Geological Sources of As in the Environment of Greece: A Review

  • Platon Gamaletsos
  • Athanasios Godelitsas
  • Elissavet Dotsika
  • Evangelos Tzamos
  • Jörg Göttlicher
  • Anestis Filippidis
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 40)

Abstract

This review summarizes the existing data about the geological sources of As in Greece; their variety and the relevant concentrations make Greece a peculiar territory to generalize and better understand the methodology for their assessment. These sources concern As-containing ores in active and abandoned mining areas, geothermal/hydrothermal waters, lignites in exploited and unexploited deposits, As-minerals in various rock types such as metamorphic rocks, and mineral dust originating in Sahara desert. It is considered that As release from the above sources, in conjunction with various anthropogenic As fluxes, occasionally creates distinct areas with contaminated groundwater, soils, marine and atmospheric environment. In general, Greece has been reported as a global As “hot spot” and it is argued that a significant amount of the Hellenic population might be affected by As pollution. The most important and permanent As source seems to be geothermal/hydrothermal fluids, due to faults and volcanic activity, affecting the underground, surface, and marine aquatic environment.

Graphical Abstract

Keywords

Arsenic Geothermal Greece Minerals Ores Volcanoes 

Abbreviations

BAB

Back-arc basin

MLC

Megalopolis lignite center

MOR

Mid-ocean ridge

P-ALC

Ptolemais-amynteon lignite center

SAAVA

South aegean active volcanic arc

SWAT

Soil and water assessment tool

UCC

Upper continental crust

References

  1. 1.
    Henke KR, Hutchison A (2009) Arsenic chemistry. In: Henke KR (ed) Arsenic environmental chemistry, health threats and waste treatment. Wiley, UKGoogle Scholar
  2. 2.
    Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. RGS-IBG Book Series. Wiley, UKCrossRefGoogle Scholar
  3. 3.
    Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (2007) Arsenic in soil and groundwater: an overview. In: Bhattacharya P et al (eds) Arsenic in soil and groundwater environment: biogeochemical interactions, health effects and remediation, vol 9, 1st edn. Elsevier, New YorkGoogle Scholar
  4. 4.
    Salminen R (ed), Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O'Connor PJ, Olsson SÅ, Ottesen RT, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2005) Geochemical atlas of Europe. Part 1: background information, methodology and maps. Espoo Geological Survey of Finland, p 526. http://weppi.gtk.fi/publ/foregsatlas/
  5. 5.
    Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:1–2CrossRefGoogle Scholar
  6. 6.
    Godelitsas A, Nastos P, Mertzimekis TJ, Toli K, Simon R, Steininger R, Göttlicher J (2011) A microscopic and synchrotron-based characterization of urban particulate matter (PM10-PM2.5 and PM2.5) from Athens atmosphere, Greece. Nuc Instrum Meth Phys Res B 269:3077–3081CrossRefGoogle Scholar
  7. 7.
    Caley ER (1949) On the prehistoric use of arsenical copper in the Aegean region. Hesperia Suppl 8:60–63, http://www.jstor.org/stable/1353882 CrossRefGoogle Scholar
  8. 8.
    Fitton JL (1989) Esse Quam Videri: a reconsideration of the Kythnos hoard of early cycladic tools. Am J Archaeol 93(1):31–39, http://www.jstor.org/stable/505397 CrossRefGoogle Scholar
  9. 9.
    Mangou H, Ioannou PV (1999) On the chemical composition of prehistoric Greek copper-based artefacts from mainland Greece. Annual Br Sch Athens 94:81–100, http://www.jstor.org/stable/30103453 CrossRefGoogle Scholar
  10. 10.
    Caley ER, Richards JFC (1956) Theophrastus – on stones. The Ohio State University, Columbus, p 238Google Scholar
  11. 11.
    Eichholz DE (1965) Theophrastus “De lapidibus”. Clarendon, Oxford, p 141Google Scholar
  12. 12.
    Zenghelis CD (1903) Ores and minerals – useful for Greece – statistical notes. Hestia Printing Office, Athens, p 15, In FrenchGoogle Scholar
  13. 13.
