Skip to main content

Human Pressure and Its Effects on Water Quality and Biota in the Llobregat River

  • Chapter
  • First Online:
The Llobregat

Abstract

The Llobregat River has severely been impacted by anthropogenic pressures since long time ago. The mid and lower Llobregat basin holds an important concentration of industries, agricultural activities, and urban areas, with high associated water demand and wastewater discharge. Salt mine activities, hydropower water diversion, and flow regime alteration by dams affect both the Llobregat headwaters and middle reaches. These impacts have historically caused the degradation of riparian biological communities and the loss of habitats along the river. The high amount of information available on water quality and biological community composition allows establishing a suitable monitoring program aimed to improve its ecological status. Some measures have been applied to mitigate the impacts, and Llobregat’s biological quality status has progressively improved. The biological communities, mainly diatoms and macroinvertebrates, have recovered even those inhabiting the river mouth, but mostly during wet periods. However, some anthropogenic pressures still remain and Llobregat’s biological status is not completely restored. The high amount of small weirs and hydropower water diversion along the Llobregat and Cardener Rivers, together with flow regime regulation by dams, riparian degradation, and point nutrient discharges (from water sewage plants) and salt debris due to mine activities, result in a poor biological quality status in the mid and lower Llobregat River. Fish fauna is the most altered community, with a high number of nonnative species present. The occurrence of some priority substances and emergent pollutants (e.g., endocrine disruptors, heavy metals, pesticides, flame retardants, drugs, and pharmaceuticals), even at low concentrations, further alter the biological quality. The changes in the biological community structure in the middle part of the river can be detected by using biomarkers, and these should additionally be considered as biological monitoring tools necessary for an integral ecological status diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Llasat MC, Barriendos M, Rodriguez R, Martín-Vide J (1999) Evolución de las inundaciones en Cataluña en los últimos quinientos años. Ingeniería Agua 6(4):353–362

    Google Scholar 

  2. Kuster M, López de Alda MJ, Hernando MD, Petrovic M, Alonso JM, Barceló D (2008) Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat River basin (Barcelona, Spain). J Hydrol 358(1–2):112–123

    Article  CAS  Google Scholar 

  3. Prat N, Rieradevall M (2006) 25-Years of biomonioring in two mediterranean streams (Llobregat and Besòs basins, NE Spain). Limnetica 25(1–2):541–550

    Google Scholar 

  4. Prat N, Puig MA, González G (1983) Predicció i control de la qualitat de les aigües dels rius Besós i Lobregat. II. El poblament faunístic i la seva relació qualitat-aigües. Col. Monografies., vol 9. Diputació de Barcelona, Barcelona, 164 pp

    Google Scholar 

  5. Prat N, Puig MA, González G, Tort MJ, Estrada M (1984) The Llobregat: a Mediterranean river fed by the Pyrenees. In: Whitton BA (ed) Ecology of European rivers. Blackwell, Oxford, pp 527–552

    Google Scholar 

  6. Prat N (1991) Present trends in river studies. Oecol Aquat 10:1–12

    Google Scholar 

  7. Prat N, Rieredevall M, Munne A, Chacon G (1996) La qualitat ecològica de les aigües del Besòs i el Llobregat. Diputació de Barcelona. Servei de Medi Ambient. Col. Estudis de la qualitat ecològica dels rius, vol 1, 102 pp

    Google Scholar 

  8. Prat N, Vila-Escale M, Bonada M, Casanovas-Berenguer R, Punti T, Sola C, Jubany J, Miralles M, Ordeix M, Acosta R, Rios B, Andreu R, Rieradevall M (2005) La qualitat ecològica del Llobregat, el Besòs i el Foix. Informe 2003. Barcelona: Diputació de Barcelona. Servei de Medi Ambient. Col. Estudis de qualitat ecològica dels rius, vol 13. Edición CD-Rom

