Skip to main content

Toxicological Characterization of Waste-Related Products Using Alternative Methods: Three Case Studies

  • Chapter
  • First Online:
Global Risk-Based Management of Chemical Additives II

Abstract

The characterization of toxicological impact of chemicals and mixtures from environmental matrices is a critical point in the assessment of adverse effects induced in human and ecological targets. In fact, the toxicity of most of the environmental mixtures is still under investigation due to the possibility of synergic or antagonistic effects of the components. Moreover, in some cases, the toxicity of identified chemicals is not already well known and it could be an additional matter of concern.

Encouraged by recent legislations all over the world aimed to protect human health and environment, alternative methods have proved their abilities to assess the toxicity of chemicals. Hence, a possible solution to the characterization of the toxicological and ecotoxicological risk of the chemicals could be represented by the application of in silico and in vitro techniques.

However, only a limited number of studies using alternative methods (testing and non-testing) are present in the scientific literature but the studies are increasing and becoming more important and spread day by day, in particular for the evaluation of mixtures derived from environmental matrices.

Among the possible solutions, in vitro assay and QSARs models are the most applied approaches in the field of environmental research and risk assessment.

In this chapter three case studies are introduced as examples of the application of alternative methods for the toxicological characterization of waste-related products.

The first case is an integrated approach based on chemical analyses, risk assessment, and in vitro assays for the investigation of the toxicity of a leachate produced by a modern industrial landfill in Italy.

The second example focuses on qualitative evaluation of cancerogenic potential of some perfluorinated compounds using both QSARs models and an in vitro cell transformation assay.

Finally, a QSAR evaluation of different chemicals from waste-related products and recycling is shown in order to underline how in silico models can be used as a valid tool to fill in the gaps and to obtain information on toxicological profile and physicochemical information on compounds. In particular, a focus on compounds suggested by EU project “Riskcycle” is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Judson R, Richard AM, Dix DJ, Houck K, Martin MT, Kavlock RJ et al (2009) The toxicity data landscape for environmental chemicals. Environ Health Perspect 117:685–695

    CAS  Google Scholar 

  2. Judson R, Houck K, Kavlock RJ, Knudsen T, Martin T, Mortensen HM, Reif D, Rotroff D, Shaha I, Richard AM, Dix DJ (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118:485–492

    Article  CAS  Google Scholar 

  3. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London. Reprinted by UFAW, 1992: 8 Hamilton Close, South Mimms, Potters Bar, Herts EN6 3QD England. ISBN: 0 900767 78

    Google Scholar 

  4. Smyth DH (1978) Alternatives to animal experiments. Scolar Press, London, 218 pp

    Google Scholar 

  5. Worth AP, Balls M (eds) (2002) Alternative (non-animal) methods for chemicals testing: current status and future prospects. A report prepared by ECVAM and the ECVAM Working Group on Chemicals. ATLA 30 Supplement 1. p 125

    Google Scholar 

  6. Bakare AA, Mosuro AA, Osibanjo O (2005) An in vivo evaluation of induction of abnormal sperm morphology in mice by landfill leachates. Mutat Res 582:28–34

    Article  CAS  Google Scholar 

  7. El-Fadel M, Findikakis AN, Leckie JO (1997) Environmental impacts of solid waste landfilling. J Environ Manage 50:1–25

    Article  Google Scholar 

  8. Damgaard A, Manfredi S, Merrild H, Stensøe S, Christensen TH (2011) LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag 31(7):1532–1541

    Article  CAS  Google Scholar 

  9. Pivato A, Gaspari L (2006) Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria. Waste Manag 26(10):1148–1155

    Article  CAS  Google Scholar 

  10. Benfenati E, Pierucci P, Fanelli R, Preiss A, Godejohann M, Astratov M, Levsen K, Barcelo D (1999) Comparative studies of the leachate of an industrial landfill by gas chromatography–mass spectrometry, liquid chromatography–nuclear magnetic resonance and liquid chromatography–mass spectrometry. J Chromatogr A 831:243–256

    Article  CAS  Google Scholar 

  11. Benfenati E, Genah D, Verro R, Mazzatorta P (2002) Chemical analysis, distributed modeling and risk indices. Three fundamental pillars in risk assessment. Sci World J 2:1617–1625

    Article  CAS  Google Scholar 

  12. Benfenati E, Maggioni S, Campagnola G, Senese V, Lodi M, Testa S, Schramm KW (2007) A protocol to evaluate organic compounds present in a landfill. In: Velinni AA (ed) Landfill research trends. NovaScience, Huntington, NY, pp 141–166

    Google Scholar 

  13. Commission Directive 93/67/EEC of 20 July 1993 laying down the principles for assessment of risks to man and the environment of substances notified in accordance with Council Directive 67/548/EEC. Official Journal 227, 08/09/1993, pp 0009–0018

    Google Scholar 

  14. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal L 182, 16/07/1999, pp 0001–0019