    Ktenas K (1923) Elements of mineralogy – minerals of Greece, 2nd edn. Athens, Greece (In Greek)Google Scholar
  14. 14.
    Tsakonas A (1932) Statistics of the mining industry of Greece during the year of 1931. Ministry of Finance, Hellenic Republic, National Printing Office, p 60 (In Greek)Google Scholar
  15. 15.
    Tsakonas A (1948) Statistics of the mining industry of Greece during the year of 1947. Ministry of Finance, Hellenic Republic, National Printing Office, p 64 (In Greek)Google Scholar
  16. 16.
    Nomikou P, Kilias SP, Carey S, Godelitsas A, Croff Bell K, Polymenakou PN, Gamaletsos P, Betzelou K (2012) New geological, mineralogical and microbiological data of the Kolumbo shallow submarine volcano, NE of Santorini Caldera, Greece. The Deep-Sea and Sub-Seafloor Frontiers Conference – DS3F, Sitges (Barcelona), 11–14 March 2012, Spain (Abstract)Google Scholar
  17. 17.
    Nomikou P, Kilias SP, Godelitsas A, Sakellariou D, Argyraki A, Stathopoulou E, Betzelou K, Carey S, Cartner K, Croff Bell K, Roman C, Ballard B (2012) Evidence of the Kolumbo magmatic system from the study of erupted products and hydrothermal activity. Unrest at Santorini Caldera, Santorini Meeting, 27–28 March 2012, Santorini, Greece (Abstract)Google Scholar
  18. 18.
    Kilias SP, Nomikou P, Papanikolaou D, Polymenakou PN, Godelitsas A, Argyraki A, Carey S, Gamaletsos P, Mertzimekis TJ, Stathopoulou E, Goettlicher J, Steininger R, Betzelou K, Livanos I, Christakis C, Croff Bell K, Scoullos M (2013) New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano Kolumbo, Santorini (submitted to Scientific Report)Google Scholar
  19. 19.
    Kalogeropoulos SI, Kilias SP, Bitzios DC, Nicolaou M, Both RA (1989) Genesis of the olympias carbonate-hosted Pb-Zn(Au, Ag) sulfide ore deposit, Eastern Chalkidiki peninsula, Northern Greece. Econ Geol 84:1210–1234CrossRefGoogle Scholar
  20. 20.
    Nebel ML, Hutchinson RW, Zartman RE (1991) Metamorphism and polygenesis of the Madem Lakkos polymetallic sulfide deposit, Chalkidiki, Greece. Econ Geol 86:81–105CrossRefGoogle Scholar
  21. 21.
    Kilias SP, Kalogeropoulos SI (1988) Physicochemical conditions during ore formation of the Olympias Pb-Zn(Au, Ag) massive sulfide ore deposit, Chalkidiki Peninsula, N. Greece. Abstract in Proc Geol Soc. Greece Cong, 4th May 1988. Athens, Greece, p 64Google Scholar
  22. 22.
    Cabri LJ, Chryssoulis SL (1990) Genesis of the Olympias carbonate-hosted Pb-Zn(Au, Ag) sulfide ore deposit, eastern Chalkidiki peninsula, northern Greece – a discussion. Econ Geol 85:651–652CrossRefGoogle Scholar
  23. 23.
    Hahn A, Naden J, Treloar PJ, Kilias SP, Rankin AH, Forward P (2012) A new time frame for the mineralization in the Kassandra mine district, N Greece: deposit formation during metamorphic core complex exhumation. European Mineralogical Conference EMC2012 1:742Google Scholar
  24. 24.
    Nikolaou M (1969) Recent research on the composition of the Kassandra mines orebodies. Proc Acad Athens 44:82–93 (In Greek with English abstract)Google Scholar
  25. 25.
    Eliopoulos DG, Economou-Eliopoulos M (1991) Platinum-group elements and gold contents in the Skouries porphyry copper deposits, Chalkidiki peninsula, Northern Greece. Econ Geol 86:740–749CrossRefGoogle Scholar
  26. 26.
    Economou-Eliopoulos M, Eliopoulos D (1993) Platinum, palladium and gold content in the porphyry-Cu systems of the Vertiskos formation, Serbomacedonian Massif. Bull Geol Soc Greece XXVIII(2):393–405Google Scholar
  27. 27.
    Kelepertzis E, Argyraki A, Daftsis E, Ballas D (2010) Quality characteristics of surface waters at Asprolakkas river basin, N.E. Chalkidiki, Greece. Bull Geol Soc Greece XLIII(4):1737–1746Google Scholar
  28. 28.
    Argyraki A, Plakaki A, Godelitsas A (2007) Characterization of garden soil pollution within a mining village environment. Bull Geol Soc Greece XXXVII(3):1331–1342Google Scholar
  29. 29.