    Google Scholar 

  9. Muñoz I, Prat N (1994) A comparison between different biological water quality indexes in the Llobregat basin (NE Spain). Verh Int Verein Limnol 1(25):1945–1949

    Google Scholar 

  10. Queralt R (1982) La calidad de las aguas de los ríos. Tecnol Agua 4:49–57

    Google Scholar 

  11. Carafa R, Fanggiano L, Real M, Munné A, Ginebreda A, Guasch H, Flo M, Tirapu L, Carsten von der Ohe P (2011) Water toxicity assessment in Catalan rivers (NE Spain) using Species Sensitivity Distribution and Artificial Neural Networks. Sci Total Environ 409:4269–4279

    Article  CAS  Google Scholar 

  12. Munné A, Tirapu L, Solà C, Olivella L, Vilanova M, Ginebreda A, Prat N (2012). Comparing Chemical and Ecological Status in Catalan rivers. Analysis of river quality status following the Water Framework Directive. In: The handbook of Environmental Chemistry. Emerging and Priority Pollutants in Rivers: Bringing science into River Management Plans. H. Guasch et al. (eds.), 19:243–266

    Google Scholar 

  13. Munné A, Prat N (2009) Use of macroinvertebrate-based multimetric indices for water quality evaluation in Spanish Mediterranean rivers: an intercalibration approach with the IBMWP index. Hydrobiologia 628:203–225

    Article  Google Scholar 

  14. Sabater S, Tornés E, Leira M, Trobajo R (2003) Anàlisi de viabilitat i proposta d’indicadors fitobentònics de la qualitat de l’aigua per als cursos fluvials de Catalunya (Muga, Fluvià, Ter i Daró). Documents tècnics de l’Agència Catalana de l’Aigua, 113 pp

    Google Scholar 

  15. Sostoa A, Caiola N, Casals F (2004) A new IBI (IBICAT) for local application of the E.U. Water Framework Directive. In: Fifth ecohydraulics conference, Madrid, September 2004

    Google Scholar 

  16. Munné A, Solà C, Prat N (2006) Estado ecológico de los ríos en Cataluña. Diagnosis del riesgo de incumplimiento de los objetivos de la Directiva Marco del Agua. Tecnol Agua 273:30–46

    Google Scholar 

  17. Ginebreda A, Muñoz I, López de Alda M, Brix R, López-Doval J, Barceló D (2010) Environmental risk assessment of pharmaceuticals in rivers. Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int 36:153–162

    Article  CAS  Google Scholar 

  18. Ricart M, Guasch H, Barcelo D, Brix R, Conceicao MH, Geiszinger A, de Alda MJL, Lopez-Doval JC, Munoz I, Postigo C, Romani AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. J Hydrol 383:52–61

    Article  CAS  Google Scholar 

  19. Damásio J, Fernández-Sanjuan M, Sánchez-Avila J, Lacorte S, Prat N, Rieradevall M, Soares AMVM, Barata C (2011) Multi-biochemical responses of benthic macroinvertebrate species as a complementary tool to diagnose the cause of community impairment in polluted rivers. Water Res 45:3599–3613

    Article  Google Scholar 

  20. Muñoz I, López-Doval JC, Ricart M, Villagrasa M, Brix R, Geszinger A, Ginebreda A, Guasch H, López de Alda M, Romaní AM, Sabater S, Barceló D (2009) Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat river basin (NE Spain). Environ Toxicol Chem 28:2706

    Article  Google Scholar 

  21. Damasio J, Navarro-Ortega A, Tauler R, Lacorte S, Barcelo D, Soares A, Lopez MA, Riva MC, Barata C (2010) Identifying major pesticides affecting bivalve species exposed to agricultural pollution using multi-biomarker and multivariate methods. Ecotoxicology 19:1084–1094

