Advertisement

Environmental Fate Models

  • N. SuciuEmail author
  • T. Tanaka
  • M. Trevisan
  • M. Schuhmacher
  • M. Nadal
  • J. Rovira
  • X. Segui
  • J. Casal
  • R. M. Darbra
  • E. Capri
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 23)

Abstract

The environmental fate of chemicals describes the processes by which chemicals move and are transformed into the environment. Environmental fate processes that should be addressed include: persistence in air, water and soil; reactivity and degradation; migration in groundwater; removal from effluents by standard wastewater treatment methods and bioaccumulation in aquatic or terrestrial organisms. Environmental fate models are by no means compulsory for managing priority substances. Efficient source control can be done without them, i.e. by reducing emissions gradually and monitoring the environment to track changes. However the environmental fate models are proposed for use for two main reasons: (a) because the quantitative models can improve the understanding of the managed system and (b) because the models can be used to predict long-term impacts of planned actions. Furthermore the residence times of some of the priority substances may be very long (e.g. 50 years for mercury in water column); therefore, only monitoring could be not enough to detect if the taken measures are enough to reach the good ecological status. The use of environmental fate models in decision making is not a new concept. They are routinely used in the framework of environmental risk assessment. The output of environmental fate models can be expressed as time series of predicted concentrations in different medium of both indoor and outdoor environments.

