Characterization of Environmental Exposure: Measuring Versus Modeling

  • Daniel GuillénEmail author
  • Antoni Ginebreda
  • Rosa M. Darbra
  • Meritxell Gros
  • Mira Petrovic
  • Damià Barceló
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 23)


Knowledge of pollutants’ occurrence in the environment is essential in order to undertake accurate risk assessment studies. Determining the concentration of chemicals is a crucial step to quantify the levels to which both ecosystems and human population can be exposed. Traditionally, analysis has been the main way for determining concentrations in the environment but in recent years innovative occurrence models enabling their prediction either in real or fictitious scenarios have been developed. These models allow obtaining reliable estimations by reducing the need of resource-intensive monitoring programs that are needed for laboratory analysis.

Prediction of chemical occurrence is a difficult task that depends on multitude of factors (i.e., physical–chemical properties, climate conditions, amount of product, mode of application, and exchange processes), but these models in combination with laboratory analysis can be a powerful tool for evaluating the chemical occurrence in the environment.

In this chapter the new trends in analytical chemistry for determining classical and emerging pollutants, as well as the use of predictive exposure models have been reviewed and their respective benefits and shortcomings have been briefly discussed.


Analytical chemistry Environmental concentration Measuring Modelling Risk assessment 



Carbon nanotubes


Disinfection by-products


The European inventory of existing commercial chemical substances


Gas chromatography


Two-dimensional gas chromatography


Geographic information system


Information-dependent acquisition


Organic carbon partition coefficient


Octanol-water partition coefficient


Liquid chromatography


Limit of detection


Microwave-assisted extraction


Measured environmental concentration


Mass spectrometry


Tandem mass spectrometry


Polyaromatic hydrocarbons


Polychlorinated biphenyls


Predicted environmental concentration


Perfluorinated compounds


Oolar organic chemical integrative samplers


Hybrid quadrupole linear ion trap


Hybrid quadrupole time-of-flight


Quantitative structure–activity relationship


Registration, evaluation, and authorization of chemicals


Supercritical fluid extraction


Solid phase micro extraction


Selected reaction monitoring




Time-weighted average


Ultra high performance liquid chromatography




  1. 1.
    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077CrossRefGoogle Scholar
  2. 2.
    Regulation EC 1907/2006 (2006) Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). European CommissionGoogle Scholar
  3. 3.
    van Leeuwen CJ, Vermeire TG (2007) Risk assessment of chemicals: an introduction, 2nd edn., XXXII. Springer, Berlin, 688 pGoogle Scholar
  4. 4.
    Arnot JA, Mackay D (2008) Policies for chemical hazard and risk priority setting: can persistence, bioaccumulation, toxicity, and quantity information be combined? Environ Sci Technol 42(13):4648–4654CrossRefGoogle Scholar
  5. 5.
    Kumar A, Xagoraraki I (2010) Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: a proposed ranking system. Sci Total Environ 408(23):5972–5989CrossRefGoogle Scholar
  6. 6.
    Van Leeuwen CJ, Hermans JLM (1995) Risk assessment of chemicals: an introduction. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  7. 7.
    Guillén D, Ginebreda A, Ml F, Darbra RM, Petrovic M, Gros M, Barceló D (2012) Prioritization of chemicals in the aquatic environment based on risk assessment: analytical, modeling and regulatory perspective. Sci Total Environ. doi: 10.1016/j.scitotenv.2012.06.064
  8. 8.