    Godelitsas A, Göttlicher J, Foustoukos D, Sanakis I, Chrissafis K, Kehagias T, Zorba T, Paraskevopoulos KM (2009) Arsenate-bearing natural schwertmannite-type phase in acid mine drainage (AMD) precipitates from N. Greece. Geochim Cosmochim Acta 73:A443Google Scholar
  30. 30.
    Skarpelis N (2007) The Lavrion deposit (SE Attica, Greece): Geology, mineralogy and minor elements chemistry. Neuer Jb Miner Abh 183(3):227–249CrossRefGoogle Scholar
  31. 31.
    Bonsall TA, Spry PG, Voudouris PC, Tombros S, Seymour KS, Melfos V (2011) The Geochemistry of carbonate-replacement Pb-Zn-Ag mineralization in the Lavrion District, Attica, Greece: fluid inclusion, stable isotope, and rare earth element studies. Econ Geol 106:619–651CrossRefGoogle Scholar
  32. 32.
    Voudouris P, Melfos V, Spry PG, Bonsall TA, Tarkian M, Economou-Eliopoulos M (2008) Mineralogical and fluid inclusion constraints on the evolution of the Plaka intrusion-related ore system, Lavrion, Greece. Mineral Petrol 93:79–110CrossRefGoogle Scholar
  33. 33.
    Voudouris P, Melfos V, Spry PG, Bonsall TA, Tarkian M, Solomos C (2008) Carbonate-replacement Pb-Zn-Ag ± Au mineralization in the Kamariza area, Lavrion, Greece: mineralogy and thermochemical conditions of formation. Miner Petrol 94:85–104CrossRefGoogle Scholar
  34. 34.
    Marinos GP, Petrascheck WE (1956) Laurium. Geological and Geophysical Research 4/1. Institute for Geology and Subsurface Research, p. 247 (In Greek)Google Scholar
  35. 35.
    Lacroix A, Schulten A (1907) Sur une nouvelle espèce minérale, provenant des scories plombeuses athéniennes du Laurium. C R Acad Sci Paris 145:783–785 (In French)Google Scholar
  36. 36.
    Lacroix A, Schulten A (1908) Note sur des minéraux plombifères des scories athéniennes du Laurion. Bull Soc fr Minéral 31:79–90 (In French)Google Scholar
  37. 37.
    Rouse RC, Dunn PJ (1983) New data on georgiadesite. Mineral Mag 47:219–220CrossRefGoogle Scholar
  38. 38.
    Pasero M, Vacchiano D (2000) Crystal structure and revision of the chemical formula of georgiadesite, Pb4(AsO3)Cl4(OH). Mineral Mag 64(5):879–884CrossRefGoogle Scholar
  39. 39.
    Dunn PJ, Rouse RC (1980) Nealite a new mineral from Laurion, Greece. Mineral Rec 11:299–301Google Scholar
  40. 40.
    Pertlik F, Schnorrer G (1993) A re-appraisal of the chemical formula of Nealite, Pb4Fe(AsO3)2Cl4•2H2O, on the basis of a crystal structure determination. Miner Petrol 48:193–200CrossRefGoogle Scholar
  41. 41.
    Giuseppetti G, Mazzi F, Tadini C (1993) The crystal structure of nealite: Pb4Fe(As O3)2Cl4•2H2O. Neues Jb Miner Monatshefte 6:278–288Google Scholar
  42. 42.
    Chukanov NV, Pushcharovsky DY, Zubkova NV, Pekov IV, Pasero M, Merlino S, Möckel S, Rabadanov MK, Belakovskiy DI (2007) Zincolivenite CuZn(AsO4)(OH): a new adamite-group mineral with ordered distribution of Cu and Zn. Doklady Earth Sci 415A(6):841–845CrossRefGoogle Scholar
  43. 43.
    Chukanov NV, Pekov IV, Zadov AE (2007) Attikaite, Ca3Cu2Al2(AsO4)4(OH)4•2H2O, a new mineral species. Zapiski RMO, Proc Russ Mineral Soc 136(2):17–24 (In Russian with English abstract)Google Scholar
  44. 44.
    Chukanov NV, Pekov IV, Zadov AE (2007) Attikaite, Ca3Cu2Al2(AsO4)4(OH)4•2H2O, a new mineral species. Geol Ore Deposit 49(8):720–726CrossRefGoogle Scholar
  45. 45.
    Chukanov NV, Pekov IV, Möckel S, Mukhanova AA, Belakovsky DI, Levitskaya LA, Bekenova GK (2009) Kamarizaite, Fe3 3+(AsO4)2(OH)3 •3H2O, a new mineral species, arsenate analogue of tinticite. Zapiski RMO, Proc Russ Mineral Soc 138(3):100–108 (In Russian; English abstract)Google Scholar
  46. 46.
    Chukanov NV, Pekov IV, Möckel S, Mukhanova AA, Belakovsky DI, Levitskaya LA, Bekenova GK (2010) Kamarizaite, Fe3 3+(AsO4)2(OH)3 •3H2O, a new mineral species, arsenate analogue of tinticite. Geol Ore Deposit 52(7):599–605CrossRefGoogle Scholar
  47. 47.
    Pekov IV, Chukanov NV, Yapaskurt VO, Rusakov VS, Belakovskiy DI, Turchkova AG, Voudouris P, Katerinopoulos A, Magganas A (2012) Hilarionite, IMA 2011-089. CNMNC Newsletter No. 12, February 2012, page 154. Mineral Mag 76:151–155CrossRefGoogle Scholar
  48. 48.