    Google Scholar 

  15. United States Environmental Protection Agency (USEPA) (1989) Risk Assessment Guidance for Superfund. Volume 1. EPA/540/1-89/002. Office of Emergency and Remedial Response. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  16. USEPA (1998) Guidelines for ecological risk assessment. EPA/630/R-95/002 F. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  17. Baderna D, Maggioni S, Boriani E, Gemma S, Molteni M, Lombardo A, Colombo A, Bordonali S, Rotella G, Lodi M, Benfenati E (2011) A combined approach to investigate the toxicity of an industrial landfill’s leachate: chemical analyses, risk assessment and in vitro assays. Environ Res 111:603–613

    Article  CAS  Google Scholar 

  18. Colombo A, Benfenati E, Mariani G, Lodi M, Marras R, Rotella G, Senese V, Fattore E, Fanelli R (2009) PCDD/Fs in ambient air in north/east Italy: the role of a MSWI inside an industrial area. Chemosphere 77:1224–1229

    Article  CAS  Google Scholar 

  19. Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron G (2001) Biochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    Article  CAS  Google Scholar 

  20. Italian Institute for Environmental Protection and Research (ISPRA) (2008) Method criteria for applying the absolute risk analysis to contaminated sites [Criteri metodologici per l’applicazione dell’analisi assoluta di rischio ai siti contaminati] draft 2, available at: http://www.apat.gov.it/site/_files/Suolo_Territorio/siti_contaminati_02marzo08.pdf

  21. ISS/ISPESL (2009) ISPRA/ISPESL database “Chemical/physical and toxicological properties of pollutants”. Available at: http://www.apat.gov.it/site/_files/Suolo_Territorio/Banca_dati_ISS_ISPESL_Maggio_2009.xls

  22. USEPA (2009) The Integrated Risk Information System (IRIS). Available at: http://www.epa.gov/iris/index.html

  23. Boriani E, Mariani A, Baderna D, Moretti C, Lodi M, Benfenati E (2010) ERICA: a multiparametric toxicological risk index for the assessment of environmental healthiness. Environ Int 36:665–674

    Article  CAS  Google Scholar 

  24. USEPA (2007) ECOTOXicology Database System. Version 4.0. Available at: http://cfpub.epa.gov/ecotox

  25. ChemIDPlus (2009) Available at: http://chem.sis.nlm.nih.gov/chemidplus

  26. USEPA (2010) Toxicity Estimation Software Tool (version 3.2). Available at: http://www.epa.gov/nrmrl/std/cppb/qsar/

  27. The ACD/Tox Suite (formerly called ToxBoxes), provided by ACD/Labs and Pharma Algorithms. Available at: http://www.acdlabs.com/products/admet/tox/

  28. Valentin-Severin I, Le Hegarat L, Lhuguenot JC, Le Bon AM, Chagnon MC (2003) Use of HepG2 cell line for direct or indirect mutagens screening: comparative investigation between comet and micronucleus assays. Mutat Res 536:79–90

    Article  CAS  Google Scholar 

  29. Mersch-Sundermann V, Knasmuller S, Wu X, Dorroudi F, Kassie F (2004) Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology 198:329–340

    Article  CAS  Google Scholar 

  30. Vidic T, Lah B, Berden-Zrimec M, Marinsek-Logar R (2008) Bioassays for evaluating the water-extractable genotoxic and toxic potential of soils polluted by metal smelters. Environ Toxicol 24:472–483

    Article  Google Scholar 

  31. Amahdar L, Anouar A, Ababou B, Verschaeve L, Hilali A (2009) In vitro genotoxicity of settat town landfill leachate. Morocco Arh Hig Rada Toksikol 60:179–184

    CAS  Google Scholar 

  32. Talorete T, Limam A, Kawano M, Jenhani ABR, Ghrabi A, Isoda H (2008) Stress response of mammalian cells incubated with landfill leachate. Environ Toxicol Chem 27:1084–1092

    Article  CAS  Google Scholar 

  33. Pitot HC (1986) Fundamentals of oncology. Marcel Dekker, New York

    Google Scholar 

  34. Jacobson-Kram D, Jacobs A (2005) Use of genotoxicity data to support clinical trials or positive genetox findings on a candidate pharmaceutical or impurity…now what? Int J Toxicol 24:129–134

    Article  CAS  Google Scholar 

  35. ECHA (2008) REACH Guidance on information requirements and chemical safety assessment, Chapter R.7a: Endpoint specific guidance. See chapter R7.7.1 Mutagenicity testing. Available at: http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r7a_en.pdf?vers=20_08_08

  36. Fromme H, Tittlemier SA, Volkel W, Wilhelm M, Twardella D (2009) Perfluorinated compounds–exposure assessment for the general population in Western countries. Int J Hyg Environ Health 212(3):239–270