    Health IfEa (1999) Risk assessment approaches used by UK government for evaluating Human Health Effects of Chemicals. Risk Assessment, Toxicology Steering Committee (RATSC)Google Scholar
  9. 9.
    Bound JP, Voulvoulis N (2006) Predicted and measured concentrations for selected pharmaceuticals in UK rivers: implications for risk assessment. Water Res 40(15):2885–2892CrossRefGoogle Scholar
  10. 10.
    Coetsier CM, Spinelli S, Lin L, Roig B, Touraud E (2009) Discharge of pharmaceutical products (PPs) through a conventional biological sewage treatment plant: MECs vs PECs? Environ Int 35(5):787–792CrossRefGoogle Scholar
  11. 11.
    Johnson AC, Ternes T, Williams RJ, Sumpter JP (2008) Assessing the concentrations of polar organic microcontaminants from point sources in the aquatic environment: measure or model? Environ Sci Technol 42(15):5390–5399CrossRefGoogle Scholar
  12. 12.
    El-Shahawi MS, Hamza A, Bashammakh AS, Al-Saggaf WT (2010) An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 80(5):1587–1597CrossRefGoogle Scholar
  13. 13.
    Konieczka P, Wolska L, Namieśnik J (2010) Quality problems in determination of organic compounds in environmental samples, such as PAHs and PCBs. TrAC, Trends Anal Chem 29(7):706–717CrossRefGoogle Scholar
  14. 14.
    Navarro-Ortega A, Tauler R, Lacorte S, Barceló D (2010) Occurrence and transport of PAHs, pesticides and alkylphenols in sediment samples along the Ebro River Basin. J Hydrol 383(1–2):5–17CrossRefGoogle Scholar
  15. 15.
    de Carvalho Oliveira R, Santelli RE (2010) Occurrence and chemical speciation analysis of organotin compounds in the environment: a review. Talanta 82(1):9–24CrossRefGoogle Scholar
  16. 16.
    Vega Morales T, Torres Padrón ME, Sosa Ferrera Z, Santana Rodríguez JJ (2009) Determination of alkylphenol ethoxylates and their degradation products in liquid and solid samples. TrAC, Trends Anal Chem 28(10):1186–1200CrossRefGoogle Scholar
  17. 17.
    Covaci A, Harrad S, Abdallah MAE, Ali N, Law RJ, Herzke D, de Wit CA (2011) Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int 37(2):532–556CrossRefGoogle Scholar
  18. 18.
    Covaci A, Voorspoels S, Abdallah MA-E, Geens T, Harrad S, Law RJ (2009) Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J Chromatogr A 1216(3):346–363CrossRefGoogle Scholar
  19. 19.
    López-Serna R, Pérez S, Ginebreda A, Petrović M, Barceló D (2010) Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction–liquid chromatography-electrospray–tandem mass spectrometry. Talanta 83(2):410–424CrossRefGoogle Scholar
  20. 20.
    da Silva BF, Jelic A, López-Serna R, Mozeto AA, Petrovic M, Barceló D (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 85(8):1331–1339CrossRefGoogle Scholar
  21. 21.
    Rosa Boleda M, Huerta-Fontela M, Ventura F, Galceran MT (2011) Evaluation of the presence of drugs of abuse in tap waters. Chemosphere 84(11):1601–1607CrossRefGoogle Scholar
  22. 22.
    Postigo C, López de Alda MJ, Barceló D (2010) Drugs of abuse and their metabolites in the Ebro river basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation. Environ Int 36(1):75–84CrossRefGoogle Scholar
  23. 23.
    Llorca M, Farré M, Picó Y, Barceló D (2011) Analysis of perfluorinated compounds in sewage sludge by pressurized solvent extraction followed by liquid chromatography–mass spectrometry. J Chromatogr A 1218(30):4840–4846CrossRefGoogle Scholar
  24. 24.
    Wille K, Vanden Bussche J, Noppe H, De Wulf E, Van Caeter P, Janssen CR, De Brabander HF, Vanhaecke L (2010) A validated analytical method for the determination of perfluorinated compounds in surface-, sea- and sewagewater using liquid chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A 1217(43):6616–6622CrossRefGoogle Scholar
  25. 25.
    Köck-Schulmeyer M, Ginebreda A, González S, Cortina JL, de Alda ML, Barceló D (2012) Analysis of the occurrence and risk assessment of polar pesticides in the Llobregat River Basin (NE Spain). Chemosphere 86(1):8–16CrossRefGoogle Scholar