    Pekov IV, Chukanov NV, Zadov AE, Voudouris P, Magganas A, Katerinopoulos A (2011) Agardite-(Nd), NdCu6(AsO4)3(OH)6•3H2O, from the Hilarion mine, Lavrion, Greece: mineral description and chemical relations with other members of the agardite-zálesíite solid-solution system. J Geosci 56:249–255Google Scholar
  49. 49.
    Pekov IV, Chukanov NV, Zadov AE, Voudouris P, Magganas A, Katerinopoulos A (2011) Agardite-(Nd), IMA 2010-056. CNMNC Newsletter No. 7, February 2011, page 30. Mineral Mag 75:27–31CrossRefGoogle Scholar
  50. 50.
    Siidra OI, Krivovichev SV, Chucanov NV, Pekov IV, Magganas A, Katerinopoulos A, Voudouris P (2011) The crystal structure of Pb5(AsO3+OH3)Cl7 from the historic slags of Lavrion, Greece – a novel PB(II) chloride arsenite. Mineral Mag 75(2):337–345CrossRefGoogle Scholar
  51. 51.
    Siidra OI, Chucanov NV, Pekov IV, Krivovichev SV, Magganas A, Katerinopoulos A, Voudouris P (2012) Pb2(AsO2OH)Cl2, a new phase from the Lavrion ancient slags, Greece: occurrence and characterization. Mineral Mag 76(3):597–602CrossRefGoogle Scholar
  52. 52.
    Arikas K, Watzl V, Goetz D (2004) The environmental pollution from mining activities in Kirki, Alexandroupolis area. Bull Geol Soc Greece XXXVI:140–149 (In Greek with English abstract)Google Scholar
  53. 53.
    Triantafyllidis S (2006) Environmental risk assessment of mining and processing activities and rehabilitation proposals in Evros and Rhodope prefectures (Thrace, NE Greece). PhD Thesis. University of Athens, Athens, Greece, p 307. (In Greek – unpublished)Google Scholar
  54. 54.
    Arikas K (2007) Mineralogical and geochemical study of the Kirki mining wastes, Evros region, Greece – determination of the environmental impact by toxic and heavy metals. Bull Geol Soc Greece 40(3):1343–1353Google Scholar
  55. 55.
    Triantafyllidis S, Skarpelis N (2006) Mineral formation in an acid pit lake from a high-sulfidation ore deposit: Kirki, NE Greece from a high-sulfidation ore deposit: Kirki, NE Greece. J Geochem Explor 88:68–71CrossRefGoogle Scholar
  56. 56.
    Triantafyllidis S, Skarpelis N (2010) Geochemical investigation and modeling of an acid pit lake from a high sulfidation ore deposit: Kirki, NE Greece. Bull Geol Soc Greece XLIII(5):2417–2424Google Scholar
  57. 57.
    Zacharia C (2010) Description of pollutants dispersion from mining activities using modern software tools. Diploma Thesis, National Technical University of Athens, Athens, Greece, p 121. (In Greek with English abstract – unpublished)Google Scholar
  58. 58.
    Voudouris P, Papavassiliou C, Melfos V (2005) Silver mineralogy of St Philippos deposit (NE Greece) and its relationship to a Te-bearing porphyry-Cu-Mo mineralization. In: Cook N, Bonev I (eds), Au-Ag-Te-Se deposits. Geochem Mineral Petrol 43:155–160Google Scholar
  59. 59.
    Moëlo Y, Oudin E, Makovicky E, Karup-Møller S, Pillard F, Bornuat M, Evangelou E (1985) La kirkiite, Pb10Bi3As3S19, une nouvelle espèce minèrale homologue de la jordanite. Bull Mineral 108:667–677 (In French with English abstract)Google Scholar
  60. 60.
    Dimou E (1987) Mineralogical composition of Kirki ore deposit (Aghios Philippos ore deposit). Impacts to the ore enrichment. In report of the institute of geology and mineral exploration – I.G.M.E., p 55 (Internal Report – unpublished data)Google Scholar
  61. 61.
    Michael C, Konstantinides D, Ashworth K, Perdikatsis V, Demetriades A (1989) The Kirki vein polymetallic mineralization. Geol Rhodopica 1:366–373Google Scholar
  62. 62.
    Michailidis K, Filippidis A, Vavelidis M, Evangelou E (1989) Chemical composition of some ore minerals from the St. Philippos (Kirki) polymetallic deposits. Geol Rhodopica 1:389–395Google Scholar
  63. 63.
    Vavelidis M, Filippidis A, Michailidis K, Evangelou E (1989) The polymetallic ore mineralization of the Kirki area, Alexandroupolis district, Northern Greece. Geol Rhodopica 1:350–365Google Scholar
  64. 64.
    Skarpelis N (1999) The Aghios Philippos ore deposit, Kirki (Western Thrace). A base-metal part of a high-sulfidation epithermal system. Bull Geol Soc Greece XXXIII:51–60Google Scholar
