Skip to main content

Livestock Waste: Fears and Opportunities

  • Chapter
  • First Online:
Environment, Energy and Climate Change I

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 32))

Abstract

One of the common tendencies of livestock activities in developed countries is to intensify the animal production and to increase the size of the production units. High animal density is always accompanied by production of a surplus of manure, representing a considerable pollution threat for the environment in these areas. Intensive animal production needs therefore suitable manure management, aiming to optimise their recycling. Treatment technologies can play an important role in the management of livestock manure by providing a more flexible approach to land application and acreage limitations, and by solving specific problems such as odours, pathogens, water pollution, ammonia emissions, greenhouse gas emissions, and phosphorus and heavy metal contamination of soils. Treatment can be enhanced with the use of biological, chemical, and physical methodologies, especially in combination as part of holistic systems. This chapter discusses sustainable treatment practices, emerging technologies, and holistic systems to solve related problems and to provide direction on animal waste treatment systems of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vanotti M, Szogi A, Pilar Bernal M, Martinez J (2009) Livestock waste treatment systems of the future: a challenge to environmental quality, food safety, and sustainability. OECD Workshop. Bioresource Technol 100(22):5371–5373

    Article  CAS  Google Scholar 

  2. Bernet N, Béline F (2009) Challenges and innovations on biological treatment of livestock effluents. Bioresource Technol 100(22):5431–5436

    Article  CAS  Google Scholar 

  3. FAOSTAT (2013) http://faostat3.fao.org. Accessed 6 Feb 2014

  4. Delgado C, Rosegrant M, Steinfeld H, Ehui S, Courbois C (1999) Livestock to 2020. International Food Policy Research Institute, Washington

    Google Scholar 

  5. Garg M, Makkar H (2012) Balanced feeding for improving livestock productivity: increase in milk production and nutrient use efficiency and decrease in methane emission. Anim Prod Health 173, Rome

    Google Scholar 

  6. American Society of Agricultural Engineers (2001) Committee S&E-412 report AW-D-1, revised 6-14-73

    Google Scholar 

  7. Halden U, Schwab J (2008) Environmental impact of industrial farm animal production. A Report of the Pew Commission on Industrial Farm Animal Production

    Google Scholar 

  8. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow. FAO, Rome

    Google Scholar 

  9. Melse R, Timmerman M (2009) Sustainable intensive livestock production demands manure and exhaust air treatment technologies. Bioresource Technol 100(22):5506–5511

    Article  CAS  Google Scholar 

  10. Burton C, Turner C (eds) (2003) Manure management-treatment strategies for sustainable agriculture, 2nd edn. Silsoe Research Institute, Bedford

    Google Scholar 

  11. Martinez J, Dabert P, Barrington S, Burton C (2009) Livestock waste treatment systems for environmental quality, food safety, and sustainability. Bioresource Technol 100(22):5527–5536

    Article  CAS  Google Scholar 

  12. Place S, Mitloehner F (2014) The Nexus of environmental quality and livestock welfare. Annu Rev Anim Biosci 2:1.1–1.15

    Article  Google Scholar 

  13. Giola P, Basso B, Pruneddu G, Giunta F, Jones J (2012) Impact of manure and slurry applications on soil nitrate in a maize-triticale rotation: field study and long term simulation analysis. Eur J Agron 38:43–53

    Article  Google Scholar 

  14. Maillard É, Angers D (2014) Animal manure application and soil organic carbon stocks: a meta-analysis. Glob Change Biol 20(2):666–679

    Article  Google Scholar 

  15. Bernard E, Larkin R, Tavantzis S, Erich M, Alyokhin A, Sewell G, Gross S (2012) Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl Soil Ecol 52:29–41

    Article  Google Scholar 

  16. European Union (2014) Endocrine disruptors website: how the European Union uses the precautionary principle to tackle endocrine disruptors. http://ec.europa.eu /environment/endocrine/definitions/endodis_en.htm. Accessed 7 Feb 2014

  17. Combalbert S, Bellet V, Dabert P, Bernet N, Balaguer P, Hernandez-Raquet G (2012) Fate of steroid hormones and endocrine activities in swine manure disposal and treatment facilities. Wat Res 46(3):895–906

    Article  CAS  Google Scholar 

  18. Edwards D, Daniel T (1992) Environmental impacts of on-farm poultry waste disposal – a review. Bioresource Technol 41(1):9–33

    Article  CAS  Google Scholar 

  19. EEC/91/676, O.J. NL 375, 31.12.1991.p1. Protection of waters against pollution caused by nitrates from agricultural sources