  26. 26.
    Villaverde J, Hildebrandt A, Martínez E, Lacorte S, Morillo E, Maqueda C, Viana P, Barceló D (2008) Priority pesticides and their degradation products in river sediments from Portugal. Sci Total Environ 390(2–3):507–513CrossRefGoogle Scholar
  27. 27.
    García-Valcárcel AI, Tadeo JL (2009) A combination of ultrasonic assisted extraction with LC–MS/MS for the determination of organophosphorus pesticides in sludge. Anal Chim Acta 641(1–2):117–123CrossRefGoogle Scholar
  28. 28.
    Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barceló D (2010) First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383(1–2):44–51CrossRefGoogle Scholar
  29. 29.
    Rodil R, Moeder M (2008) Development of a method for the determination of UV filters in water samples using stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry. J Chromatogr A 1179(2):81–88CrossRefGoogle Scholar
  30. 30.
    Gago-Ferrero P, Díaz-Cruz MS, Barceló D (2011) Occurrence of multiclass UV filters in treated sewage sludge from wastewater treatment plants. Chemosphere 84(8):1158–1165CrossRefGoogle Scholar
  31. 31.
    Pedrouzo M, Borrull F, Marcé RM, Pocurull E (2009) Ultra-high-performance liquid chromatography–tandem mass spectrometry for determining the presence of eleven personal care products in surface and wastewaters. J Chromatogr A 1216(42):6994–7000CrossRefGoogle Scholar
  32. 32.
    González S, Petrovic M, Barceló D (2004) Simultaneous extraction and fate of linear alkylbenzene sulfonates, coconut diethanol amides, nonylphenol ethoxylates and their degradation products in wastewater treatment plants, receiving coastal waters and sediments in the Catalonian area (NE Spain). J Chromatogr A 1052(1–2):111–120Google Scholar
  33. 33.
    Eichhorn P, López Ó, Barceló D (2005) Application of liquid chromatography-electrospray-tandem mass spectrometry for the identification and characterisation of linear alkylbenzene sulfonates and sulfophenyl carboxylates in sludge-amended soils. J Chromatogr A 1067:171–179CrossRefGoogle Scholar
  34. 34.
    Eljarrat E, De La Cal A, Larrazabal D, Fabrellas B, Fernandez-Alba AR, Borrull F, Marce RM, Barcelo D (2005) Occurrence of polybrominated diphenylethers, polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in coastal sediments from Spain. Environ Pollut 136(3):493–501CrossRefGoogle Scholar
  35. 35.
    Kuster M, Azevedo DA, López de Alda MJ, Aquino Neto FR, Barceló D (2009) Analysis of phytoestrogens, progestogens and estrogens in environmental waters from Rio de Janeiro (Brazil). Environ Int 35(7):997–1003CrossRefGoogle Scholar
  36. 36.
    Matějíček D, Houserová P, Kubáň V (2007) Combined isolation and purification procedures prior to the high-performance liquid chromatographic–ion-trap tandem mass spectrometric determination of estrogens and their conjugates in river sediments. J Chromatogr A 1171(1–2):80–89Google Scholar
  37. 37.
    Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83(12):4614–4648CrossRefGoogle Scholar
  38. 38.
    Togola A, Budzinski H (2007) Development of polar organic integrative samplers for analysis of pharmaceuticals in aquatic systems. Anal Chem 79(17):6734–6741CrossRefGoogle Scholar
  39. 39.
    Parkinson D-R, Dust JM (2010) Overview of the current status of sediment chemical analysis: trends in analytical techniques. Environ Rev 18(NA):37–59CrossRefGoogle Scholar
  40. 40.
    Snow DD, Bartelt-Hunt SL, Devivo S, Saunders S, Cassada DA (2009) Detection, occurrence, and fate of emerging contaminants in agricultural environments. Water Environ Res 81(10):941–958CrossRefGoogle Scholar
  41. 41.
    Petrovic M, Farré M, de Alda ML, Perez S, Postigo C, Köck M, Radjenovic J, Gros M, Barcelo D (2010) Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples. J Chromatogr A 1217(25):4004–4017CrossRefGoogle Scholar