  65. 65.
    Makovicky E, Balić-Žunić T, Karanović L, Poleti D (2006) The crystal structure of Kirkiite, Pb10Bi3As3S19. Can Mineral 44:177–188CrossRefGoogle Scholar
  66. 66.
    Lescuyer JL, Bailly L, Cassard D, Lips ALW, Piantone P, McAlister M (2003) Sediment-hosted gold in south-eastern Europe: the epithermal deposit of Perama, Thrace, Greece. In: Eliopoulos DG et al (eds) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 499–502Google Scholar
  67. 67.
    Voudouris P, Papavassiliou C, Alfieris D, Falalakis G (2007) Gold-silver tellurides and bismuth sulfosalts in the high-intermediate sulfidation Perama Hill deposit, western Thrace (NE Greece). Geol Surv Finl 53:77–84Google Scholar
  68. 68.
    Voudouris P, Spry PG, Melfos V, Alfieris D (2007) Tellurides and bismuth sulfosalts in gold occurrences of Greece: mineralogical and genetic considerations. Geol Surv Finl 53:85–94Google Scholar
  69. 69.
    Eliopoulos DG, Economou-Eliopoulos M (2010) Arsenic distribution in laterite deposits of the Balkan Peninsula. Proceedings of the XIX CBGA Congress, Thessaloniki, Greece 100:325–332Google Scholar
  70. 70.
    Eliopoulos DG, Economou-Eliopoulos M, Apostolikas A, Golightly JP (2012) Geochemical features of nickel-laterite deposits from the Balkan peninsula and Gordes, Turkey: the genetic and environmental significance of arsenic. Ore Geol Rev 48:413–427CrossRefGoogle Scholar
  71. 71.
    Paraskevopoulos GM (1958) Genesis of tungsten and antimony ore deposits in the Lahana area, Central Macedonia. Ann Geol Pays Hell 9:227–241 (In Greek with German abs)Google Scholar
  72. 72.
    Kelepertsis A (1980) The mineralogical-geochemical features of the antimony ore deposits in Central Macedonia and their genesis problem. Proc Acad Athens 55:156–168 (In Greek with English abstract)Google Scholar
  73. 73.
    Kalaitzidis S, Siavalas G, Skarpelis N, Araujo CV, Christanis K (2010) Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona unit, central Greece: coal characteristics and depositional environment. Int J Coal Geol 81:211–226CrossRefGoogle Scholar
  74. 74.
    Laskou M, Economou-Eliopoulos M (2007) The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece. J Geochem Explor 93:67–77CrossRefGoogle Scholar
  75. 75.
    Godelitsas A, Gamaletsos P, Mertzimekis TJ, Göttlicher J, Steininger R, Bárdossy G (2012) Distribution and speciation of contaminants in bauxite and red mud from Ajka alumina plant, Hungary. ANKA Synchrotron Facility (KIT) Annual Report 2012 (in press)Google Scholar
  76. 76.
    Gamaletsos P et al (2013) New insights into the mineralogy and geochemistry of Greek karst bauxites (in preparation)Google Scholar
  77. 77.
    Eliopoulos DG, Kilias SP (2011) Marble-hosted submicroscopic gold mineralization at Asimotrypes area, Mount Pangeon, Southern Rhodope core complex, Greece. Econ Geol 106:751–780CrossRefGoogle Scholar
  78. 78.
    Skounakis S, Sovatzoglou-Skounakis E (1983) Cobaltite from the Trilofon sulphide mineralization occurrences (Veria, Greece). Chem Erde-Geochen 42:63–68Google Scholar
  79. 79.
    Economou-Eliopoulos M, Eliopoulos D, Chryssoulis S (2008) A comparison of high-Au massive sulfide ores hosted in ophiolite complexes of the Balkan Peninsula with modern analogues: genetic significance. Ore Geol Rev 33:81–100CrossRefGoogle Scholar
  80. 80.
    Skounakis S (1973) The origin of the copper ore deposit of Paliouri area (District of Karditsa). Ann Geol Pays Hell 25:317–327 (In Greek with English abstract)Google Scholar
  81. 81.
    Migiros G (1998) The mineral wealth of Thessaly (Central Greece). Geotectonic setting – resource development. Miner Wealth 108:15–26 (In Greek with English abstract)Google Scholar
  82. 82.
    Skordas K, Kelepertsis A (2005) Soil contamination by toxic metals in the cultivated region of Agia, Thessaly, Greece. Identification of sources of contamination. Environ Geol 48:615–624CrossRefGoogle Scholar
  83. 83.
