Skip to main content

Therapeutic Perspectives for the Clinical Application of Umbilical Cord Hematopoietic and Mesenchymal Stem Cells: Overcoming Complications Arising After Allogeneic Hematopoietic Stem Cell Transplantation

Part of the Advances in Experimental Medicine and Biology book series (CBTMED,volume 1409)

Abstract

This review focuses on the therapeutic features of umbilical cord blood (UCB) cells as a source for allogeneic hematopoietic stem cell transplantation (aHSCT) in adult and child populations to treat malignant and nonmalignant hematologic diseases, genetic disorders, or pathologies of the immune system, when standard treatment (e.g., chemotherapy) is not effective or clinically contraindicated. In this article, we summarize the immunological properties and the advantages and disadvantages of using UCB stem cells and discuss a variety of treatment outcomes using different sources of stem cells from different donors both in adults and pediatric population. We also highlight the critical properties (total nucleated cell dose depending on HLA compatibility) of UCB cells that reach better survival rates, reveal the advantages of double versus single cord blood unit transplantation, and present recommendations from the most recent studies. Moreover, we summarize the mechanism of action and potential benefit of mesenchymal umbilical cord cells and indicate the most common posttransplantation complications.

Keywords

  • Hematologic diseases
  • Hematopoietic stem cell
  • Mesenchymal stem cell
  • Stem cell transplantation
  • Umbilical cord

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/5584_2022_726
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-28424-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1

Abbreviations

ABMI:

Autologous bone marrow cell infusion

aGvHD:

Acute graft-versus-host disease

aHSCT:

Allogeneic hematopoietic stem cell transplantation

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

ATG:

Anti-thymoglobulin

BM:

Bone marrow

BMMSC:

Bone marrow mesenchymal stem cells

BMT:

Bone marrow transplantation

CAR:

Chimeric antigen receptor

cGvHD:

Chronic GvHD

CMV:

Cytomegalovirus

DCs:

Dendritic cells

DFS:

Disease-free survival

DL-1:

Delta-like ligand 1

DLI:

Donor lymphocytes infusion

dUCBT:

Double UCBT

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GVHD:

Graft-versus-host disease

GVL:

Graft versus leukemia

HLA:

Human leukocyte antigen

HSC:

Hematopoietic stem cells

IL-3:

Interleukin-3

IPSC:

Induced progenitor cells

LC:

Liver cirrhosis

LFS:

Leukemia-free survival

MSC:

Mesenchymal stem cells

MSD:

Matched sibling donor

Mtx:

Methotrexate

MUD:

Matched unrelated donor

NF-kB:

Nuclear factor kappa B

PB:

Peripheral blood

PBSC:

Peripheral blood stem cells

PGE2:

Prostaglandin E2

SC:

Stem cells

SCID:

Severe combined immunodeficient mice

SR-1:

Stem Regenin-1

sUCBT:

Single UCB

TNC:

Total nucleated cells

TRM:

Transplant related mortality

UC:

Umbilical cord

UCB:

Umbilical cord blood

UCBT:

Umbilical cord blood transplantation

UM171:

HSC agonist pyrimido-indole derivative

VST:

Virus-specific T cells

Bibliography

  • Abdulrazzak H, Moschidou D, Jones G, Guillot PV (2010) Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J R Soc Interface 7(Suppl 6):S689–S706. https://doi.org/10.1098/rsif.2010.0347.focus

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Admiraal R et al (2016a) Leukemia-free survival in myeloid leukemia, but not in lymphoid leukemia, is predicted by early CD4+ reconstitution following unrelated cord blood transplantation in children: a multicenter retrospective cohort analysis. Bone Marrow Transplant 51:1376–1378

    CrossRef  CAS  PubMed  Google Scholar 

  • Admiraal R et al (2016b) Excellent T-cell reconstitution and survival depend on low ATG exposure after pediatric cord blood transplantation. Blood 128:2734–2741

    CrossRef  CAS  PubMed  Google Scholar 

  • Algeri M, Gaspari S, Locatelli F (2020) Cord blood transplantation for acute leukemia. Expert Opin Biol Ther 20:1223–1236