    Google Scholar 

  37. Smithwick M, Norstrom RJ, Mabury SA, Solomon K, Evans TJ, Stirling I, Taylor MK, Muir DC (2006) Environ Sci Technol 40

    Google Scholar 

  38. Paiano V, Fattore E, Carrà A, Generoso C, Fanelli R, Bagnati R (2012) Liquidchromatography-tandem mass spectrometry analysis of perfluorooctane sulfonate and perfluorooctanoic acid in fish fillet samples. J Anal Methods Chem 2012: doi:10.1155/2012/719010

  39. Abdellatif AG, Preat V, Taper HS, Roberfroid M (1991) The modulation of rat liver carcinogenesis by perfluorooctanoic acid, a peroxisome proliferator. Toxicol Appl Pharmacol 111(3): 530–537

    Google Scholar 

  40. EFSA (European Food Safety Authority) (2008) The EFSA Journal 653

    Google Scholar 

  41. Nilsson R, Beije B, Preat V, Erixon K, Ramel C (1991) On the mechanism of the hepatocarcinogenicity of peroxisome proliferators. ChemBiol Inter 78(2):235–250

    Google Scholar 

  42. VEGA (2011) Guide to Carcinogenicity Classification Model – version 2.1.3. Available at: http://www.vega-qsar.eu/guidelines/VEGA_model_guide_CARC_2_1_3.pdf

  43. Helma C (2006) Lazy structure-activity relationships (lazar) for the prediction of rodent carcinogenicity and salmonella mutagenicity. Mol Divers 10:147–158

    Article  CAS  Google Scholar 

  44. Verhaar HJM, van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants. 1. Structure-activity relationships for prediction of aquatic toxicity. Chemosphere 25:471–491

    Article  CAS  Google Scholar 

  45. Benigni R, Bossa C, Jeliazkova N, Netzeva T, Worth A. The Benigni/Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree. European Commission Report EUR 23241 EN

    Google Scholar 

  46. http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/toxtree

  47. Benigni R, Bossa C, Tcheremenskaia O, Worth A (2009) Development of structural alerts for the in vivo micronucleus assay in rodents. European Commission Report EUR 23844 EN

    Google Scholar 

  48. Marchant CA, Briggs KA, Long A (2008) In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for Windows, Meteor, and Vitic. Toxicol Mech Methods 18:177–187

    Article  CAS  Google Scholar 

  49. Milan C, Schifanella O, Roncaglioni A, Benfenati E (2011) Comparison and possible use of in silico tools for carcinogenicity within REACH legislation. J Environ Sci Health C 29(4):300–323

    CAS  Google Scholar 

  50. Landolph JR (1985) Chemical transformation of C3H/10T1/2 C1 8 mouse embryo cells: historical background, assessment of the transformation assay and evaluation and optimization of the transformation assay protocol. In: IARC Scientific Publication No 67, pp 185–198

    Google Scholar 

  51. ECVAM (2010) Balb/c 3T33 Cell Transformation Assay – Prevalidation Study Report

    Google Scholar 

  52. Schechtman LM (1985) BALB/c 3T3 cell transformation: protocols, problems and improvements. In: Kakunaga T, Yamasaki H (eds) Transformation assay of established cell lines mechanisms and application. IARC Scientific Publications 67, Lyon, pp 165–181

    Google Scholar 

  53. Vanparys P, Schechtman L, Aardema M, Hayashi M, Hoffmann S, Gribaldo L, Corvi R (2010) Balb/c 3T3 Cell Transformation Assay - Prevalidation Study Report. ECVAM Balb/c 3T3 CTA PRP report v1 - 30 July 2010

    Google Scholar 

  54. http://www.wadef.com/projects/riskcycle/

  55. http://www.acdlabs.com/products/pc_admet/tox/tox/

  56. http://www.caesar-project.eu

  57. http://toxtree.sourceforge.net/

  58. http://www.epa.gov/nrmrl/std/qsar/testuserguide.pdf

  59. http://lazar.in-silico.de/predict

  60. http://www.epa.gov/oppt/newchems/tools/21ecosar.htm

  61. http://www.epa.gov/oppt/exposure/pubs/episuite.htm

  62. http://www.acdlabs.com/download/docs/datasheets/datasheet_acute.pdf

  63. http://www.acdlabs.com/download/docs/datasheets/datasheet_genotox.pdf

  64. http://www.acdlabs.com/download/docs/datasheets/datasheet_irritation.pdf

  65. http://www.acdlabs.com/download/docs/datasheets/datasheet_aquatic_toxicity.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Baderna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baderna, D., Golbamaki, N., Maggioni, S., Vaccari, M., Colacci, A., Benfenati, E. (2012). Toxicological Characterization of Waste-Related Products Using Alternative Methods: Three Case Studies. In: Bilitewski, B., Darbra, R., Barceló, D. (eds) Global Risk-Based Management of Chemical Additives II. The Handbook of Environmental Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2012_176

Download citation

Publish with us

Policies and ethics