Skip to main content

Raw and Renewable Polymers

  • Chapter
  • First Online:
Polymers - Opportunities and Risks II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 12))

Abstract

Biopolymers from renewable resources have attracted much attention in recent years. Increasing environmental consciousness and demands of legislative authorities have given significant opportunities for improved materials from renewable resources with enhanced support for global sustainability. High-performance plastics are the outcome of continuous research over the last few decades. The real challenge of renewable polymers lies in finding applications, which will result in mass production, and price reduction. This can be attained by improving the end performance of the biodegradable polymers. The structure, properties, and applications of polymers derived from natural resources are discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNSL:

Cashew nut shell liquid

DNA:

Deoxy ribonucleic acid

DPNR:

Deprotenized natural rubber

FRP:

Fiber reinforced plastic

NR:

Natural rubber

OENR:

Oil extended natural rubber

PAN:

Polyacrylo-nitrile

PMMA:

Polymethyl methacrylate

PRI:

Plasticity retention index

PS:

Polystyrene

PVA:

Polyvinyl alcohol

RNA:

Ribo nucleic acid

RSS:

Ribbed smoked sheet

SIR:

Standard Indonesian rubber

SMR:

Standard Malaysian rubber

SSR:

Standard Singapore rubber

TPNR:

Thermoplastic natural rubber

TSR:

Technically specified rubber

References

  1. Norbert M Bikales, Herman F Mark, Norman G Gaylord (1968) vol 9, Encyclopaedia of polymer science and technology: plastics, resins, rubbers, fibres, Wiley, New York, p 275

    Google Scholar 

  2. Ver Strate G, Lohse DJ (1994) In: Mark JE, Erman B, Eirich FR (eds) Science and technology of rubber. Academic, San Diego, pp 95–188

    Google Scholar 

  3. Barlow FW (1993) Rubber compounding, principles, materials and techniques, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  4. Gandini A (2008) Macromolecules 41(24):9491–9504

    Google Scholar 

  5. Eirich FR (ed) (1978) Science and technology of rubber. Academic, NY

    Google Scholar 

  6. Brydson JA (ed) (1967) Developments with natural rubber. Maclaren, London

    Google Scholar 

  7. Brown RP (1986) Physical testing of rubber, 2nd edn. Elsevier, London

    Google Scholar 

  8. Grossman RF (1997) The mixing of rubber. Chapman and Hall, London

    Book  Google Scholar 

  9. Sethuraj MR, Mathew NM (1992) Natural rubber: biology, cultivation and technology in crop science. Elsevier, Amsterdam

    Google Scholar 

  10. Crawford RJ (1985) Plastics and rubbers, engineering design and applications. Mechanical Engineering, London

    Google Scholar 

  11. Annual Book of ASTM Standards (1989) vol 09.01, American Society for Testing and Materials, Philadelphia, PA, p 529

    Google Scholar 

  12. Ashaletha R, Kumaran MG, Thomas S (1999) Eur Polym J 35:253

    Article  Google Scholar 

  13. Varughese KT, De PP, Sanyal SK (1990) Die Angewandte Macromoleculare Chemie 182:73

    Article  CAS  Google Scholar 

  14. Ashaletha R, Kumaran MG, Thomas S (1995) Polym Plast Technol Eng 34:633

    Article  Google Scholar 

  15. Fisher WK (1973) Rubber World 167:49

    Google Scholar 

  16. Oommen Z, Thomas S (1993) Polym Bull 31:623

    Article  CAS  Google Scholar 

  17. Ashaletha R, Kumaran MG, Thomas S (1995) Rubber Chem Technol 68:67

    Google Scholar 

  18. Rogers JW (1981) Rubber World 27:183

    Google Scholar 

  19. Goettler LA, Lambright AJ, Leib RI, Diamouro PJ (1981) Rubber Chem Technol 54:277

    Article  CAS  Google Scholar 

  20. Derringer DC (1971) Rubber World 1651:4521

    Google Scholar 

  21. Coran AY, Boustany K, Ahmed P (1974) Rubber Chem Technol 4:396

    Article  Google Scholar 

  22. Murthy VM, De SK (1982) Rubber Chem Technol 55:287

    Article  Google Scholar 

  23. Setua DK, De SK (1983) Rubber Chem Technol 56:808

    Article  CAS  Google Scholar 

  24. Varghese S, Kuriakose B, Thomas S (1994) J Appl Polym Sci 53:1051

    Article  CAS  Google Scholar 

  25. Geethamma VG, Mathew KT, Laksmi Narayanan R, Thomas S (1998) Polymer 39:6

    Article  Google Scholar 

  26. Yung RA, Rowell RM (1986) Cellulose. Wiley, New York

    Google Scholar 

  27. David N, Hon S, Shiraishi N (1991) Wood and cellulose chemistry. Marcel Dekker, New York

    Google Scholar 

  28. Preston RD (1974) The physical biology of plant cell wall. Chapman and Hall, London

    Google Scholar 

  29. Whistler RL, Richards EL (1970) The carbohydrates, vol 2A. Academic, New York

    Google Scholar 

  30. Gassan J, Chate A, Bledzki AK (2001) J Mater Sci 36:3715

    Article  CAS  Google Scholar 

  31. Frey-Wyssling A (1954) The fine structure of cell microfibrils. Science 119:80

    Article  CAS  Google Scholar 

  32. Krassig HA (1992) Cellulose. Gordon and Breach, Yverdon, Switzerland

    Google Scholar 

  33. Dufresne A (1998) Recent research developments in macromolecular research, vol 3. Old City Publishing, Philadelphia, p 455