    Kelepertsis A, Alexakis D, Skordas K (2006) Arsenic, antimony and other toxic elements in the drinking water of Eastern Thessaly in Greece and its possible effects on human health. Environ Geol 50:76–84CrossRefGoogle Scholar
  84. 84.
    Chatzidiakos E, Fanouraki M, Kelepertsis A, Argyraki A, Alexakis D (2009) Speciation and mobility of Arsenic and Antimony in groundwater at Melivoia, East Thessaly and Keramos area NW Chios, Greece. In: Proceedings of the 8th international hydrogeological congress of Greece, Athens, vol 1 pp 219–228Google Scholar
  85. 85.
    Yan-Chu H (1994) Arsenic distribution in soils. In: Nriagu JO (ed) Arsenic in the environment, Part I: Cycling and characterization. Wiley, Hoboken, pp 17–47Google Scholar
  86. 86.
    Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historic perspective. Toxicol Sci 123(2):305–332CrossRefGoogle Scholar
  87. 87.
    Tombros S, Seymour KST, Williams-Jones AE, Spry PG (2007) The genesis of epithermal Au-Ag-Te mineralization, Panormos Bay, Tinos Island, Cyclades, Greece. Econ Geol 102(7):1269–1294CrossRefGoogle Scholar
  88. 88.
    Tombros SF, Seymour KST, Williams-Jones AE, Spry PG (2008) Later stages of evolution of an epithermal system: Au-Ag mineralizations at Apigania Bay, Tinos Island, Cyclades, Hellas, Greece. Miner Petrol 94:175–194CrossRefGoogle Scholar
  89. 89.
    Aloupi M, Angelidis MO, Gavriil AM, Koulousaris M, Varnavas SP (2009) Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece. Environ Monit Assess 151:383–396CrossRefGoogle Scholar
  90. 90.
    Mitrakas M (2001) A survey of arsenic levels in tap underground and thermal mineral waters of Greece. Fresenius Environ Bull 10:717–721Google Scholar
  91. 91.
    Nimfopoulos MK, Hadjispyrou SA, Polya DA, Michailidis K, Trontsios G (2002) Geochemical conditions and environmental pollution from hydrothermal waters of the Anthemous Basin, Thessaloniki District, N. Greece. In: Proceedings 6th Congress Geographical Society of Greece, pp 428–436Google Scholar
  92. 92.
    Fytianos K, Christoforidis C (2004) Nitrate arsenic and chloride pollution of drinking water in Northern Greece. Elaboration by applying GIS. Environ Monit Assess 93:55–67CrossRefGoogle Scholar
  93. 93.
    Katsoyiannis IA, Katsoyiannis AA (2006) Arsenic and other metal contamination of ground waters in the industrial area of Thessaloniki, Northern Greece. Environ Monit Assess 151:383–396Google Scholar
  94. 94.
    Katsoyiannis IA, Hug SJ, Ammann A, Zikoudi A, Hatziliontos C (2007) Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment. Sci Total Environ 383:128–140CrossRefGoogle Scholar
  95. 95.
    Kouras A, Katsoyiannis I, Voutsa D (2007) Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece. J Hazard Mater 147:890–899CrossRefGoogle Scholar
  96. 96.
    Voutsa D, Dotsika E, Kouras A, Poutoukis D, Kouimtzis T (2009) Study on distribution and origin of boron in groundwater in the sea of Chalkidiki, Norhtern Greece by employing chemical and isotopic tracers. J Hazard Mater 172:1264–1272CrossRefGoogle Scholar
  97. 97.
    Cassentini B, Hug SJ, Nikolaidis NP (2011) Arsenic accumulation in irrigated agricultural soils in Northern Greece. Sci Total Environ 409:4802–4810CrossRefGoogle Scholar
  98. 98.
    Winkel LHE, Casentini B, Bardelli F, Voegelin A, Nikolaidis NP, Charlet L (2013) Speciation of As in Greek travertines: co-precipitation of arsenate with calcite. Geochim Cosmochim Acta 106:99–110CrossRefGoogle Scholar
  99. 99.
    Lazaridis G, Melfos V, Papadopoulou L (2011) The first cave occurrence of orpiment (As2S3) from the sulfuric acid caves of Aghia Paraskevi (Kassandra Peninsula, N. Greece). Int J Speleol 40(2):133–139CrossRefGoogle Scholar
  100. 100.
    Huebner A, Rahder E, Rahnera S, Halbach P, Varnavas SP (2004) Geochemistry of hydrothermally influenced sediments off Methana (western Hellenic volcanic arc). Chem Erde-Geochem 64:75–94CrossRefGoogle Scholar
  101. 101.