    CrossRef  PubMed  Google Scholar 

  • Anand S et al (2017) Transplantation of ex vivo expanded umbilical cord blood (NiCord) decreases early infection and hospitalization. Biol Blood Marrow Transplant 23:1151–1157

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Anasetti C et al (2012) Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med 367:1487–1496

    CrossRef  CAS  PubMed  Google Scholar 

  • Arno A et al (2011) Stem cell therapy: a new treatment for burns? Pharmaceuticals (Basel) 4:1355–1380

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Awaya N, Rupert K, Bryant E, Torok-Storb B (2002) Failure of adult marrow-derived stem cells to generate marrow stroma after successful hematopoietic stem cell transplantation. Exp Hematol 30:937–942

    CrossRef  PubMed  Google Scholar 

  • Ball LM et al (2007) Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110:2764–2767

    CrossRef  CAS  PubMed  Google Scholar 

  • Ballen KK, Gluckman E, Broxmeyer HE (2013) Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122:491–498

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Balligand L et al (2019) Single-unit versus double-unit umbilical cord blood transplantation in children and young adults with residual leukemic disease. Biol Blood Marrow Transplant 25:734–742

    CrossRef  PubMed  Google Scholar 

  • Barker JN et al (2001) Survival after transplantation of unrelated donor umbilical cord blood is comparable to that of human leukocyte antigen-matched unrelated donor bone marrow: results of a matched-pair analysis. Blood 97:2957–2961

    CrossRef  CAS  PubMed  Google Scholar 

  • Barker JN et al (2010) Availability of cord blood extends allogeneic hematopoietic stem cell transplant access to racial and ethnic minorities. Biol Blood Marrow Transplant 16:1541–1548

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Baron F et al (2017) Single- or double-unit UCBT following RIC in adults with AL: a report from Eurocord, the ALWP and the CTIWP of the EBMT. J Hematol Oncol 10(1):128. Full Text. https://jhoonline.biomedcentral.com/articles/10.1186/s13045-017-0497-9

  • Beksac M (2016) Is there any reason to prefer cord blood instead of adult donors for hematopoietic stem cell transplants? Front Med 2:95

    CrossRef  Google Scholar 

  • Berglund S, Magalhaes I, Gaballa A, Vanherberghen B, Uhlin M (2017) Advances in umbilical cord blood cell therapy: the present and the future. Expert Opin Biol Ther 17:691–699

    CrossRef  PubMed  Google Scholar 

  • Beziat V et al (2009) Fully functional NK cells after unrelated cord blood transplantation. Leukemia 23:721–728

    CrossRef  CAS  PubMed  Google Scholar 

  • Brunstein CG et al (2009) Intra-BM injection to enhance engraftment after myeloablative umbilical cord blood transplantation with two partially HLA-matched units. Bone Marrow Transplant 43:935–940

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunstein CG et al (2010) Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood. Blood 116:4693–4699

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Campagnoli C et al (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402

    CrossRef  CAS  PubMed  Google Scholar 

  • Chao Y-H et al (2011) Cotransplantation of umbilical cord MSCs to enhance engraftment of hematopoietic stem cells in patients with severe aplastic anemia. Bone Marrow Transplant 46:1391–1392

    CrossRef  PubMed  Google Scholar 

  • Cheng K et al (2013) Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury. Exp Cell Res 319:2266–2274

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen Y, Nagler A (2004) Umbilical cord blood transplantation – how, when and for whom? Blood Rev 18:167–179

    CrossRef  PubMed  Google Scholar 

  • Cohen S et al (2020) Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study. Lancet Haematol 7:e134–e145

    CrossRef  PubMed  Google Scholar 

  • Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826

    CrossRef  CAS  PubMed  Google Scholar 

  • Cutler C et al (2013) Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122:3074–3081

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlberg A, Milano F (2017) Cord blood transplantation: rewind to fast forward. Bone Marrow Transplant 52:799–802

    CrossRef  CAS  PubMed  Google Scholar 

  • Dalle JH et al (2004) Results of an unrelated transplant search strategy using partially HLA-mismatched cord blood as an immediate alternative to HLA-matched bone marrow. Bone Marrow Transplant 33:605–611