    Google Scholar 

  34. Hermans PH, Weidinger W (1948) J Appl Phys 19:491

    Article  CAS  Google Scholar 

  35. Marchessault RH, Sarko A (1976) Adv Carbohydr Chem 22:421

    Article  Google Scholar 

  36. Satyanarayana KG, Kulkarni AG, Rohatgi PK (1981) J Sci Ind Res 40:222

    CAS  Google Scholar 

  37. Satyanarayana KG, Kulkarni AG, Rohatgi PK (1983) J Sci Ind Res 42:425

    Google Scholar 

  38. Sreekala MS, Kumaran MG, Joseph S, Jacob M, Thomas S (2000) Appl Compos Mater 7:295

    Article  CAS  Google Scholar 

  39. Kumar RP, Nair KCM, Thomas S, Schitt SC, Ramamoorthy K (2000) Compos Sci Technol 60:1737

    Article  CAS  Google Scholar 

  40. George J, Bhagawan SS, Thomas S (1998) Compos Sci Technol 58:1471

    Article  CAS  Google Scholar 

  41. George J, Bhagawan SS, Thomas S (1998) Compos Interfaces 5:201

    Article  CAS  Google Scholar 

  42. Pothen LA, Zimmermman Y, Thomas S, Spange S (2000) J Polym Sci B Polym Phys 38:2546

    Article  Google Scholar 

  43. Bose PK, Sankaranarayanan Y, Sen Gupta SC (1963) Chemistry of lac. Indian Lac Research Institute, Rachi, India

    Google Scholar 

  44. Hicks E (1961) Shellac. Chemical Publishing, New York

    Google Scholar 

  45. Herman Mark (1988) vol 14, 2nd edn. Encyclopaedia of polymer science and engineering Wiley, New York, p 451

    Google Scholar 

  46. Maiti S, Rahman MDS (1986) J Macromol Sci Rev Macomol Chem Phys C26:441

    Article  Google Scholar 

  47. Christie WW, Gunstone FD, Prentice HG, Sen Gupta SC (1964) J Chem Soc, suppl1:5833

    Google Scholar 

  48. Ray D, Sengupta SP (2006) Indus Eng Chem Res 45(8):2722–2727

    Article  CAS  Google Scholar 

  49. Ruiz-Herrera J (1978) The distribution and quantitative importance of chitin in fungi. In: Muzzarelli RAA, Pariser ER (eds) Proceedings of the first international conference of chitin/chitosan. MIT Sea Grant Report MITSG 78–87, Boston, 11–21