    Rudnick R, Gao S (2003) Composition of the continental crust. In: The Crust HD. Holland HD, Turekian KK (eds) Treatise on geochemistry, vol. 3. Elsevier – Pergamon, Oxford. pp 1–64Google Scholar
  102. 102.
    Cronan DS, Varnavas SP (2001) Metalliferous sediments off Milos, Hellenic volcanic Arc. Explor Min Geol 8:289–297Google Scholar
  103. 103.
    Varnavas SP, Cronan DS (2005) Submarine hydrothermal activity off Santorini and Milos Central Hellenic volcanic arc: a synthesis. Chem Geol 224:40–54CrossRefGoogle Scholar
  104. 104.
    Price RE, Savov I, Planer-Friedrich B, Bühring SI (2013) Processes influencing extreme As enrichment in shallow-sea hydrothermal fluids of Milos Island, Greece. Chem Geol, in press. http://dx.doi.org/10.1016/j.chemgeo.2012.06.007Google Scholar
  105. 105.
    Varnavas SP, Cronan DS (1991) Hydrothermal metallogenic processes off the islands of Nisiros and Kos in the Hellenic volcanic arc. Mar Geol 99:109–133CrossRefGoogle Scholar
  106. 106.
    Varnavas SP, Cronan DS (1988) Arsenic, antimony and bismuth in sediments and waters from Santorini hydrothermal field, Greece. Chem Geol 67:295–305CrossRefGoogle Scholar
  107. 107.
    Foscolos AE, Goodarzi F, Koukouzas CN, Hatziyiannis G (1989) Reconnaissance study of mineral matter and trace elements in Greek lignites. Chem Geol 76:107–130CrossRefGoogle Scholar
  108. 108.
    Koukouzas C, Koukouzas N (1995) Coals of Greece: distribution, quality and reserves. In: Whateley MKG, Spears DA (eds) European coal geology, vol. 82. Geol Soc Spec Publ, pp 171–180Google Scholar
  109. 109.
    Papanicolaou C, Kotis T, Foscolos A, Goodarzi F (2004) Coals of Greece: a review of properties, uses and future perspectives. Int J Coal Geol 58:147–169CrossRefGoogle Scholar
  110. 110.
    Pentari D, Foscolos AE, Perdikatsis V (2004) Trace element contents in the Domeniko lignite deposit, Elassona basin, central Greece. Int J Coal Geol 58:261–268CrossRefGoogle Scholar
  111. 111.
    Gentzis T, Goodarzi F, Foscolos AE (1997) Geochemistry and mineralogy of Greek lignites from the Ioannina Basin. Energ Source 19:111–128CrossRefGoogle Scholar
  112. 112.
    Georgakopoulos A (2001) Trace elements in the Lava xylite/lignite deposit, Servia basin, northern Greece. Energ Source 23:143–156CrossRefGoogle Scholar
  113. 113.
    Pentari D, Foscolos AE, Perdikatsis V (2008) Trace elements in the lignite-bearing area of Lofoi, Florina basin, Western Greek Macedonia, Greece. Energ Source 30:316–324CrossRefGoogle Scholar
  114. 114.
    Mason B, Moore CB (1982) Principles of geochemistry. Wiley, NYGoogle Scholar
  115. 115.
    Foscolos AE, Goodarzi F, Koukouzas C, Hatziyiannis G (1998) Assessment of environmental impact of coal exploration and exploitation in the Drama basin, northeastern Greek – Macedonia. Energ Source 20(9):795–820CrossRefGoogle Scholar
  116. 116.
    Filippidis A, Georgakopoulos A, Kassoli-Fournaraki A, Misaelides P, Yiakkoupis P, Broussoulis J (1996) Trace element contents in composited samples of three lignite seams from the central part of the Drama lignite deposit, Macedonia, Greece. Int J Coal Geol 29:219–234CrossRefGoogle Scholar
  117. 117.
    Christanis K, Georgakopoulos A, Fernández-Turiel JL, Bouzinos A (1998) Geological factors influencing the concentration of trace elements in the Philippi peatland, eastern Macedonia, Greece. Int J Coal Geol 36:295–313CrossRefGoogle Scholar
  118. 118.
    Gentzis T, Goodarzi F, Koukouzas CN, Foscolos AE (1996) Petrology, mineralogy, and geochemistry of lignites from Crete, Greece. Int J Coal Geol 30:131–150CrossRefGoogle Scholar
  119. 119.
    Clarke L, Sloss L (1992) Trace elements: emissions from coal combustion and gasification. Int Energy Agency Rep CR/49, London, p 111Google Scholar
  120. 120.
    Georgakopoulos A, Filippidis A, Kassoli-Fournaraki A, Fernandez-Turiel JL, Llorens JF, Mousty F (2002) Leachability of major and trace elements of fly ash from Ptolemais power station, northern Greece. Energ Source 24:103–113CrossRefGoogle Scholar
  121. 121.