    Google Scholar 

  20. Hooda P, Edwards A, Anderson H, Miller A (2000) A review of water quality concerns in livestock farming areas. Sci Total Environ 250:143–167

    Article  CAS  Google Scholar 

  21. Ali S (2004) A socio-ecological autopsy of the E. coli O157:H7 outbreak in Walkerton, Ontario, Canada. Soc Sci Med 58(12):2601–2612

    Article  Google Scholar 

  22. Thorne P (2007) Environmental health impacts of concentrated animal feeding operations: anticipating hazards searching for solutions. Environ Health Perspect 115:296–307

    Article  CAS  Google Scholar 

  23. Gilchrist M, Greko C, Wallinga D (2007) The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ Health Perspect 115:313–316

    Article  Google Scholar 

  24. Martens W, Böhm R (2009) Overview of the ability of different treatment methods for liquid and solid manure to inactivate pathogens. Bioresource Technol 100(22):5374–5378

    Article  CAS  Google Scholar 

  25. Burton C (2009) Reconciling the new demands for food protection with environmental needs in the management of livestock wastes. Bioresource Technol 100(22):5399–5405

    Article  CAS  Google Scholar 

  26. May S, Romberger D, Poole J (2012) Respiratory health effects of large animal farming environments. J Toxicol Environ Health B 15(8):524–541

    Article  CAS  Google Scholar 

  27. Leytem A, Dungan R, Bjorneberg D, Koehn A (2011) Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems. J Environ Qual 40(5):1383–1394

    Article  CAS  Google Scholar 

  28. Dammgen U, Amon B, Hutchings N, Haenel H, Rosemann C (2012) Data sets to assess methane emissions from untreated cattle and pig slurry and solid manure storage systems in the German and Austrian emission inventories. Archiv Naturschutz Landschaftsforschung 62(1–2):1–20

    Google Scholar 

  29. Junior C, Cerri C, Dorich C, Maia S, Bernoux M, Cerri C (2013) Towards a representative assessment of methane and nitrous oxide emissions and mitigation options from manure management of beef cattle feedlots in Brazil. Mitig Adapt Strat Gl:1–14

    Google Scholar 

  30. Cambra-López M, Aarnink A, Zhao Y, Calvet S, Torres A (2010) Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environ Pollut 158:1–17

    Article  Google Scholar 

  31. Ling Z, Guo H (2014) Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong. Environl Sci Policy 38:180–191

    Google Scholar 

  32. Millner P (2009) Bioaerosols associated with animal production operations. Bioresource Technol 100(22):5379–5385

    Article  CAS  Google Scholar 

  33. Schiffman S, Walker J, Dalton P, Lorig T, Raymer J, Shusterman D, Williams C (2000) Potential health effects odor from animal operations, wastewater treatment, and recycling of byproducts. J Agromed 7:7–81

    Article  Google Scholar 

  34. Ackers M, Mahon B, Leahy E (1998) An outbreak of E. coli O157: H7 infections associated with leaf lettuce consumption. J Infect Dis 177(6):1588–1593

    Article  CAS  Google Scholar 

  35. Bezanson G, Ells T, Prange R (2014) Effect of composting on microbial contamination and quality of fresh fruits and vegetables-a mini-review. In: I International symposium on organic matter management and compost use in horticulture. ISHS Acta Horticulturae 1018:631–638

    Google Scholar 

  36. Dufour A (ed) (2012) Animal waste, water quality and human health. IWA Publishing, London

    Google Scholar 

  37. Guan T, Holley R (2003) Pathogen survival in swine manure environments and transmission of human enteric illness – a review. J Environ Qual 32:383–392

    Article  CAS  Google Scholar 

  38. Cooley M, Carychao D, Crawford-Miksza L, Jay M, Myers C, Rose C, Keys C, Farrar J, Mandrell R (2007) Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PLoS One 2:e1159

    Article  Google Scholar 

  39. Cliver D (2009) Disinfection of animal manures, food safety and policy. Bioresource Technol 100(22):5392–5394

    Article  CAS  Google Scholar 

  40. Harrington R, McInnes R (2009) Integrated Constructed Wetlands (ICW) for livestock wastewater management. Bioresource Technol 100(22):5498–5505

    Article  CAS  Google Scholar 

  41. Ogejo, J (2009) Selecting a treatment technology for manure management. Virginia Coopeative Extension 442–306. http://pubs.ext.vt.edu/442/442-306/442-306.html. Accesed 11 Feb 2014

  42. Sommer S (2013) Animal manure- from waste to raw materials and goods. In: Sommer S (ed) Animal manure recycling: treatment and management. Wiley, New York, pp 1–4.