    CrossRef  CAS  PubMed  Google Scholar 

  • Dave H et al (2017) Toward a rapid production of multivirus-specific T cells targeting BKV, adenovirus, CMV, and EBV from umbilical cord blood. Mol Ther Methods Clin Dev 5:13–21

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • de Koning C, Admiraal R, Nierkens S, Boelens JJ (2017) Immune reconstitution and outcomes after conditioning with anti-thymocyte-globulin in unrelated cord blood transplantation; the good, the bad, and the ugly. Stem Cell Investig 4:38

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • de Lima M et al (2008) Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant 41:771–778

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • de Lima M et al (2012) Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 367:2305–2315

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    CrossRef  CAS  PubMed  Google Scholar 

  • Delaney M, Ballen KK (2010) The role of HLA in umbilical cord blood transplantation. Best Pract Res Clin Haematol. PMID: 20837329 Review. https://ur.booksc.eu/book/16595378/b31541

  • Delaney C et al (2010) Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 16:232–236

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Delayed umbilical cord clamping after birth (2020) https://www.acog.org/en/clinical/clinical-guidance/committee-opinion/articles/2020/12/delayed-umbilical-cord-clamping-after-birth

  • Dessels C, Alessandrini M, Pepper MS (2018) Factors influencing the umbilical cord blood stem cell industry: an evolving treatment landscape. Stem Cells Transl Med 7:643–650

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Deuse T et al (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 20:655–667

    CrossRef  PubMed  Google Scholar 

  • Divya MS et al (2012) Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther 3:57

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    CrossRef  CAS  PubMed  Google Scholar 

  • Eapen M et al (2007) Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 369:1947–1954

    CrossRef  PubMed  Google Scholar 

  • Eapen M et al (2011) Effect of donor-recipient HLA matching at HLA A, B, C, and DRB1 on outcomes after umbilical-cord blood transplantation for leukaemia and myelodysplastic syndrome: a retrospective analysis. Lancet Oncol 12:1214–1221

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Eapen M et al (2017) Allele-level HLA matching for umbilical cord blood transplantation for non-malignant diseases in children: a retrospective analysis. Lancet Haematol 4:e325–e333

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Edinger M et al (2003) CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9:1144–1150

    CrossRef  CAS  PubMed  Google Scholar 

  • Expansion of human cord blood hematopoietic stem cells for transplantation (2010) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2962561/

  • Farag SS et al (2013) In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev 22:1007–1015

    CrossRef  CAS  PubMed  Google Scholar 

  • Frassoni F et al (2010) The intra-bone marrow injection of cord blood cells extends the possibility of transplantation to the majority of patients with malignant hematopoietic diseases. Best Pract Res Clin Haematol 23:237–244

    CrossRef  PubMed  Google Scholar 

  • Gabelli M, Veys P, Chiesa R (2020) Current status of umbilical cord blood transplantation in children. Br J Haematol 190:650–683

    CrossRef  PubMed  Google Scholar 

  • Galderisi U, Peluso G, Di Bernardo G (2021) Clinical trials based on mesenchymal stromal cells are exponentially increasing: where are we in recent years? Stem Cell Rev Rep 1–14. https://doi.org/10.1007/s12015-021-10231-w

  • Galipeau J, Sensébé L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22:824–833

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Galleu A et al (2017) Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 9:eaam7828

    CrossRef  PubMed  Google Scholar 

  • Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M (2015) Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Rev Rep 11:280–287

    CrossRef  CAS  PubMed  Google Scholar 

  • Gluckman E, Rocha V (2009) Cord blood transplantation: state of the art. Haematologica 94:451–454

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gluckman E et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178

    CrossRef  CAS  PubMed  Google Scholar 

  • Gluckman E et al (2004) Factors associated with outcomes of unrelated cord blood transplant: guidelines for donor choice. Exp Hematol 32:397–407

    CrossRef  CAS  PubMed  Google Scholar 

  • Gragert L et al (2014) HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med 371:339–348

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AO, Wagner JE (2020) Umbilical cord blood transplants: current status and evolving therapies. Front Pediatr 8:570282

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hariri R (2004) Use of umbilical cord blood to treat individuals having a disease, disorder or condition. https://patents.google.com/patent/US20040219136A1/en#patentCitations

