Skip to main content

Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Enhance Angiogenesis Through Upregulation of the VWF and Flk1 Genes in Endothelial Cells

  • Conference paper
  • First Online:
Advances in Mesenchymal Stem Cells and Tissue Engineering (ICRRM 2023)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANG1:

Angiopoietin 1

ANG2:

Angiopoietin 2

CD:

Cluster of differentiation

GFP:

Green fluorescent protein

HGF:

Hepatic growth factor

hUCMSC:

Human umbilical cord mesenchymal stem cells

HUVEC:

Human umbilical vein endothelial cells

PBS:

Phosphate buffer saline

PIGF:

Placental growth factor

TGF-β:

Transforming growth factor beta

VEGF:

Vascular endothelial growth factor

References

  • Ahmed, L., & Al-Massri, K. (2022). New approaches for enhancement of the efficacy of mesenchymal stem cell-derived exosomes in cardiovascular diseases. Tissue Engineering and Regenerative Medicine, 19(6), 1129–1146.

    PubMed  PubMed Central  Google Scholar 

  • Akan, E., Cetinkaya, B., Kipmen-Korgun, D., Ozmen, A., Koksoy, S., MendilcioÄŸlu, Ä°., et al. (2021). Effects of amnion derived mesenchymal stem cells on fibrosis in a 5/6 nephrectomy model in rats. Biotechnic & Histochemistry, 96(8), 594–607.

    CAS  Google Scholar 

  • Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N., et al. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301–312.

    CAS  PubMed  Google Scholar 

  • Assis, A. C., Carvalho, J. L., Jacoby, B. A., Ferreira, R. L., Castanheira, P., Diniz, S. O., et al. (2010). Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplantation, 19(2), 219–230.

    PubMed  Google Scholar 

  • Cao, Y., Ji, C., & Lu, L. (2020). Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. Annals of Translational Medicine, 8(8), 562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    CAS  PubMed  Google Scholar 

  • Eggenhofer, E., Benseler, V., Kroemer, A., Popp, F. C., Geissler, E. K., Schlitt, H. J., et al. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 3, 297.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, L., Xun, C., Li, W., Jin, S., Liu, Z., Zhuo, Y., et al. (2021). Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612. Journal of Nanobiotechnology, 19(1), 380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, M., Yu, B., Wang, J., Wang, Y., Liu, M., Paul, C., et al. (2017). Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget, 8(28), 45200–45212.

    PubMed  PubMed Central  Google Scholar 

  • Han, Y., Ren, J., Bai, Y., Pei, X., & Han, Y. (2019). Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. The International Journal of Biochemistry & Cell Biology, 109, 59–68.

    CAS  Google Scholar 

  • Helwa, I., Cai, J., Drewry, M. D., Zimmerman, A., Dinkins, M. B., Khaled, M. L., et al. (2017). A Comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One, 12(1), e0170628.

    PubMed  PubMed Central  Google Scholar 

  • Heo, J. S., & Kim, S. (2022). Human adipose mesenchymal stem cells modulate inflammation and angiogenesis through exosomes. Scientific Reports, 12(1), 2776.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C., Luo, W., Wang, Q., Ye, Y., Fan, J., Lin, L., et al. (2021). Human mesenchymal stem cells promote ischemic repairment and angiogenesis of diabetic foot through exosome miRNA-21-5p. Stem Cell Research, 52, 102235.

    CAS  PubMed  Google Scholar 

  • Ji, S., Xin, H., Li, Y., & Su, E. J. (2018). FMS-like tyrosine kinase 1 (FLT1) is a key regulator of fetoplacental endothelial cell migration and angiogenesis. Placenta, 70, 7–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komaki, M., Numata, Y., Morioka, C., Honda, I., Tooi, M., Yokoyama, N., et al. (2017). Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Research & Therapy, 8(1), 219.

    Google Scholar 

  • Kong, X., Bu, J., Chen, J., Ni, B., Fu, B., Zhou, F., et al. (2021). PIGF and Flt-1 on the surface of macrophages induces the production of TGF-β1 by polarized tumor-associated macrophages to promote lung cancer angiogenesis. European Journal of Pharmacology, 912, 174550.

    CAS  PubMed  Google Scholar 

  • Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S., Choo, A., Chen, T. S., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–222.

    CAS  PubMed  Google Scholar 

  • Lee, H. K., Chauhan, S. K., Kay, E., & Dana, R. (2011). Flt-1 regulates vascular endothelial cell migration via a protein tyrosine kinase-7-dependent pathway. Blood, 117(21), 5762–5771.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. K., Park, S. R., Jung, B. K., Jeon, Y. K., Lee, Y. S., Kim, M. K., et al. (2013). Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One, 8(12), e84256.

    PubMed  PubMed Central  Google Scholar 

  • Li, M., Zeringer, E., Barta, T., Schageman, J., Cheng, A., & Vlassov, A. V. (2014). Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 369(1652), 20130502.

    PubMed  PubMed Central  Google Scholar 

  • Li, L., Cheng, D., An, X., Liao, G., Zhong, L., Liu, J., et al. (2021). Mesenchymal stem cells transplantation attenuates hyperuricemic nephropathy in rats. International Immunopharmacology, 99, 108000.

    CAS  PubMed  Google Scholar 

  • Liang, W., Han, B., Hai, Y., Sun, D., & Yin, P. (2021). Mechanism of action of mesenchymal stem cell-derived exosomes in the intervertebral disc degeneration treatment and bone repair and regeneration. Frontiers in Cell and Developmental Biology, 9, 833840.

    PubMed  Google Scholar 

  • Lötvall, J., Hill, A. F., Hochberg, F., Buzás, E. I., Di Vizio, D., Gardiner, C., et al. (2014). Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 3, 26913.