Keywords

Chemicals Fate Modelling Risk assessment 

References

  1. 1.
    Cowan CE, Mackay D, Feijtel TCJ, van de Meent D, di Guardo A, Davies J, Mackay N (1995) The multi-media fate model: a vital tool for predicting the fate of chemicals. SETAC Press, PensacolaGoogle Scholar
  2. 2.
    Ramaswami A, Milford JB, Small MJ (2005) Integrated environmental modeling. Pollutant transport, fate, and risk in the environment. Wiley, New YorkGoogle Scholar
  3. 3.
    Ryan PA (1985) Multimedia modelling of environmental transport. MS Thesis, University of Californiain Los AngelesGoogle Scholar
  4. 4.
    McKone TE, Layton DW (1986) Screening the potential risks of toxic substances using a multimedia compartment model: estimation of human exposure. Regul Toxicol Pharm 6:359–380CrossRefGoogle Scholar
  5. 5.
    Mackay D, Diamond M (1989) Application of the QWASI (quantitative water air sediment interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes. Chemosphere 18:1343–1365CrossRefGoogle Scholar
  6. 6.
    Mackay D, Paterson S (1991) Evaluating the multimedia fate of organic chemicals: a level III fugacity model. Environ Sci Technol 25:427–436CrossRefGoogle Scholar
  7. 7.
    McKone TE (1993) CalTOX, a multimedia total exposure model for hazardous-waste sites. Part I. Executive summary. A report written for The Office of Scientific Affairs Department of Toxic Substances Control California Environmental Protection Agency Sacramento, California by the Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  8. 8.
    McKone TE (1993) CalTOX, A multi-media total-exposure model for hazardous wastes sites. Part II. The dynamic multi-media transport and transformation model. A report prepared for the State of California, Department Toxic Substances Control by the Lawrence Livermore National Laboratory No. UCRL-CR_111456PtII, LivermoreGoogle Scholar
  9. 9.
    van de Meent D (1993) SimpleBOX: a generic multi-media fate evaluation model. RIVM report no. 6727200001, BilthovenGoogle Scholar
  10. 10.
    ECETOC (1994) HAZCHEM. A mathematical model for use in risk assessment of substances. Special report n. 8. European Centre for Ecotoxicology and Toxicology of Chemicals, BrusselsGoogle Scholar
  11. 11.
    Devillers J, Bintein S (1995) CHEMFRANCE: a regional level III fugacity model applied to France. Chemosphere 30(3):457–476CrossRefGoogle Scholar
  12. 12.
    Mackay D, Di Guardo A, Paterson S, Kicsi G, Cowan D, Kane D (1996) Assessment of chemical fate in the environment using evaluative, regional and local-scale models: illustrative application to chlorobenzene and linear alkylbenzene sulfonates. Environ Toxicol Chem 15(9):1638–1648CrossRefGoogle Scholar
  13. 13.
    Gobas FAPC, Pasternak JP, Lien K, Duncan RK (1998) Development and field validation of a multimedia exposure assessment model for waste load allocation in aquatic ecosystems: application to 2,3,7,8-tetrachlo-rodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran in the Fraser river watershed. Environ Sci Technol 32(16):2442–2449CrossRefGoogle Scholar
  14. 14.
    Coulibaly L (1999) Multimedia modeling of organic contaminants in the Passaic river watershed. Dissertation, Department of Civil and Environmental Engineering, New Jersey Institute of TechnologyGoogle Scholar
  15. 15.
    Fenner K, Scheringer M, Hungerbuhler K (2000) Persistence of parent compounds and transformation products in a level IV multimedia model. Environ Sci Technol 34(17):3809–3817CrossRefGoogle Scholar
  16. 16.
    Wania F, Persson J, Di Guardo A, McLachlan MS (2000) CoZMo-POP. A fugacity-based multi-compartmental mass balance model of the fate of persistent organic pollutants in the coastal zone. WECC report 1/2000. Toronto (April)Google Scholar
  17. 17.
    Padovani L, Trevisan M, Capri E (2004) A calculation procedure to assess potential environmental risk of pesticides at the farm level. Ecol Indicat 4:111–123CrossRefGoogle Scholar
  18. 18.
    Trevisan M, Di Guardo A, Balderacchi M (2009) An environmental indicator to drive sustainable pest management practices. Environ Model Software 24(8):994–1002CrossRefGoogle Scholar
  19. 19.
    Balderacchi M, Trevisan M (2010) Comments on pesticide risk assessment by the revision of Directive EU 91/414. Environ Sci Pollut Res 17(3):523–528CrossRefGoogle Scholar
  20. 20.
    Ciffroy P, Tanaka T, Johansson E, Brochot C (2011) Linking fate model in freshwater and PBPK model to assess human internal dosimetry of B(a)P associated with drinking water. Environ Geochem Health 33:371–387CrossRefGoogle Scholar
  21. 21.
    Claff RE (1993) The American Petroleum Institute s (API) decision support system (DSS) for risk and exposure assessment. In: Proceedings of the 1993 petroleum hydro- carbons and organic chemicals in ground water: prevention, detection and restoration. The American Petroleum Institute and the Association of Ground Water Scientists and Engineers, Houston, November 10–12, pp 74–84Google Scholar
  22. 22.
    USEPA (1997) Lake Michigan mass budget/mass balance work plan. EPA-905-R-97-018, US Environmental Protection Agency and Great Lakes National Program OfficeGoogle Scholar
  23. 23.