  • Harrell CR et al (2019) Therapeutic potential of mesenchymal stem cells and their secretome in the treatment of glaucoma. Stem Cells Int 2019:e7869130

    CrossRef  Google Scholar 

  • Harrell CR, Popovska Jovicic B, Djonov V, Volarevic V (2021) Molecular mechanisms responsible for mesenchymal stem cell-based treatment of viral diseases. Pathogens 10:409

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • He X et al (2005) Differential gene expression profiling of CD34+ CD133+ umbilical cord blood hematopoietic stem progenitor cells. Stem Cells Dev 14:188–198

    CrossRef  CAS  PubMed  Google Scholar 

  • Heinze A et al (2019) The synergistic use of IL-15 and IL-21 for the generation of NK cells from CD3/CD19-depleted grafts improves their ex vivo expansion and cytotoxic potential against neuroblastoma: perspective for optimized immunotherapy post haploidentical stem cell transplantation. Front Immunol 10:2816

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Herr A-L et al (2010) Long-term follow-up and factors influencing outcomes after related HLA-identical cord blood transplantation for patients with malignancies: an analysis on behalf of Eurocord-EBMT. Blood 116:1849–1856

    CrossRef  CAS  PubMed  Google Scholar 

  • Hexner EO et al (2016) Infusion of CD3/CD28 costimulated umbilical cord blood T cells at the time of single umbilical cord blood transplantation may enhance engraftment. Am J Hematol 91:453–460

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwitz ME et al (2014) Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest 124:3121–3128

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hough R et al (2016) Recommendations for a standard UK approach to incorporating umbilical cord blood into clinical transplantation practice: an update on cord blood unit selection, donor selection algorithms and conditioning protocols. Br J Haematol 172:360–370

    CrossRef  PubMed  Google Scholar 

  • Ito Y, Hasauda H, Kitajima T, Kiyono T (2006) Ex vivo expansion of human cord blood hematopoietic progenitor cells using glutaraldehyde-fixed human bone marrow stromal cells. J Biosci Bioeng 102:467–469

    CrossRef  CAS  PubMed  Google Scholar 

  • Jacobson CA et al (2012) Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 18:565–574

    CrossRef  CAS  PubMed  Google Scholar 

  • Jaroscak J et al (2003) Augmentation of umbilical cord blood (UCB) transplantation with ex vivo–expanded UCB cells: results of a phase 1 trial using the AastromReplicell system. Blood 101:5061–5067

    CrossRef  CAS  PubMed  Google Scholar 

  • Kanda J et al (2012) Immune recovery in adult patients after myeloablative dual umbilical cord blood, matched sibling, and matched unrelated donor hematopoietic cell transplantation. Biol Blood Marrow Transplant 18:1664–1676.e1

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating AK et al (2019) The influence of stem cell source on transplant outcomes for pediatric patients with acute myeloid leukemia. Blood Adv 3:1118–1128

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly K, Rasko JEJ (2021) Mesenchymal stromal cells for the treatment of graft versus host disease. Front Immunol 12:4457

    CrossRef  Google Scholar 

  • Kim Y-J, Broxmeyer HE (2011) Immune regulatory cells in umbilical cord blood and their potential roles in transplantation tolerance. Crit Rev Oncol Hematol 79:112–126

    CrossRef  PubMed  Google Scholar 

  • Koç ON et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    CrossRef  PubMed  Google Scholar 

  • Lazennec G, Jorgensen C (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26:1387–1394

    CrossRef  CAS  PubMed  Google Scholar 

  • Le Blanc K et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    CrossRef  PubMed  Google Scholar 

  • Leber A, Teles A, Zenclussen AC (2010) Regulatory T cells and their role in pregnancy. Am J Reprod Immunol 63:445–459

    CrossRef  CAS  PubMed  Google Scholar 

  • Li T, Xia M, Gao Y, Chen Y, Xu Y (2015) Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther 15:1293–1306

    CrossRef  PubMed  Google Scholar 

  • Li X et al (2016) Human umbilical cord blood-derived mesenchymal stem cells contribute to chondrogenesis in coculture with chondrocytes. Biomed Res Int 2016:e3827057