    PubMed  Google Scholar 

  • Masterson, C. H., Tabuchi, A., Hogan, G., Fitzpatrick, G., Kerrigan, S. W., Jerkic, M., et al. (2021). Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Scientific Reports, 11(1), 5265.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mojzisch, A., & Brehm, M. A. (2021). The manifold cellular functions of von Willebrand factor. Cell, 10(9), 2351.

    CAS  Google Scholar 

  • Panda, B., Sharma, Y., Gupta, S., & Mohanty, S. (2021). Mesenchymal stem cell-derived exosomes as an emerging paradigm for regenerative therapy and Nano-medicine: A comprehensive review. Life (Basel, Switzerland), 11(8), 784.

    CAS  PubMed  Google Scholar 

  • Qiu, X., Liu, J., Zheng, C., Su, Y., Bao, L., Zhu, B., et al. (2020). Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Proliferation, 53(8), e12830.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Randi, A. M., & Laffan, M. A. (2017). Von Willebrand factor and angiogenesis: Basic and applied issues. Journal of Thrombosis and Haemostasis, 15(1), 13–20.

    CAS  PubMed  Google Scholar 

  • Ratajczak, M. Z., Kucia, M., Jadczyk, T., Greco, N. J., Wojakowski, W., Tendera, M., et al. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia, 26(6), 1166–1173.

    CAS  PubMed  Google Scholar 

  • Rim, K. T., & Kim, S. J. (2016). Quantitative analysis of exosomes from murine lung cancer cells by flow cytometry. Journal of Cancer Prevention, 21(3), 194–200.

    PubMed  PubMed Central  Google Scholar 

  • Saito, Y. (2021). The role of the PlGF/Flt-1 signaling pathway in the cardiorenal connection. Journal of Molecular and Cellular Cardiology, 151, 106–112.

    CAS  PubMed  Google Scholar 

  • Shabbir, A., Cox, A., Rodriguez-Menocal, L., Salgado, M., & Van Badiavas, E. (2015). Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells and Development, 24(14), 1635–1647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya, M. (2006). Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): A dual regulator for angiogenesis. Angiogenesis, 9(4), 225–230; discussion 31.

    CAS  PubMed  Google Scholar 

  • Starke, R. D., Ferraro, F., Paschalaki, K. E., Dryden, N. H., McKinnon, T. A., Sutton, R. E., et al. (2011). Endothelial von Willebrand factor regulates angiogenesis. Blood, 117(3), 1071–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Ju, Y., & Fang, B. (2022). Exosomes from human adipose-derived mesenchymal stromal/stem cells accelerate angiogenesis in wound healing: Implication of the EGR-1/lncRNA-SENCR/DKC1/VEGF-A axis. Human Cell, 35(5), 1375–1390.

    CAS  PubMed  Google Scholar 

  • Takeuchi, R., Katagiri, W., Endo, S., & Kobayashi, T. (2019). Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS One, 14(11), e0225472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Théry, C., & Witwer, K. W. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750.

    PubMed  PubMed Central  Google Scholar 

  • Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.

    CAS  PubMed  Google Scholar 

  • Webber, J., & Clayton, A. (2013). How pure are your vesicles? Journal of Extracellular Vesicles, 2. https://doi.org/10.3402/jev.v2i0.19861

  • Wu, M. C., & Meng, Q. H. (2021). Current understanding of mesenchymal stem cells in liver diseases. World Journal of Stem Cells, 13(9), 1349–1359.

    PubMed  PubMed Central  Google Scholar 

  • Xue, C., Li, X., Ba, L., Zhang, M., Yang, Y., Gao, Y., et al. (2021). MSC-derived exosomes can enhance the angiogenesis of human brain MECs and show therapeutic potential in a mouse model of Parkinson’s disease. Aging and Disease, 12(5), 1211–1222.

    PubMed  PubMed Central  Google Scholar 

  • Yan, C., Xv, Y., Lin, Z., Endo, Y., Xue, H., Hu, Y., et al. (2022). Human umbilical cord mesenchymal stem cell-derived exosomes accelerate diabetic wound healing via ameliorating oxidative stress and promoting angiogenesis. Frontiers in Bioengineering and Biotechnology, 10, 829868.

    PubMed  PubMed Central  Google Scholar 

  • Yin, K., Wang, S., & Zhao, R. C. (2019). Exosomes from mesenchymal stem/stromal cells: A new therapeutic paradigm. Biomarker Research, 7(1), 8.

    PubMed  PubMed Central  Google Scholar 

  • Yu, M., Liu, W., Li, J., Lu, J., Lu, H., Jia, W., et al. (2020). Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Research & Therapy, 11(1), 350.

    CAS  Google Scholar 

  • Zhang, Y., Hao, Z., Wang, P., Xia, Y., Wu, J., Xia, D., et al. (2019). Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Proliferation, 52(2), e12570.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank SCI Biobank for providing mesenchymal stem cells used in this study.

Author’s Contributions

All authors equally contributed in this work. All authors read and approved the final version of the manuscript for submission.

Availability of Data and Materials

Data and materials used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Funding

This research is funded by Vietnam National University, Ho Chi Minh City (VNU-HCM) under grant number 562-2020-18-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Bich Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huynh, P.D., Van Pham, P., Vu, N.B. (2023). Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Enhance Angiogenesis Through Upregulation of the VWF and Flk1 Genes in Endothelial Cells. In: Pham, P.V. (eds) Advances in Mesenchymal Stem Cells and Tissue Engineering. ICRRM 2023. Advances in Experimental Medicine and Biology(). Springer, Cham. https://doi.org/10.1007/5584_2023_768

Download citation

Publish with us

Policies and ethics