    Google Scholar 

  50. Goosen MFA (1997) Applications of chitin and chitosan. Technomic Publishers, NY

    Google Scholar 

  51. Wood WA, Kellogg ST (eds) (1988) Biomass part B, lignin, pectin and chitin. Academic, San Diego

    Google Scholar 

  52. Min BG, Kim CW (2002) J Appl Polym Sci 84:13

    Google Scholar 

  53. Shin MS, Kim SI, Kim IY (2002) J Appl Polym Sci 84:13

    Article  Google Scholar 

  54. Chen RH, Liu CS (2002) J Appl Polym Sci 84:193

    Article  CAS  Google Scholar 

  55. Fernandes SCM, Gandini A, Pascoat N, Unpublished results

    Google Scholar 

  56. Li Z, Liu X, Zhuang X, Guan Y, Yao K (2002) J Appl Polym Sci 84:2049

    Article  CAS  Google Scholar 

  57. Lehninger AL (1982) Principles of biochemistry. Worth Publishers, New York, p 127

    Google Scholar 

  58. Philips J, Bluestein BR (1965) (to Witco Chemical corporation). US Patent 2,504:400, 14 Sept 1965

    Google Scholar 

  59. Merrifield RB (1963) J Am Chem Soc 85:2149

    Article  CAS  Google Scholar 

  60. Freifelder D (1978) Recombinent DNA. Freeman WH, San Francisco

    Google Scholar 

  61. Brydson JA (1999) Plastic materials, 7th edn. Butterworth, London

    Google Scholar 

  62. Pillai CKS, Manjula S (1987) Polym News 12:359

    Google Scholar 

  63. Bernfeld P (ed) (1963) Biogenesis of natural compounds. Pergamon, New York

    Google Scholar 

  64. Mac Gregor EA, Greenwood CT (1988) Polymers in nature. Wiley, New York

    Google Scholar 

  65. Carlson KD, Sohns VE, Perkins RB, Huffman EL (1977) Ind Eng Chem Prod Res Dev 16:95

    Article  CAS  Google Scholar 

  66. Pranger L, Tannenbaum R (2008) Macromolecules 41:8682–8687

    Article  CAS  Google Scholar 

  67. Rudolph H, Ger Offen, 3002762 (1981) Chem Abstr 95:151439n

    Google Scholar 

  68. Trindade WG, Hoareau W, Megiatto JD, Razera AT, Castellan A, Frollini E (2005) Biomacromolecules 6:2485–2496

    Article  CAS  Google Scholar 

  69. Klein J, Kulicke WE (1981) Polymer pre-prints, ACS Symposium Series. ACS, Washington, DC

    Google Scholar 

  70. Lipinski ES (1981) Science 212:1465

    Article  Google Scholar 

  71. Sinclair RG (1977) US Patents 4,045,418 and 4,057,537

    Google Scholar 

  72. Anonymous (2007) Biofuels Bioprod Bioref 1:8. http://www.uhde-inventa-fisher.com

  73. Tsuji H (1995) Polymer 36:2709

    Article  CAS  Google Scholar 

  74. Kaspercejki JE (1995) Macromolecules 28:3937

    Article  Google Scholar 

  75. Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on L-polylactide and jute fibres. Compos Sci Technol 63(9):1287–1296

    Article  CAS  Google Scholar 

  76. Sébastien F, Stéphane G, Copinet A, Coma V (2006) Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydr Polym 65(2):185–193

    Article  Google Scholar 

  77. Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101:300–310

    Article  CAS  Google Scholar 

  78. Oksman K, SkrifvarsM SJ-F (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  79. Shanks KA, Hodzic A, Ridderhof D (2006) Composites of poly(lactic acid) with flax fibers modified by interstitial polymerization. J Appl Polym Sci 101:3620–3629

    Article  CAS  Google Scholar 

  80. Lee S-H, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites A 37:80–91

    Article  CAS  Google Scholar 

  81. Ohkita T, Lee S-H (2006) Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. J Appl Polym Sci 100(4):3009–3017

    Article  CAS  Google Scholar 

  82. Thyman JHP (1979) Chem Soc Rev 8:499

    Article  Google Scholar 

  83. Wilson RJ (1975) The market for cashew kernel and cashew shell liquids. Report no G91, Topical products Institute, London

    Google Scholar 

  84. Pillai CKS (1993) Prop Plast, Nov Issue

    Google Scholar 

  85. Knop W, Scheib A (1979) Chemistry and applications of phenolic resins-polymer properties and applications. Springer, Berlin

    Google Scholar 

  86. Santha Kumar SV, Dawson CR (1954) J Am Chem Soc 76:5070

    Article  Google Scholar 

  87. Thyman JHP, Mathews AJ (1977) Chem Ind (London):740

    Google Scholar 

  88. Thyman JHP (1975) J Chromatogr 111:285

    Article  Google Scholar 

  89. Iwahashi S (1957) Japanese Patent 6142

    Google Scholar 

  90. Ohashi K (1959) US Patent 29197

    Google Scholar 

  91. Menon ARR, Sudha JD, Pillai CKS, Masthew AG (1985) J Sci Ind Res 44:324

    CAS  Google Scholar 

  92. Ghatge ND, Malder NN (1981) Rubber Rep 6:139

    Google Scholar 

  93. Thyman JHP, Tychopoulos V (1988) J Planar Chromatogr 1:227

    Google Scholar 

  94. Gedam PH, Sampathkumaran PS, Sivasamban MA (1972) Indian J Chem 10:338

    Google Scholar 

  95. Paul VJ, Yeddanappalli LM (1956) J Am Chem Soc 78:5675

    Article  CAS  Google Scholar 

  96. Murthy BGK, Sivasamban MA (1979) Cashew Causerie 1:8

    Google Scholar 

  97. Murthy BGK, Aggarwal JS (1972) J Colour Sci 11:2

    CAS  Google Scholar 

  98. Anand LC (1978) Prop Plast, June

    Google Scholar 

  99. Orazio A, Franco SZ, Franco P, Alexandro S (1970) Chem Ind Milan 61:718

    Google Scholar 

  100. Aggarwal JS (1976) J Colour Sci 15:14

    Google Scholar 

  101. Sudha JD, Pavithran C, Pillai CKS (1989) Res Ind 34:139

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Joseph, S., John, M.J., Pothen, L.A., Thomas, S. (2009). Raw and Renewable Polymers. In: Eyerer, P., Weller, M., Hübner, C. (eds) Polymers - Opportunities and Risks II. The Handbook of Environmental Chemistry(), vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_21

Download citation

Publish with us

Policies and ethics