    Google Scholar 

  • Li D, Li X, Liao L, Li N (2020) Unrelated cord blood transplantation versus haploidentical transplantation in adult and pediatric patients with hematological malignancies-a meta-analysis and systematic review. Am J Blood Res 10:1–10

    PubMed  PubMed Central  Google Scholar 

  • Locatelli F (2009) Improving cord blood transplantation in children. Br J Haematol 147:217–226

    CrossRef  PubMed  Google Scholar 

  • Locatelli F et al (2014) Comparison between related T-cell depleted HLA-haploidentical stem cell transplantation (TCD-Haplo) and umbilical cord blood transplantation (UCBT) in pediatric patients with acute leukemia, a Eurocord, PDWP-EBMT study. Blood 124:1215

    CrossRef  Google Scholar 

  • Lu L-L et al (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026

    CAS  PubMed  Google Scholar 

  • Malgieri A, Kantzari E, Patrizi MP, Gambardella S (2010) Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 3:248–269

    PubMed  PubMed Central  Google Scholar 

  • Marino L et al (2019) Mesenchymal stem cells from the Wharton’s jelly of the human umbilical cord: biological properties and therapeutic potential. Int J Stem Cells 12:218–226

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzuka T et al (2010) Human umbilical cord matrix–derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer 70:28–36

    CrossRef  PubMed  Google Scholar 

  • Mayani H (2010) Biological differences between neonatal and adult human hematopoietic stem/progenitor cells. Stem Cells Dev 19:285–298

    CrossRef  PubMed  Google Scholar 

  • Mayani H, Lansdorp PM (1998) Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 16:153–165

    CrossRef  CAS  PubMed  Google Scholar 

  • Mayani H, Wagner JE, Broxmeyer HE (2020) Cord blood research, banking, and transplantation: achievements, challenges, and perspectives. Bone Marrow Transplant 55:48–61

    CrossRef  PubMed  Google Scholar 

  • McKenna DH et al (2017) Optimization of cGMP purification and expansion of umbilical cord blood-derived T-regulatory cells in support of first-in-human clinical trials. Cytotherapy 19:250–262

    CrossRef  CAS  PubMed  Google Scholar 

  • Mehta RS et al (2017) Ex vivo mesenchymal precursor cell-expanded cord blood transplantation after reduced-intensity conditioning regimens improves time to neutrophil recovery. Biol Blood Marrow Transplant 23:1359–1366

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Merindol N, Charrier E, Duval M, Soudeyns H (2011) Complementary and contrasting roles of NK cells and T cells in pediatric umbilical cord blood transplantation. J Leukoc Biol 90:49–60

    CrossRef  CAS  PubMed  Google Scholar 

  • Michel G et al (2016) Single- vs double-unit cord blood transplantation for children and young adults with acute leukemia or myelodysplastic syndrome. Blood 127:3450–3457

    CrossRef  CAS  PubMed  Google Scholar 

  • Milano F et al (2016) Cord-blood transplantation in patients with minimal residual disease. N Engl J Med 375:944–953

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Molecule boosts numbers of stem cells in umbilical cord blood. Sci News (2014) https://www.sciencenews.org/article/molecule-boosts-numbers-stem-cells-umbilical-cord-blood

  • Nagamura-Inoue T, He H (2014) Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells 6:195–202

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nham T et al (2018) Ex vivo-expanded natural killer cells derived from long-term cryopreserved cord blood are cytotoxic against primary breast cancer cells. J Immunother 41:64–72

    CrossRef  CAS  PubMed  Google Scholar 

  • Oran B, Shpall E (2012) Umbilical cord blood transplantation: a maturing technology. Hematology Am Soc Hematol Educ Program 2012:215–222

    CrossRef  PubMed  Google Scholar 

  • Passweg JR et al (2016) Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant 51:786–792

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Poloni A et al (2006) Engraftment capacity of mesenchymal cells following hematopoietic stem cell transplantation in patients receiving reduced-intensity conditioning regimen. Leukemia 20:329–335

    CrossRef  CAS  PubMed  Google Scholar 

  • Popat U et al (2015) Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Blood 125:2885–2892