  42. 42.
    Farré M, Pérez S, Gonçalves C, Alpendurada MF, Barceló D (2010) Green analytical chemistry in the determination of organic pollutants in the aquatic environment. TrAC, Trends Anal Chem 29(11):1347–1362CrossRefGoogle Scholar
  43. 43.
    Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453CrossRefGoogle Scholar
  44. 44.
    Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222CrossRefGoogle Scholar
  45. 45.
    Carballa M, Omil F, Lema JM (2008) Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage. Chemosphere 72(8):1118–1123CrossRefGoogle Scholar
  46. 46.
    Stuer-Lauridsen F, Birkved M, Hansen LP, Lutzhoft HCH, Halling-Sorensen B (2000) Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere 40(7):783–793CrossRefGoogle Scholar
  47. 47.
    Domènech X, Peral J, Muñoz I (2009) Predicted environmental concentrations of cocaine and benzoylecgonine in a model environmental system. Water Res 43(20):5236–5242CrossRefGoogle Scholar
  48. 48.
    Bou Kheir R, Greve MH, Abdallah C, Dalgaard T (2010) Spatial soil zinc content distribution from terrain parameters: a GIS-based decision-tree model in Lebanon. Environ Pollut 158(2):520–528CrossRefGoogle Scholar
  49. 49.
    Wind T, Werner U, Jacob M, Hauk A (2004) Environmental concentrations of boron, LAS, EDTA, NTA and Triclosan simulated with GREAT-ER in the river Itter. Chemosphere 54(8):1145–1154CrossRefGoogle Scholar
  50. 50.
    Schowanek D, Webb S (2002) Exposure simulation for pharmaceuticals in European surface waters with GREAT-ER. Toxicol Lett 131(1–2):39–50CrossRefGoogle Scholar
  51. 51.
    Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Environmental fate of Triclosan in the River Aire Basin, UK. Water Res 37(13):3145–3154CrossRefGoogle Scholar
  52. 52.
    Pistocchi A, Vizcaino P, Hauck M (2009) A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe. J Environ Manage 90(11):3410–3421CrossRefGoogle Scholar
  53. 53.
    Verro R, Calliera M, Maffioli G, Auteri D, Sala S, Finizio A, Vighi M (2002) GIS-based system for surface water risk assessment of agricultural chemicals. 1. Methodological approach. Environ Sci Technol 36(7):1532–1538CrossRefGoogle Scholar
  54. 54.
    Price OR, Williams RJ, Zhang Z, van Egmond R (2010) Modelling concentrations of decamethylcyclopentasiloxane in two UK rivers using LF2000-WQX. Environ Pollut 158(2):356–360CrossRefGoogle Scholar
  55. 55.
    Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40(7):715–722CrossRefGoogle Scholar
  56. 56.
    Spark KM, Swift RS (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Sci Total Environ 298(1–3):147–161CrossRefGoogle Scholar
  57. 57.
    Montzka C, Canty M, Kreins P, Kunkel R, Menz G, Vereecken H, Wendland F (2008) Multispectral remotely sensed data in modelling the annual variability of nitrate concentrations in the leachate. Environ Modell Softw 23(8):1070–1081CrossRefGoogle Scholar
  58. 58.
    Vijayaraghavan K, Snell HE, Seigneur C (2008) Practical aspects of using satellite data in air quality modeling. Environ Sci Technol 42(22):8187–8192CrossRefGoogle Scholar
  59. 59.
    Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393(1):81–95CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel Guillén
    • 1
    Email author
  • Antoni Ginebreda
    • 1
  • Rosa M. Darbra
    • 2
  • Meritxell Gros
    • 3
  • Mira Petrovic
    • 3
    • 4
  • Damià Barceló
    • 1
    • 3
  1. 1.Department Environmental Chemistry, Institute of Environmental Diagnostic and Water Studies (IDAEA)Spanish Council of Scientific Research (CSIC)BarcelonaSpain
  2. 2.CERTEC, Department of Chemical EngineeringUniversitat Politècnica de Catalunya, ETSEIBBarcelonaSpain
  3. 3.ICRA, Edifici H2OGironaSpain
  4. 4.ICREABarcelonaSpain

Personalised recommendations