertation, University Complutense of Madrid. In SpanishGoogle Scholar
  97. 97.
    García-Sánchez A, Contreras F, Adams M, Santos F (2006) Atmospheric mercury emissions from polluted gold mining areas (Venezuela). Environ Geochem Health 28:529–540CrossRefGoogle Scholar
  98. 98.
    Higueras P, Llanos W, García ME, Millán R, Serrano C (2012) Mercury vapor emissions from the Ingenios in Potosí (Bolivia). J Geochem Explor 116–117:1–7CrossRefGoogle Scholar
  99. 99.
    Guerrero S (2012) Chemistry as a tool for historical research: identifying paths of historical mercury pollution in the Hispanic New World. Bull Hist Chem 37:61–70Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pablo Higueras
    • 1
    Email author
  • Rodolfo Fernández-Martínez
    • 2
  • José María Esbrí
    • 1
  • Isabel Rucandio
    • 2
  • Jorge Loredo
    • 3
  • Almudena Ordóñez
    • 3
  • Rodrigo Álvarez
    • 3
  1. 1.Instituto de Geología AplicadaUniversity of Castilla-La Mancha (Spain). E.I.M.I. AlmadénAlmadén (Ciudad Real)Spain
  2. 2.Spectroscopy Unit, Chemistry Division, Technology Department, Centro de Investigaciones EnergéticasMedioambientales y Tecnológicas (CIEMAT)MadridSpain
  3. 3.Dep. Explotación y Prospección de MinasUniversity of Oviedo, Escuela Técnica Superior de Ingenieros de MinasOviedoSpain

Personalised recommendations