    Georgakopoulos A, Filippidis A, Kassoli-Fournaraki A, Iordanidis A, Fernandez-Turiel JL, Llorens JF, Gimeno D (2002) Environmentally important elements in fly ashes and their leachates of the power stations of Greece. Energ Source 24:83–91CrossRefGoogle Scholar
  122. 122.
    Reinecke T (1986) Phase relationships of sursassite and other Mn-silicates in highly oxidized low-grade, high-pressure metamorphic rocks from Evvia and Andros Islands, Greece. Contrib Miner Petr 94:110–126CrossRefGoogle Scholar
  123. 123.
    Pasero M, Reinecke T, Fransolet AM (1994) Crystal structure refinements and compositional control of Mn–Mg–Ca ardennites from the Belgian Ardennes, Greece, and the Western Alps. Neuer Jb Miner Abh 166(2):137–167Google Scholar
  124. 124.
    Reinecke T, Okrusch M, Richter P (1985) Geochemistry of ferromanganoan metasediments from the island of Andros, Cycladic blueschist belt, Greece. Chem Geol 53:249–278CrossRefGoogle Scholar
  125. 125.
    Godelitsas A et al (2012) As and Sb minerals in metamorphic rocks of Attico-Cycladic complex: a review and new data (in preparation)Google Scholar
  126. 126.
    Stamatakis MG (2004) Phosphate deposits of Neogene age in Greece. Mineralogy, geochemistry and genetic implications. Chem Erde-Geochem 64:329–357CrossRefGoogle Scholar
  127. 127.
    Avila A, Queralt-Mitjans I, Alarcón M (1997) Mineralogical composition of African dust delivered by red rains over northeastern Spain. J Geophys Res 102(D18):21977–21996CrossRefGoogle Scholar
  128. 128.
    Loÿe-Pilot MD, Martin JM, Morelli J (1986) Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean. Nature 321:427–428CrossRefGoogle Scholar
  129. 129.
    Papastefanou C, Manolopoulou M, Stoulos S, Ioannidou A, Gerasopoulos E (2001) Coloured rain dust from Sahara Desert is still radioactive. J Environ Radioactiv 55:109–112CrossRefGoogle Scholar
  130. 130.
    Godelitsas A, Toli K, Simon R (2009) Elemental distribution in Saharan dust from red rain precipitated over Athens, Greece. ANKA Synchrotron Facility (KIT) Annual Report 2009Google Scholar
  131. 131.
    Godelitsas A, Nastos P, Mertzimekis TJ, Toli K, Simon R, Steininger R, Göttlicher J (2010) Characterization of Saharan dust and urban particulate matter (PM2.5 and PM10) from Athens atmosphere, Greece. ANKA Synchrotron Facility (KIT) Annual Report 2009/2010Google Scholar
  132. 132.
    Statham PJ, Hart V (2005) Dissolved iron in the Cretan Sea (eastern Mediterranean). Limnol Oceanogr 50(4):1142–1148CrossRefGoogle Scholar
  133. 133.
    Elbaz-Poulichet F, Guieu C, Morley NH (2001) A reassessment of trace metal budgets in the western Mediterranean sea. Mar Pollut Bull 42(8):623–627CrossRefGoogle Scholar
  134. 134.
    Dunn PJ, Rouse RC (1985) Freedite and thorikosite from Långban, Sweden, and Laurion, Greece: two new species related to the synthetic bismuth oxyhalides. Am Mineral 70:845–848Google Scholar
  135. 135.
    Downs RT (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. O03-13. http://rruff.info/about/about_general.php
  136. 136.
    Rakovan J (2007) Words to the wise – more than 4,000 to be expected. Rocks Miner 82(5):423–424CrossRefGoogle Scholar
  137. 137.
    Tarvainen T, Reeder S, Albanese S (2005) Database management and map production. In: Salminen R et al. (ed) Geochemical atlas of Europe. Part 1: background information, methodology and maps. Espoo, Geological Survey of Finland, p 526, 36 figures, 362 maps. http://weppi.gtk.fi/publ/foregsatlas/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Platon Gamaletsos
    • 1
    • 2
  • Athanasios Godelitsas
    • 1
  • Elissavet Dotsika
    • 3
  • Evangelos Tzamos
    • 4
  • Jörg Göttlicher
    • 2
  • Anestis Filippidis
    • 4
  1. 1.Faculty of Geology & GeoenvironmentUniversity of AthensZographouGreece
  2. 2.Karlsruhe Institute of Technology, ANKA Synchrotron Radiation FacilityEggenstein-LeopoldshafenGermany
  3. 3.Institute of Material Science, NCRS “Demokritos”AttikiGreece
  4. 4.Department of GeologyAristotle UniversityThessalonikiGreece

Personalised recommendations