    Article  CAS  Google Scholar 

  22. ACA – Agència Catalana de l’Aigua (2005) Caracterització de les masses d’aigua i anàlisi del risc d’incompliment dels objectius de la Directiva Marc de l’Aigua (2000/60/CE) a Catalunya. Agència Catalana de l’Aigua. Departament de Medi Ambient i Habitatge de la Generalitat de Catalunya, Octubre 2005, 860 pp

    Google Scholar 

  23. Barata C, Lekumberri I, Vila-Escalé M, Prat N, Porte C (2005) Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregat riven basin (NE Spain). Aquat Toxicol 74:3–19

    Article  CAS  Google Scholar 

  24. ACA – Agència Catalana de l’Aigua (2011) Estat de les Msses d’Aigua a Catalunya. Resultats del Programa de Seguiment i Control (Dades 2007-2010). Departament de Territori i Sostenibilitat, Generalitat de Catalunya, Octubre 2011, 63 pp

    Google Scholar 

  25. Prat N, Munne A (2003) Water use and quality and stream flow in a Mediterranean stream. Water Res 34(15):3876–3881

    Article  Google Scholar 

  26. Boix D, García-Berthou E, Gascón S, Benejam L, Tornés E, Sala J, Benito J, Munné A, Solà C, Sabater S (2010) Response of community structure to sustained drought in Mediterranean rivers. J Hydrol 383:135–146

    Article  Google Scholar 

  27. Benejam L, Angermeier PL, Munné A, García-Berthou E (2010) Assessing effects of water abstraction on fish assemblages in Mediterranean streams. Freshw Biol 55:628–642

    Article  Google Scholar 

  28. Aparicio E, Vargas MJ, Olmo JM, de Sostoa A (2000) Decline of native freshwater fishes in a Mediterranean watershed on the Iberian Peninsula: a quantitative assessment. Environ Biol Fishes 59:11–19

    Article  Google Scholar 

  29. Harrison IJ, Stiassny MLJ (1999) The quiet crisis: a preliminary listing of the freshwater fishes of the World that are extinct or “missing in action”. In: MacPhee (ed) Extinctions in near time. Kluwer Academic/Plenum, New York, pp 271–331

    Google Scholar 

  30. Andreu J, Pino J, Rodríguez-Labajos B, Munné A (2011) Avaluació de l’estat i el risc d’invasió per espècies exòtiques dels ecosistemes aquàtics de Catalunya. Agència Catalana de l’Aigua, Departament de Territori i Sostenibilitat, Generalitat de Catalunya, 97 pp

    Google Scholar 

  31. Bloch H (1999) European water policy facing the new millennium: the Water Framework Directive. In: Assessing the ecological integrity of running waters, Vienna, pp 9–11

    Google Scholar 

  32. Allan IJ, Vranaa B, Greenwooda R, Millsb GA, Knutssonc J, Holmbergd A, Guiguese N, Fouillace AM, Laschif S (2005) Strategic monitoring for the European Water Framework Directive. Trends Anal Chem 25(7):704–715

    Article  Google Scholar 

  33. Coquery M, Morin A, Bécue A, Lepot B (2005) Priority substances of the European Water Framework Directive: analytical challenges in monitoring water quality. Trends Anal Chem 24(2):117–127

    Article  CAS  Google Scholar 

  34. Sandin L, Hering D (2004) Comparing macroinvertebrate indices to detect organic pollution across Europe: a contribution to the EC Water Framework Directive intercalibration. Hydrobiologia 516(1–3):55–68

    Article  CAS  Google Scholar 

  35. Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523

    Article  CAS  Google Scholar 

  36. Kelly MG, Cazaubon A, Coring E, Dell'Uomo A, Ector L, Goldsmith B, Guasch H, Hürlimann J, Jarlman A, Kawecka B (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10(2):215–224

    Article  Google Scholar 

  37. Szoszkiewicz K, Ferreira T, Korte T, Baattrup-Pedersen A, Davy-Bowker J, O’Hare M (2006) European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566(1):211–234