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Preterm labour and birth (NICE guideline NG25) (2020) https://www.nice.org.uk/guidance/ng25/resources/preterm-labour-and-birth-pdf-1837333576645

  • Ramirez P et al (2012) Factors predicting single-unit predominance after double umbilical cord blood transplantation. Bone Marrow Transplant 47:799–803

    CrossRef  CAS  PubMed  Google Scholar 

  • Rocha V, Locatelli F (2008) Searching for alternative hematopoietic stem cell donors for pediatric patients. Bone Marrow Transplant 41:207–214

    CrossRef  CAS  PubMed  Google Scholar 

  • Rocha V et al (2000) Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med 342:1846–1854

    CrossRef  CAS  PubMed  Google Scholar 

  • Rocha V et al (2001) Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood 97:2962–2971

    CrossRef  CAS  PubMed  Google Scholar 

  • Rocha V, Gluckman E, Eurocord and European Blood and Marrow Transplant Group (2006) Clinical use of umbilical cord blood hematopoietic stem cells. Biol Blood Marrow Transplant 12:34–41

    CrossRef  PubMed  Google Scholar 

  • Rocha V, Gluckman E, Eurocord-Netcord Registry and European Blood and Marrow Transplant Group (2009) Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. Br J Haematol 147:262–274

    CrossRef  CAS  PubMed  Google Scholar 

  • Rollín R et al (2007) Human parvovirus B19, varicella zoster virus, and human herpesvirus-6 in mesenchymal stem cells of patients with osteoarthritis: analysis with quantitative real-time polymerase chain reaction. Osteoarthr Cartil 15:475–478

    CrossRef  Google Scholar 

  • Roura S, Pujal J, Gálvez-Montón C, Bayes-Genis A (2015) The role and potential of umbilical cord blood in an era of new therapies: a review. Stem Cell Res Ther 6:123

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rubinstein P et al (1998) Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 339:1565–1577

    CrossRef  CAS  PubMed  Google Scholar 

  • Secco M et al (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26:146–150

    CrossRef  CAS  PubMed  Google Scholar 

  • Selmani Z et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222

    CrossRef  CAS  PubMed  Google Scholar 

  • Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54:1418–1437

    CrossRef  CAS  PubMed  Google Scholar 

  • Sleem A, Saleh F (2020) Mesenchymal stem cells in the fight against viruses: face to face with the invisible enemy. Curr Res Transl Med 68:105–110

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Soland MA et al (2014) Perivascular stromal cells as a potential reservoir of human cytomegalovirus. Am J Transplant 14:820–830

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Spees JL, Lee RH, Gregory CA (2016) Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther 7:125

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Stavropoulos-Giokas C, Dinou A, Papassavas A (2012) The role of HLA in cord blood transplantation. Bone Marrow Res 2012:e485160

    CrossRef  Google Scholar 

  • Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926

    CrossRef  PubMed  Google Scholar 

  • Stiff PJ et al (2018) Cohort-controlled comparison of umbilical cord blood transplantation using carlecortemcel-L, a single progenitor-enriched cord blood, to double cord blood unit transplantation. Biol Blood Marrow Transplant 24:1463–1470

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JM et al (2017) Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: a randomized, Placebo-Controlled Trial. Stem Cells Transl Med 6:2071–2078

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JM et al (2021) Umbilical cord blood and cord tissue mesenchymal stromal cells in children with cerebral palsy. Cytotherapy 10:S106–S106

    CrossRef  Google Scholar 

  • Sundin M et al (2006) Mesenchymal stem cells are susceptible to human herpesviruses, but viral DNA cannot be detected in the healthy seropositive individual. Bone Marrow Transplant 37:1051–1059

    CrossRef  CAS  PubMed  Google Scholar 

  • Szabolcs P, Niedzwiecki D (2007) Immune reconstitution after unrelated cord blood transplantation. Cytotherapy 9:111–122

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Terai S et al (2006) Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 24:2292–2298

    CrossRef  CAS  PubMed  Google Scholar 

  • Terness P et al (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanunchai M, Hongeng S, Thitithanyanont A (2015) Mesenchymal stromal cells and viral infection. Stem Cells Int 2015:e860950