    Google Scholar 

  43. Cantrell K, Ducey T, Ro K, Hunt P (2008) Livestock waste-to-bioenergy generation opportunities. Bioresource Technol 99:7941–7953

    Article  CAS  Google Scholar 

  44. Hidalgo D, Corona F, Álamo J, Aguado A (2014) Resource recovery from anaerobic digestate: struvite crystallisation versus ammonia stripping. In: Abstracts of the international congress on water, waste and energy management, Oporto, 16–18 July 2014

    Google Scholar 

  45. Nieto P, Hidalgo D, Irusta R, Kraut D (2012) Biochemical methane potential (BMP) of agro-food wastes from the Cider Region (Spain). Water Sci Technol 66(9):1842–1849

    Article  CAS  Google Scholar 

  46. Holm-Nielsen J, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresource Technol 100(22):5478–5484

    Article  CAS  Google Scholar 

  47. Hidalgo D, Sastre E, Gómez M, Nieto P (2012) Evaluation of pre-treatment processes for increasing biodegradability of agro-food wastes. Environmen Technol 33(13):1497–1503

    Article  CAS  Google Scholar 

  48. Hidalgo D, Martín-Marroquín J, Sastre E (2013) Single-phase and two-phase anaerobic co-digestion of residues from the treatment process of waste vegetable oil and pig manure. BioEnergy Res 1–11

    Google Scholar 

  49. Massé L, Massé D, Pellerin Y (2007) The use of membranes for the treatment of manure: a critical literature review. Biosyst Eng 98:371–380

    Article  Google Scholar 

  50. USEPA (2007) AgSTAR Guide to operational systems. U.S. Environmental Protection Agency, Washington, D.C

    Google Scholar 

  51. Hidalgo D, Álamo J, Irusta R (2008) Pig manure digestion assays under anaerobic conditions in fluidized bed reactors. Arch Environ Prot 34:3–11

    Google Scholar 

  52. Wu X, Zhu J, Miller C (2013) Kinetics study of fermentative hydrogen production from liquid swine manure supplemented with glucose under controlled pH. J Environ Sci Health B 48(6):477–485

    Article  CAS  Google Scholar 

  53. Wu X, Lin H, Zhu J (2013) Optimization of continuous hydrogen production from co-fermenting molasses with liquid swine manure in an anaerobic sequencing batch reactor. Bioresource Technol 136:351–359

    Article  CAS  Google Scholar 

  54. Luo Y, Stichnothe H, Schuchardt F, Li G, Huaitalla R, Xu W (2014) Life cycle assessment of manure management and nutrient recycling from a Chinese pig farm. Waste Manage Res 32(1):4–12

    Article  CAS  Google Scholar 

  55. Bolan N, Laurenson S, Luo J, Sukias J (2009) Integrated treatment of farm effluents in New Zealand’s dairy operations. Bioresource Technol 100(22):5490–5497

    Article  CAS  Google Scholar 

  56. Craggs R, Sukias J, Tanner C, Davies-Colley R (2004) Advanced pond system for dairy-farm effluent treatment. New Zealand J Agric Res 47:449–460

    Article  Google Scholar 

  57. Kunz A, Miele M, Steinmetz R (2009) Advanced swine manure treatment and utilization in Brazil. Bioresource Technol 100(22):5485–5489

    Article  CAS  Google Scholar 

  58. Liu J, Xu X, Li H, Xu Y (2011) Effect of microbiological inocula on chemical and physical properties and microbial community of cow manure compost. Biomass Bioenerg 35(8):3433–3439

    Article  CAS  Google Scholar 

  59. Vanotti M, Szogi A, Millner P, Loughrin J (2009) Development of a second-generation environmentally superior technology for treatment of swine manure in the USA. Bioresource Technol 100(22):5406–5416

    Article  CAS  Google Scholar 

  60. Magrí A, Béline F, Dabert P (2013) Feasibility and interest of the anammox process as treatment alternative for anaerobic digester supernatants in manure processing – an overview. J Environ Manage 131:170–184

    Article  Google Scholar 

  61. Scaglione D, Tornotti G, Teli A, Lorenzoni L, Ficara E, Canziani R, Malpei F (2013) Nitification denitrification via nitrite in a pilot-scale SBR treating the liquid fraction of co-digested piggery/poultry manure and agro-wastes. Chem Eng J 228:935–943

    Article  CAS  Google Scholar 

  62. Porter J, Davis J, Hickman D (2010) Selection guidance for manure management technologies. In: Abstracts of the international symposium on air quality and manure management in agriculture, Dallas, Texas, 13–16 September 2010