    Article  CAS  Google Scholar 

  38. Pont D, Hugueny B, Rogers C (2007) Development of a fish-based index for the assessment of river health in Europe: the European Fish Index. Fish Manag Ecol 14(6):427–439

    Article  Google Scholar 

  39. Munné A, Prat N (2011) Effects of Mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecol Indic 11:651–662

    Article  Google Scholar 

  40. Margalef R (1955) Organismos indicadores en la Limnología. Instituto Forestal de Inv. Exper., 308 pp

    Google Scholar 

  41. Margalef R (1969) El concepto de polución en limnología y sus indicadores biológicos. Agua 7:105–133

    Google Scholar 

  42. Muñoz I, Prat N (1998) Effects of water abstraction and pollution on macroinvertebrate community in a mediterranean river. Limnetica 12(1):9–16

    Google Scholar 

  43. Jáimez-Cuéllar P, Vivas S, Bonada N, Robles S, Mellado A, Álvarez M, Avilés J, Casas J, Ortega M, Pardo I, Prat N, Rieradevall M, Sáinz-Cantero CE, Sánchez-Ortega A, Suárez ML, Toro M, Vidal-Albarca MR, Zamora-Muñoz C, Alba-Tercedor J (2002) Protocolo GUADALMED (PRECE). Limnetica 21(3–4):187–204

    Google Scholar 

  44. Alba-Tercedor J, Jáimez-Cuéllar P, Álvarez M, Avilés J, Bonada N, Casas J, Mellado A, Ortega M, Pardo I, Prat N, Rieradevall M, Robles S, Sáinz-Cantero CE, Sánchez-Ortega A, Suárez ML, Toro M, Vidal-Albarca MR, Vivas S, Zamora-Muñoz C (2002) Caracterización del estado ecológico de los ríos mediterráneos ibéricos mediante el índice IBMWP (antes BMWP’). Limnetica 21(3–4):175–185

    Google Scholar 

  45. Perrée I, Rieradevall M, Prat N, Martin J, Céspedes R (2010) Cambios en el estado ecológico de tres ríos producidos por el vertido de depuradoras. Tecnol Agua 320:21–29

    Google Scholar 

  46. Prat N, Ward JV (1994) The tamed river. In: Margalef R (ed) Lymnology now. Elsevier Science, London, pp 219–236

    Google Scholar 

  47. European Commission (2003) Common implementation strategy for the Water Framework Directive (2000/60/EC). Working Group REFCOND. Guidance document nº 10. Rivers and lakes – typology, reference conditions and classification systems

    Google Scholar 

  48. Haury J, Peltre MC, Trémolières M, Barbe J, Thiébaut G, Bernez I, Daniel H, Chatenet P, Haan-Archipof G, Muller S (2006) A new method to assess water trophy and organic pollution – the Macrophyte Biological Index for Rivers (IBMR): its application to different types of river and pollution. Macrophytes in aquatic ecosystems: from biology to management. Dev Hydrobiol 190(2):153–158

    Article  Google Scholar 

  49. Buffagni A, Erba S, Cazzola M, Murria-Bligh J, Soszka H, Genomi P (2006) The Star common metrics approach to the WFD intercalibration process: full application for small, lowland rivers in three European countries. Hydrobiologia 566:379–399

    Article  Google Scholar 

  50. Hering D, Johnson R, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw Biol 51(9):1757–1785

    Article  Google Scholar 

  51. Thiébaut G (2006) Aquatic macrophyte approach to assess the impact of disturbances on the diversity of the ecosystem and on river quality. Int Rev Hydrobiol 91(5):483–497

    Article  Google Scholar 

  52. Moreno JL, De las Heras J, Prat N, Rieradevall M (2008) Evaluación del estado trófico de tres cuencas interiores de Cataluña (Foix, Besòs y Llobregat) mediante la vegetación acuática: aplicación de un índice trófico (IVAM-FBL). Limnetica 27(1):107–118