    CrossRef  Google Scholar 

  • Tsuda S, Nakashima A, Shima T, Saito S (2019) New paradigm in the role of regulatory T cells during pregnancy. Front Immunol 10:573. https://doi.org/10.3389/fimmu.2019.00573

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto A, Baum CM, Aihara Y, Weissman I (1997) Identification and isolation of human hematopoietic stem cells. https://patents.google.com/patent/US5643741A/en

  • Umbilical cord-derived mesenchymal stem cells for hematopoietic stem cell transplantation. https://www.hindawi.com/journals/bmri/2012/759503/

  • US7332334B2 – hematopoietic stem cells treated by in vitro fucosylation and methods of use – Google Patents. https://patents.google.com/patent/US7332334B2/en

  • Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. NEJM. https://www.nejm.org/doi/full/10.1056/NEJMoa1910607

  • Verneris MR, Miller JS (2009) The phenotypic and functional characteristics of umbilical cord blood and peripheral blood natural killer cells. Br J Haematol 147:185–191

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Villaron EM et al (2004) Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica 89:1421–1427

    PubMed  Google Scholar 

  • Volarevic V et al (2017) Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. Biofactors 43:633–644

    CrossRef  CAS  PubMed  Google Scholar 

  • Wagner W et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    CrossRef  CAS  PubMed  Google Scholar 

  • Wagner JE et al (2014) One-unit versus two-unit cord-blood transplantation for hematologic cancers. N Engl J Med 371:1685–1694

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JE et al (2016) Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell 18:144–155

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang Y et al (2007) High expression of NKG2A/CD94 and low expression of granzyme B are associated with reduced cord blood NK cell activity. Cell Mol Immunol 4:377–382

    CAS  PubMed  Google Scholar 

  • Wang L et al (2019) Single-versus double-unit umbilical cord blood transplantation for hematologic diseases: a systematic review. Transfus Med Rev 33:51–60

    CrossRef  PubMed  Google Scholar 

  • Weiss ARR, Dahlke MH (2019) Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol 10:1191

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Westin JR et al (2011) Steroid-refractory acute GVHD: predictors and outcomes. Adv Hematol 2011:601953

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wu K-H et al (2011) Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation 91:1412–1416

    CrossRef  PubMed  Google Scholar 

  • Zhang Z-Y et al (2009) Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells 27:126–137

    CrossRef  PubMed  Google Scholar 

  • Zhang X et al (2013) Characterization and ex vivo expansion of human placenta-derived natural killer cells for cancer immunotherapy. Front Immunol 4:101

    PubMed  PubMed Central  Google Scholar 

  • Zhou C et al (2011) Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol 272:33–38

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuk PA et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

AM is supported by the Academy of Finland Profi6 336449 grant awarded to the University of Oulu and the European Commission and the European Structural and Social Funds (ES Struktūrinės Paramos) awarded through the Research Council of Lithuania (Lietuvos Mokslo Taryba) and the funding program: Attracting Foreign Researchers for Research Implementation (2018–2022), Grant No. 01.2.2-LMT-K-718-02-0022.

Conflicts of Interest

AM consults for GSK Consumer Healthcare, Kolon TissueGene, Laboratoires Expansciences, Novartis, Orion Corporation, and Sanofi. He is President of the Osteoarthritis Research Society International (OARSI) (May 2019–April 2022) and serves on the Scientific Advisory Boards of Kolon TissueGene, ResearchSquare, and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis, and Musculoskeletal Diseases (ESCEO).

Author Contributions

All authors contributed to the writing and critically revised the manuscript for important intellectual content.

Funding

No funding was acquired for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mobasheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gudauskaitė, G., Kairienė, I., Ivaškienė, T., Rascon, J., Mobasheri, A. (2022). Therapeutic Perspectives for the Clinical Application of Umbilical Cord Hematopoietic and Mesenchymal Stem Cells: Overcoming Complications Arising After Allogeneic Hematopoietic Stem Cell Transplantation. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 18. Advances in Experimental Medicine and Biology(), vol 1409. Springer, Cham. https://doi.org/10.1007/5584_2022_726

Download citation