    Google Scholar 

  63. Hjorth M, Christensen K, Christensen M, Sommer S (2010) Solid–liquid separation of animal slurry in theory and practice. A review. Agron Sustain Dev 30(1):153–180

    Article  CAS  Google Scholar 

  64. Christensen M, Christensen K, Sommer S (2013). Solid–liquid separation of animal slurry. In: Sommer S (ed) Animal manure recycling: treatment and management. Wiley, New York, pp 105–130

    Google Scholar 

  65. Riaño B, García-González M (2014) On-farm treatment of swine manure based on solid–liquid separation and biological nitrification- denitrification of the liquid fraction. J Environ Manage 132:87–93

    Article  Google Scholar 

  66. Guerdat T, Losordo T, DeLong D, Jones R (2013) An evaluation of solid waste capture from recirculating aquaculture systems using a geotextile bag system with a flocculant-aid. Aquacult Eng 54:1–8

    Article  Google Scholar 

  67. Møller H, Jensen H, Tobiasen L, Hansen M (2007) Heavy metal and phosphorus content of fractions from manure treatment and incineration. Environ Technol 28:1403–1418

    Article  Google Scholar 

  68. Kwon S, Jang Y, Owens G, Kim M, Jung G, Hong S, Kim K (2013) Long-term assessment of the environmental fate of heavy metals in agricultural soil after cessation of organic waste treatments. Environ Geochem Health, 1–11

    Google Scholar 

  69. Nahm K (2005) Environmental effects of chemical additives used in poultry litter and swine manure. Crit Rev Environ Sci Technol 35:487–513

    Article  CAS  Google Scholar 

  70. Massé D, Gilbert Y, Saady N, Liu C (2013) Low-temperature anaerobic digestion of swine manure in a plug-flow reactor. Environ Technol 34(18):2617–2624

    Article  Google Scholar 

  71. Wu H, Hanna M, Jones D (2012) Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks. Waste Manage Res 30(10):1066–1071

    Article  CAS  Google Scholar 

  72. Edström M, Schüßler I, Luostarinen S (2011) Combustion of manure: manure as fuel in a heating plant. In: Baltic forum for innovative technologies for sustainable manure management. Technical Report. http://balticmanure.eu/download/Reports/baltic_manure_combustion_final_2_2011_total.pdf. Accesed 11 Feb 2014

  73. Ro K, Cantrell K, Hunt P (2010) High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Ind Eng Chem Res 49(20):10125–10131

    Article  CAS  Google Scholar 

  74. Liu X, Li Z, Zhang Y (2013) Energy balance analysis on the slow pyrolysis process of cattle manure. Appl Mech Mater 392:531–534

    Article  CAS  Google Scholar 

  75. Ocfemia K, Zhang Y, Funk T (2006) Hydrothermal processing of swine manure to oil using a continuous reactor system: Effects of operating parameters on oil yield and quality. Trans ASABE 49:1897–1904

    Article  Google Scholar 

  76. Wu H, Hanna M, Jones D (2012) Fluidized-bed gasification of dairy manure by Box–Behnken design. Waste Manage Res 30(5):506–511

    Article  CAS  Google Scholar 

  77. Chelme-Ayala P, El-Din M, Smith R, Code K, Leonard J (2011) Advanced treatment of liquid swine manure using physico-chemical treatment. J Hazard Mater 186(2):1632–1638

    Article  CAS  Google Scholar 

  78. Kangas P, Mulbry W (2014) Nutrient removal from agricultural drainage water using algal turf scrubbers and solar power. Bioresource Technol 152:484–489

    Article  CAS  Google Scholar 

  79. Arends F, Franke G, Grimm E, Gramatte W, Häuser S, Hahne J (2008) Exhaust air treatment systems for animal housing facilities: techniques-performance-costs. KTBL-Schrift 464, KTBL, Darmstadt, Deutschland

    Google Scholar 

  80. Flotats X, Bonmatí A, Fernández B, Magrí A (2009) Manure treatment technologies: on farm versus centralized strategies. NE Spain as case study. Bioresource Technol 100(22):5519–5526

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support of this work by the LIFE+ Program under the responsibility of the Directorate General for the Environment of the European Commission through the agreement LIFE 12 ENV/ES/000727-REVAWASTE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Ma Martín-Marroquín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martín-Marroquín, J.M., Hidalgo, D. (2014). Livestock Waste: Fears and Opportunities. In: Jiménez, E., Cabañas, B., Lefebvre, G. (eds) Environment, Energy and Climate Change I. The Handbook of Environmental Chemistry, vol 32. Springer, Cham. https://doi.org/10.1007/698_2014_268

Download citation

Publish with us

Policies and ethics