    Google Scholar 

  53. Segurado P, Santos JM, Pont D, Melcher AH, Jalon DG, Hughes RM, Ferreira MT (2011) Estimating species tolerance to human perturbation: expert judgment versus empirical approaches. Ecol Indic 11:1623–1635

    Article  Google Scholar 

  54. Claudi R, Leach JH (eds) (1999) Nonindigenous freshwater organisms: vectors, biology, and impacts. Lewis, Boca Raton, 464 pp

    Google Scholar 

  55. UNE-EN ISO 10301 (1997) Water quality. Determination of highly volatile halogenated hydrocarbons. Gas-chromatographic methods

    Google Scholar 

  56. Lee H, Weng L, Chau AS (1984) Chemical derivatization analysis of pesticides residues. VIII. Analysis of 15 chlorophenols in natural water by in situ acetylation. J Assoc Off Anal Chem 67(4):789–794

    CAS  Google Scholar 

  57. León VM, Llorca-Pórcel J, Álvarez B, Cobollo MA, Muñoz S, Valor I (2006) Analysis of 35 semivolatile compounds in water by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. Part II: method validation. Anal Chim Acta 558:261–266

    Article  Google Scholar 

  58. Barceló D, Petrovic M (2007) Under the analytical spotlight, contaminants emerge: report on the 2nd EMCO Workshop. Emerging contaminants in wastewaters: monitoring tools and treatment technologies. Belgrade (Serbia), 26 and 27 April 2007. Trends Anal Chem 26:647–649

    Article  Google Scholar 

  59. Damasio J, Tauler R, Teixido E, Rieradevall M, Prat N, Riva MC, Soares A, Barataa C (2008) Combined use of Daphnia magna in situ bioassays, biomarkers and biological indices to diagnose and identify environmental pressures on invertebrate communities in two Mediterranean urbanized and industrialized rivers (NE Spain). Aquat Toxicol 87:310–320

    Article  CAS  Google Scholar 

  60. Puertolas L, Damasio J, Barata C, Soares A, Prat N (2011) Evaluation of side-effects of glyphosate mediated control of giant reed (Arundo donax) on the structure and function of a nearby Mediterranean river ecosystem. Environ Res 110:556–564

    Article  Google Scholar 

  61. Prat N, Rieradeval M, Barata C, Munné A (2012) The combined use of metrics of biological quality and biomarkers as a tool to detect the effects of tertiary treated water on macroinvertebrate assemblages in the lower part of a polluted Mediterranean river (Llobregat, NE Spain) (submitted)

    Google Scholar 

  62. Forbes VE, Palmqvist A, Bach L (2006) The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25:272–280

    Article  CAS  Google Scholar 

  63. Damásio JB, Barata C, Munne A, Ginebreda A, Guasch H, Sabater S, Caixach J, Porte C (2007) Comparing the response of biochemical indicators (biomarkers) and biological indices to diagnose the ecological impact of an oil spillage in a Mediterranean river (NE Catalunya, Spain). Chemosphere 66:1206–1216

    Article  Google Scholar 

  64. Mills GA, Greenwood R, Gonzalez C (2007) Environmental monitoring within the Water Framework Directive (WFD). Trends Anal Chem 26:450–453

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Main information on quality status, biological data, and chemical values has been obtained from the Catalan Water Agency through its monitoring program. Additional and useful historical data and biomonitoring results over time (since 1994) have been provided by the FEM research group (Department of Ecology, University of Barcelona). Historical surveillance data since 1994 were possible due to financial support provided by the Diputació de Barcelona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Munné .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munné, A., Solà, C., Tirapu, L., Barata, C., Rieradevall, M., Prat, N. (2012). Human Pressure and Its Effects on Water Quality and Biota in the Llobregat River. In: Sabater, S., Ginebreda, A., Barceló, D. (eds) The Llobregat. The Handbook of Environmental Chemistry, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2012_149

Download citation

Publish with us

Policies and ethics