    McDonald JP, Gelston GM (1998) Description of the multimedia environmental pollutant assessment system (MEPAS, version 3.2), with application to a hypothetical soil contamination scenario. J Soil Contam 7(3):283–300CrossRefGoogle Scholar
  24. 24.
    USEPA (1999) Documentation for the FRAMES-HWIR technology software system, vol. 6: multimedia multipathway simulation processor. US Environmental Protection Agency, Office of Research and Development (October)Google Scholar
  25. 25.
    Cohen Y, Tsai W, Chetty SL, Mayer GJ (1990) Dynamic partitioning of organic chemicals in regional environments: a multimedia screening-level modeling approach. Environ Sci Technol 24:1549–1558CrossRefGoogle Scholar
  26. 26.
    Cohen Y, Clay RE (1994) Multimedia partitioning of particle-bound organics. J Hazard Mater 37:507–526CrossRefGoogle Scholar
  27. 27.
    Cohen Y, Cooter EJ (2002) Multimedia environmental distribution of toxics (Mend-Tox). I. Hybrid compartmental-spatial modeling framework. Pract Periodical Hazard Toxic Radioactive Waste Manag 6(2):70–86CrossRefGoogle Scholar
  28. 28.
    Pratt GC, Gerbec PE, Livingston SK, Oliaei F, Bollweg GL, Paterson S, Mackay D (1993) An indexing system for comparing toxic air pollutants based upon their potential environmental impacts. Chemosphere 27(8):1359–1379CrossRefGoogle Scholar
  29. 29.
    Renner R (1995) Predicting chemical risks with multimedia fate models. Environ Sci Technol 29:556A–559AGoogle Scholar
  30. 30.
    Mackay D, Di Guardo A, Paterson S, Cowan CE (1996) Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Environ Toxicol Chem 15:1627–1637CrossRefGoogle Scholar
  31. 31.
    Mackay D, Di Guardo A, Paterson S, Kicsi G, Cowan CE (1996) Assessing the fate of new and existing chemicals: a five-stage process. Environ Toxicol Chem 15:1618–1626CrossRefGoogle Scholar
  32. 32.
    Mackay D (1998) Multimedia mass balance models of chemical distribution and fate. In: Schuurmann G, Markert B (eds) Ecotoxicology. Wiley, New York, pp 237–257Google Scholar
  33. 33.
    Berding V, Schwartz S, Matthies M (2000) Scenario analysis of a level III multimedia model using generic and regional data. Environ Sci Pollut Res 7(3):147–158CrossRefGoogle Scholar
  34. 34.
    Mackay D, Joy M, Paterson S (1983) A quantitative water, air, sediment interaction (Qwasi) fugacity model for describing the fate of chemicals in lakes. Chemosphere 12(7/8):981–997CrossRefGoogle Scholar
  35. 35.
    Paterson S, Mackay D (1994) A model of organic chemical uptake by plants from soil and the atmosphere. Environ Sci Technol 28:2259–2266CrossRefGoogle Scholar
  36. 36.
    Bennett DH, Mckone TE, Matthies M, Kastenberg WE (1998) General formulation of characteristic travel distance for semivolative organic chemicals in a multimedia environment. Environ Sci Technol 32:4023–4030CrossRefGoogle Scholar
  37. 37.
    Wania F, McLachlan MS (2001) Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model. Environ Sci Technol 35(3):582–590CrossRefGoogle Scholar
  38. 38.
    Zhang Q, Crittenden JC, Shonnard D, Mihelcic JR (2003) Development and evaluation of an environmental multimedia fate model CHEMGL for the Great Lakes region. Chemosphere 50:1377–1397CrossRefGoogle Scholar
  39. 39.
    Rabta B, Aïssani D (2008) Strong stability and perturbation bounds for discrete Markov chains. Lin Algebra Appl 428:1921–1927CrossRefGoogle Scholar
  40. 40.
    Xue JG (2001) Blockwise perturbation theory for nearly uncoupled Markov chains and its application. Lin Algebra Appl 326:173–191CrossRefGoogle Scholar
  41. 41.
    Hudson G, Bienie RV (2000) A method of land evaluation including year to year weather variability. Agr Forest Meteorol 101:203–216CrossRefGoogle Scholar
  42. 42.
    Meza FJ, Wilks DS (2004) Use of seasonal forecasts of sea surface temperature anomalies for potato fertilization management. Theoretical study considering EPIC model results at Valdivia. Chile Agr Syst 82:161–180CrossRefGoogle Scholar
  43. 43.
    Schlicht R, Iwasa Y (2004) Forest gap dynamics and the Ising model. J Theor Biol 230:65–75CrossRefGoogle Scholar
  44. 44.
    Yakowitz S (1995) Computational methods for Markov series with large state spaces, with application to AIDS modelling. Math Biosci 127:99–121CrossRefGoogle Scholar
  45. 45.
    Johnson GE, Hedgebeth JB, Skalski JR et al (2004) A Markov chain analysis of fish movements to determine entrainment zones. Fish Res 69:349–358CrossRefGoogle Scholar
  46. 46.
    Singer ME, Younossi ZM (2001) Cost effectiveness of screening for hepatitis C virus in asymptomatic, average-risk adults. Am J Med 111:614–621CrossRefGoogle Scholar
  47. 47.
    Hlavacek WS, Percus JK, Percus OE et al (2002) Retention of antigen on follicular dendritic cells and Blymphocytes through complement-mediated multivalent ligand–receptor interactions: theory and application to HIV treatment. Math Biosci 176:185–202CrossRefGoogle Scholar
  48. 48.
    Wei JZ (2003) A multi-factor, credit migration model for sovereign and corporate debts. J Int Money Finance 22:709–735CrossRefGoogle Scholar
  49. 49.
    Wu C (2005) Inherent delays and operational reliability of airline schedules. J Air Transport Manag 11:273–282CrossRefGoogle Scholar
  50. 50.
    Duran CL (2004) Logistics for world-wide crude oil transportation using discrete event simulation and optimal control. Comput Chem Eng 28:897–911CrossRefGoogle Scholar
  51. 51.
    Berthiaux H, Mizonov V, Zhukov V (2005) Application of the theory of Markov chains to model different processes in particle technology. Powder Technol 157:128–137CrossRefGoogle Scholar
  52. 52.
    Zhang Q (1997) The course of Markov in estimating status of environmental facility. Manag Tech Environ Monitor 9:4–35Google Scholar
  53. 53.
    Harmon R, Challenor P (1997) A Markov chain Monte Carlo method for estimation and assimilation into models. Ecol Model 101:41–49CrossRefGoogle Scholar
  54. 54.
    Zhang L, Dai S (2007) Application of Markov Model to environmental fate of phenanthrene in Lanzhou Reach of Yellow River. Chemosphere 67:1296–1299CrossRefGoogle Scholar
  55. 55.
    Dazhi S, Xuqian L (2010) Application of Markov chain model on environmental fate of phenanthrene in soil and groundwater. Procedia Environ Sci 2:814–823CrossRefGoogle Scholar
  56. 56.
    Mackay D (1991) Multimedia environmental models: the fugacity approach. Lewis Publishers, ChelseaGoogle Scholar
  57. 57.
    Webster E, Mackay D, Di Guardo A, Kane D, Woodfine D (2004) Regional differences in chemical fate model outcome. Chemosphere 55:1361–1376CrossRefGoogle Scholar
  58. 58.
    Shonnard DR, Hiew DS (2000) Comparative environmental assessments of VOC recovery and recycle design alternatives for a gaseous waste stream. Environ Sci Technol 34(24):5222–5228CrossRefGoogle Scholar
  59. 59.
    Schowanek D, Webb S (2002) Exposure simulation for pharmaceuticals in Europa surface water with GREAT-ER. Toxicol Lett 131:39–50CrossRefGoogle Scholar
  60. 60.
    Feijtel T, Boeije G, Matthies M, Young A, Morris G, Gandolfi C, Hansen B, Fox K, Holt M, Koch V, Schroder R, Cassani G, Schowanek D, Rosenblom J, Niessen H (1997) Development of a geography-referenced regional exposure assessment tool for European Rivers-GREAT-ER Contribution to GRAT-ER #1. Chemosphere 34(11):2351–2373CrossRefGoogle Scholar
  61. 61.
    Wagner, J-O, Koorman F, Matthies M (1998) GREAT-ER analysis tools and connectivity-exposure at a regional scale. In: Proceeding of 8th annual meeting of SETAC Europe, BordeauxGoogle Scholar
  62. 62.
    Boeije GM, Vanrolleghem P, Matthies M (1997) A georeferenced aquatic exposure prediction methodology for ‘down-the-drain’ chemicals. Contribution to GREAT-ER # 3. Water Sci Technol 36:251–258Google Scholar
  63. 63.
    Brandes LJ, den Hollander H, van de Meent D (1996) SimpleBox 2.0: a nested multimedia model for evaluating the environmental fate of chemicals. RIVM report no. 719101029, BilthovenGoogle Scholar
  64. 64.
    MacLeod M, Woodfine DG, Mackay D, Mckone T, Bennett D, Randy M (2001) BERTNorth America: a regionally segmented multimedia contaminant fate model for North America. Environ Sci Pollut Res 8(3):156–163CrossRefGoogle Scholar
  65. 65.
    Hertwich EG (1999) Toxic equivalency: addressing human health effects in life cycle impact assessment. PhD Thesis, University of California, BerkeleyGoogle Scholar
  66. 66.
    Hertwich EG, McKone TE, Pease WS (1999) Parameter uncertainty and variability in evaluative fate and exposure models. Risk Anal 19:1193–1204Google Scholar
  67. 67.
    Hertwich EG, Mateles SF, Pease WS, McKone TE (2001) Human toxicity potentials for life cycle assessment and toxics release inventory risk screening. Environ Toxicol Chem 20:928–939CrossRefGoogle Scholar
  68. 68.
    de Koning A, Guinée JB, Pennington DW, Sleeswijk A, Hauschild MZ, Molander S, Nyström B, Pant R, Schowanek D (2002)Methods and typology report. Part A. Inventory and classification of LCA characterisation methods for assessing toxic releases. OMNIITOX Deliverable D11AGoogle Scholar
  69. 69.
    Seuntjens P, Steurbaut W, Vangronsveld J (2006) Chain model for the impact analysis of contaminants in primary food products. Study report of the Belgian Science PolicyGoogle Scholar
  70. 70.
    Tanaka T, Capri E, Ciffroy P (2011) Probabilistic and full-chain risk assessment of the chemical accumulation on human body using an integrated modeling tool. La Goliardica Pavese, PaviaGoogle Scholar
  71. 71.
    Tanaka T, Ciffroy P, Stenberg K, Capri E (2010) Regression approaches to derive generic and fish group-specific probability density functions of bioconcentration factors for metals. Environ Toxicol Chem 29(11):2417–2425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • N. Suciu
    • 1
    Email author
  • T. Tanaka
    • 2
  • M. Trevisan
    • 1
  • M. Schuhmacher
    • 3
  • M. Nadal
    • 3
  • J. Rovira
    • 3
  • X. Segui
    • 4
  • J. Casal
    • 4
  • R. M. Darbra
    • 4
  • E. Capri
    • 1
  1. 1.Institute of Agricultural and Environmental ChemistryUniversità Cattolica del Sacro CuorePiacenzaItaly
  2. 2.INERIS, Institut National de l’Environnement Industriel et des RisquesVerneuil-en-HalatteFrance
  3. 3.School of Chemical EngineeringUniversitat Rovira i VirgiliTarragonaSpain
  4. 4.Department of Chemical EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations