Skip to main content

Mitochondrial Permeability Transition in Stem Cells, Development, and Disease

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 18

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1409))

Abstract

The mitochondrial permeability transition (mPT) is a process that permits rapid exchange of small molecules across the inner mitochondrial membrane (IMM) and thus plays a vital role in mitochondrial function and cellular signaling. Formation of the pore that mediates this flux is well-documented in injury and disease but its regulation has also emerged as critical to the fate of stem cells during embryonic development. The precise molecular composition of the mPTP has been enigmatic, with far more genetic studies eliminating molecular candidates than confirming them. Rigorous studies in the recent decade have implicated central involvement of the F1Fo ATP synthase, or complex V of the electron transport chain, and continue to confirm a regulatory role for Cyclophilin D (CypD), encoded by Ppif, in modulating the sensitivity of the pore to opening. A host of endogenous molecules have been shown to trigger flux characteristic of mPT, including positive regulators such as calcium ions, reactive oxygen species, inorganic phosphate, and fatty acids. Conductance of the pore has been described as low or high, and reversibility of pore opening appears to correspond with the relative abundance of negative regulators of mPT such as adenine nucleotides, hydrogen ion, and divalent cations that compete for calcium-binding sites in the mPTP. Current models suggest that distinct pores could be responsible for differing reversibility and conductance depending upon cellular context. Indeed, irreversible propagation of mPT inevitably leads to collapse of transmembrane potential, arrest of ATP synthesis, mitochondrial swelling, and cell death. Future studies should clarify ambiguities in mPTP structure and reveal new roles for mPT in dictating specialized cellular functions beyond cell survival that are tied to mitochondrial fitness including stem cell self-renewal and fate. The focus of this review is to describe contemporary models of the mPTP and highlight how pore activity impacts stem cells and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AHS:

Alpers-Huttenlocher Syndrome

ANT:

Adenine nucleotide translocator

CsA:

Cyclosporin A

CypD:

Cyclophilin D

ETC:

Electron transport chain

IMM:

Inner mitochondrial membrane

IMS:

Intermembrane space

MCUcx:

Mitochondrial calcium uniporter complex

mPT:

Mitochondrial permeability transition

mPTP:

Mitochondrial permeability transition pore

NIM811:

(Melle-4)cyclosporin

OMM:

Outer mitochondrial membrane

OSCP:

Oligomycin sensitive conferring protein subunit

OXPHOS:

Oxidative phosphorylation

Pi:

Inorganic phosphate

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TCA:

Tricarboxylic acid cycle

VDAC:

Voltage-dependent anion channel

References

  • Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M et al (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111:10580–10585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves-Figueiredo H, Silva-Platas C, Lozano O, Vázquez-Garza E, Guerrero-Beltrán CE, Zarain-Herzberg A, García-Rivas G (2021) A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim Biophys Acta Mol basis Dis 1867:165992

    Article  CAS  PubMed  Google Scholar 

  • Antoniel M, Jones K, Antonucci S, Spolaore B, Fogolari F, Petronilli V, Giorgio V, Carraro M, Di Lisa F, Forte M et al (2018) The unique histidine in OSCP subunit of F-ATP synthase mediates inhibition of the permeability transition pore by acidic pH. EMBO Rep 19:257–268

    Article  CAS  PubMed  Google Scholar 

  • Antony AN, Paillard M, Moffat C, Juskeviciute E, Correnti J, Bolon B, Rubin E, Csordás G, Seifert EL, Hoek JB et al (2016) MICU1 regulation of mitochondrial Ca 2+ uptake dictates survival and tissue regeneration. Nat Commun 7:10955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold LW, McCray SK, Tatu C, Clarke SH (2000) Identification of a precursor to Phosphatidyl choline-specific B-1 cells suggesting that B-1 cells differentiate from splenic conventional B cells in vivo: Cyclosporin a blocks differentiation to B-1. J Immunol 164:2924–2930

    Article  CAS  PubMed  Google Scholar 

  • Azarashvili T, Odinokova I, Bakunts A, Ternovsky V, Krestinina O, Tyynelä J, Saris NEL (2014) Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium 55:69–77

    Article  CAS  PubMed  Google Scholar 

  • Baburina Y, Krestinin R, Odinokova I, Sotnikova L, Kruglov A, Krestinina O (2019) Astaxanthin inhibits mitochondrial permeability transition pore opening in rat heart mitochondria. Antioxidants 8:576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Zaja I, Corbett JA, Bosnjak ZJ (2013) Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg 116:869–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barsukova A, Komarov A, Hajnóczky G, Bernardi P, Bourdette D, Forte M (2011) Activation of the mitochondrial permeability transition pore modulates Ca2+ responses to physiological stimuli in adult neurons. Eur J Neurosci 33:831–842

    Article  PubMed  PubMed Central  Google Scholar 

  • Basso E, Petronilli V, Forte MA, Bernardi P (2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J Biol Chem 283:26307–26311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batandier C, Leverve X, Fontaine E (2004) Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J Biol Chem 279:17197–17204

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJM, Gerasimenko OV (2009) Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284:20796–20803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi P (1992) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem 267:8834–8839

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28:131–138

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, von Stockum S (2012) The permeability transition pore as a Ca2+ release channel: new answers to an old question. Cell Calcium 52:22–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267:2934–2939

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Krauskopf A, Basso E, Petronilli V, Blalchy-Dyson E, Di Lisa F, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Rasola A, Forte M, Lippe G (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95:1111–1155

    Google Scholar 

  • Bertero E, Maack C (2018) Calcium signaling and reactive oxygen species in mitochondria. Circ Res 122:1460–1478

    Article  CAS  PubMed  Google Scholar 

  • Beutner G, Rück A, Riede B, Welte W, Brdiczka D (1996) Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 396:189–195

    Article  CAS  PubMed  Google Scholar 

  • Beutner G, Rück A, Riede B, Brdiczka D (1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta Biomembr 1368:7–18

    Article  CAS  Google Scholar 

  • Beutner G, Eliseev RA, Porter GA (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. PLoS One 9:e113330

    Article  PubMed  PubMed Central  Google Scholar 

  • Beutner G, Alanzalon RE, Porter GA (2017) Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes. Sci Rep 7:14488

    Article  PubMed  PubMed Central  Google Scholar 

  • Biasutto L, Azzolini M, Szabò I, Zoratti M (2016) The mitochondrial permeability transition pore in AD 2016: an update. Biochim Biophys Acta, Mol Cell Res 1863:2515–2530

    Article  CAS  PubMed  Google Scholar 

  • Bonke E, Siebels I, Zwicker K, Dröse S (2016) Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition. Free Radic Biol Med 99:43–53

    Article  CAS  PubMed  Google Scholar 

  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A et al (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonora M, Morganti C, Morciano G, Pedriali G, Lebiedzinska-Arciszewska M, Aquila G, Giorgi C, Rizzo P, Campo G, Ferrari R et al (2017) Mitochondrial permeability transition involves dissociation of F 1 F O ATP synthase dimers and C-ring conformation. EMBO Rep 18:1077–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonora M, Patergnani S, Ramaccini D, Morciano G, Pedriali G, Kahsay AE, Bouhamida E, Giorgi C, Wieckowski MR, Pinton P (2020) Physiopathology of the permeability transition pore: molecular mechanisms in human pathology. Biomol Ther 10:1–25

    Google Scholar 

  • Bonora M, Giorgi C, Pinton P (2022) Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol 23:266–285

    Article  CAS  PubMed  Google Scholar 

  • Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M (2020) Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med 24:2717–2729

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyman L, Coleman AK, Zhao G, Wescott AP, Joca HC, Greiser BM, Karbowski M, Ward CW, Lederer WJ (2019) Dynamics of the mitochondrial permeability transition pore: transient and permanent opening events. Arch Biochem Biophys 666:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briston T, Roberts M, Lewis S, Powney B, Staddon JM, Szabadkai G, Duchen MR (2017) Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability. Sci Rep 7:10492

    Article  PubMed  PubMed Central  Google Scholar 

  • Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264:7826–7830

    Article  CAS  PubMed  Google Scholar 

  • Bround MJ, Bers DM, Molkentin JD (2020) A 20/20 view of ANT function in mitochondrial biology and necrotic cell death. J Mol Cell Cardiol 144:A3–A13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brower JV, Rodic N, Seki T, Jorgensen M, Fliess N, Yachnis AT, McCarrey JR, Oh SP, Terada N (2007) Evolutionarily conserved mammalian adenine nucleotide translocase 4 is essential for spermatogenesis. J Biol Chem 282:29658–29666

    Article  CAS  PubMed  Google Scholar 

  • Broxmeyer HE, O’Leary HA, Huang X, Mantel C (2015) The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo. Curr Opin Hematol 22:273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bücheler K, Adams V, Brdiczka D (1991) Localization of the ATP/ADP translocator in the inner membrane and regulation of contact sites between mitochondrial envelope membranes by ADP. A study on freeze-fractured isolated liver mitochondria. Biochim Biophys Acta 1056:233–242

    Article  PubMed  Google Scholar 

  • Burke SK, Solania A, Wolan DW, Cohen MS, Ryan TE, Hepple RT (2021) Mitochondrial permeability transition causes mitochondrial reactive oxygen species-and caspase 3-dependent atrophy of single adult mouse skeletal muscle fibers. Cells 10:2586

    Article  CAS  Google Scholar 

  • Candelario KM, Shuttleworth CW, Cunningham LA (2013) Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor-1alpha expression. J Neurochem 125:420–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carraro M, Checchetto V, Sartori G, Kucharczyk R, Di Rago JP, Minervini G, Franchin C, Arrigoni G, Giorgio V, Petronilli V et al (2018) High-conductance channel formation in yeast mitochondria is mediated by F-ATP synthase e and g subunits. Cell Physiol Biochem 50:1840–1855

    Article  CAS  PubMed  Google Scholar 

  • Carrer A, Laquatra C, Tommasin L, Carraro M (2021) Modulation and pharmacology of the mitochondrial permeability transition: a journey from F-ATP synthase to ANT. Molecules 26:6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernyak BV, Bernardi P (1996) The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites. Eur J Biochem 238:623–630

    Article  CAS  PubMed  Google Scholar 

  • Chiari P, Angoulvant D, Mewton N, Desebbe O, Obadia JF, Robin J, Farhat F, Jegaden O, Bastien O, Lehot JJ et al (2014) Cyclosporine protects the heart during aortic valve surgery. Anesthesiology 121:232–238

    Article  CAS  PubMed  Google Scholar 

  • Cho SW, Park JS, Heo HJ, Park SW, Song S, Kim I, Han YM, Yamashita JK, Youm JB, Han J et al (2014) Dual modulation of the mitochondrial permeability transition pore and redox signaling synergistically promotes cardiomyocyte differentiation from pluripotent stem cells. J Am Heart Assoc 3:e000693

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho J, Seo J, Lim CH, Yang L, Shiratsuchi T, Lee MH, Chowdhury RR, Kasahara H, Kim JS, Oh SP et al (2015) Mitochondrial ATP transporter Ant2 depletion impairs erythropoiesis and B lymphopoiesis. Cell Death Differ 22:1437–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary OP, Paz A, Adelman JL, Colletier JP, Abramson J, Grabe M (2014) Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1. Nat Struct Mol Biol 21:626–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A (2007) Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 4:S60–S67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung S, Dzeja PP, Faustino RS, Terzic A (2008) Developmental restructuring of the creatine kinase system integrates mitochondrial energetics with stem cell cardiogenesis. Ann N Y Acad Sci 1147:254–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connern CP, Halestrap AP (1994) Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem J 302:321–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751

    Article  CAS  PubMed  Google Scholar 

  • Cozens AL, Runswick MJ, Walker JE (1989) DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase. J Mol Biol 206:261–280

    Article  CAS  PubMed  Google Scholar 

  • Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crompton M, Virji S, Ward JM (1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 258:729–735

    Article  CAS  PubMed  Google Scholar 

  • Davidson SM, Yellon DM, Murphy MP, Duchen MR (2012) Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Cardiovasc Res 93:445–453

    Article  CAS  PubMed  Google Scholar 

  • Davies WR, Wang S, Oi K, Bailey KR, Tazelaar HD, Caplice NM, McGregor CGA (2005) Cyclosporine decreases vascular progenitor cell numbers after cardiac transplantation and attenuates progenitor cell growth in vitro. J Hear Lung Transplant 24:1868–1877

    Article  Google Scholar 

  • De Marchi U, Basso E, Szabò I, Zoratti M (2006) Electrophysiological characterization of the Cyclophilin D-deleted mitochondrial permeability transition pore. Mol Membr Biol 23:521–530

    Article  PubMed  Google Scholar 

  • De Marchi E, Bonora M, Giorgi C, Pinton P (2014) The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium 56:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolder M, Walzel B, Speer O, Schlattner U, Wallimann T (2003) Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J Biol Chem 278:17760–17766

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Wang H, Mitchell-silbaugh K, Cai S, Fan F, Li Y, Tang H, Wang G, Fang X, Liu J et al (2019) Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death Dis 10:766

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellison JW, Salido EC, Shapiro LJ (1996) Genetic mapping of the adenine nucleotide translocase-2 gene (Ant2) to the mouse proximal X chromosome. Genomics 36:369–371

    Article  CAS  PubMed  Google Scholar 

  • Elrod JW, Molkentin JD (2013) Physiologic functions of Cyclophilin D and the mitochondrial permeability transition pore. Circ J 77:1111–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elrod JW, Wong R, Mishra S, Vagnozzi RJ, Sakthievel B, Goonasekera SA, Karch J, Gabel S, Farber J, Force T et al (2010) Cyclophilin D controls mitochondrial pore – dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest 120:3680–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filadi R, Greotti E (2021) The yin and yang of mitochondrial Ca2+ signaling in cell physiology and pathology. Cell Calcium 93:102321

    Article  CAS  PubMed  Google Scholar 

  • Flanagan DL, Jennings CD, Bryson JS (1999) Th1 cytokines and NK cells participate in the development of murine syngeneic graft-versus-host disease. J Immunol 163:1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Flores C, Fouquet G, Moura IC, Maciel TT, Hermine O (2019) Lessons to learn from low-dose cyclosporin-A: a new approach for unexpected clinical applications. Front Immunol 10:588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier N, Ducet G, Crevat A (1987) Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr 19:297–303

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara M, Yan P, Otsuji TG, Narazaki G, Uosaki H, Fukushima H, Kuwahara K, Harada M, Matsuda H, Matsuoka S et al (2011) Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PLoS One 6:e16734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuno T, Kanno T, Arita K, Asami M, Utsumi T, Doi Y, Inoue M, Utsumi K (2001) Roles of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem Pharmacol 62:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Garg V, Suzuki J, Paranjpe I, Unsulangi T, Boyman L, Milescu LS, Jonathan Lederer W, Kirichok Y (2021) The mechanism of micu-dependent gating of the mitochondrial ca2+ uniporter. elife 10:e69312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgi C, Romagnoli A, Pinton P, Rizzuto R (2008) Ca2+ signaling, mitochondria and cell death. Curr Mol Med 8:119–130

    Article  CAS  PubMed  Google Scholar 

  • Giorgi C, Marchi S, Pinton P (2018) The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 19:713–730

    Article  CAS  PubMed  Google Scholar 

  • Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, Forte MA, Bernardi P, Lippe G (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284:33982–33988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgio V, Von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgio V, Burchell V, Schiavone M, Bassot C, Minervini G, Petronilli V, Argenton F, Forte M, Tosatto S, Lippe G et al (2017) Ca 2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep 18:1065–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glancy B, Willis WT, Chess DJ, Balaban RS (2013) Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry 52:2793–2809

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Ibanez AM, Ruiz LM, Jensen E, Echeverria CA, Romero V, Stiles L, Shirihai OS, Elorza AA (2020) Erythroid differentiation and Heme biosynthesis are dependent on a shift in the balance of mitochondrial fusion and fission dynamics. Front Cell Dev Biol 8:592035

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu ZT, Li L, Wu F, Zhao P, Yang H, Liu YS, Geng Y, Zhao M, Su L (2015) Heat stress induced apoptosis is triggered by transcription-independent p53, Ca2+ dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci Rep 5:11497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Aguilar M, Douglas DL, Gibson AK, Domeier TL, Molkentin JD, Baines CP (2014) Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J Mol Cell Cardiol 72:316–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Halestrap AP, Davidson AM (1990) Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucle. Biochem J 268:153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–1415

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AR, Connern CR, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174:167–172

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res 61:372–385

    Article  CAS  PubMed  Google Scholar 

  • Hansson MJ, MÃ¥nsson R, Morota S, Uchino H, Kallur T, Sumi T, Ishii N, Shimazu M, Keep MF, Jegorov A et al (2008) Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic Biol Med 45:284–294

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109:1714–1717

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Schulz R, Girao H, Kwak BR, De Stefani D, Rizzuto R, Bernardi P, Di Lisa F (2020) Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med 24:7102–7114

    Article  PubMed  PubMed Central  Google Scholar 

  • Haworth RA, Hunter DR (1979) The Ca2+−induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195:460–467

    Article  CAS  PubMed  Google Scholar 

  • Haworth RA, Hunter DR, Berkoff HA (1980) Na+ releases Ca2+ from liver, kidney and lung mitochondria. FEBS Lett 110:216–218

    Article  CAS  PubMed  Google Scholar 

  • He J, Ford HC, Carroll J, Ding S, Fearnley IM, Walker JE (2017) Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci U S A 114:3409–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hom JR, Quintanilla RA, Hoffman DL, de Mesy Bentley KL, Molkentin JD, Sheu SS, Porter GA (2011) The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev Cell 21:469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Ouyang X, Wan R, Cheng H, Mattson MP, Cheng A (2012) Mitochondrial superoxide production negatively regulates neural progenitor proliferation and cerebral cortical development. Stem Cells 30:2535–2547

    Article  CAS  PubMed  Google Scholar 

  • Hou T, Zhang X, Xu J, Jian C, Huang Z, Ye T, Hu K, Zheng M, Gao F, Wang X et al (2013) Synergistic triggering of superoxide flashes by mitochondrial Ca 2+ uniport and basal reactive oxygen species elevation. J Biol Chem 288:4602–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter DR, Haworth RA (1979a) The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195:468–477

    Article  CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA (1979b) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459

    Article  CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium treated mitochondria. J Biol Chem 251:5069–5077

    Article  CAS  PubMed  Google Scholar 

  • Jung K, Pergande M (1985) Influence of cyclosporin A on the respiration of isolated rat kidney mitochondria. FEBS Lett 183:167–169

    Article  CAS  PubMed  Google Scholar 

  • Kaludercic N, Giorgio V (2016) The dual function of reactive oxygen/nitrogen species in bioenergetics and cell death: the role of ATP synthase. Oxidative Med Cell Longev 2016:3869610

    Article  Google Scholar 

  • Kanno T, Sato EF, Muranaka S, Fujita H, Fujiwara T, Utsumi T, Inoue M, Utsumi K (2004) Oxidative stress underlies the mechanism for Ca2+-induced permeability transition of mitochondria. Free Radic Res 38:27–35

    Article  CAS  PubMed  Google Scholar 

  • Karch J, Molkentin JD (2014) Identifying the components of the elusive mitochondrial permeability transition pore. Proc Natl Acad Sci 111:10396–10397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karch J, Kwong JQ, Burr AR, Sargent MA, Elrod JW, Peixoto PM, Martinez-Caballero S, Osinska H, Cheng EH-Y, Robbins J et al (2013) Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. elife 2:e00772

    Article  PubMed  PubMed Central  Google Scholar 

  • Karch J, Bround MJ, Khalil H, Sargent MA, Latchman N, Terada N, Peixoto PM, Molkentin JD (2019) Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci Adv 5:eaaw4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korge P, Yang L, Yang JH, Wang Y, Qu Z, Weiss JN (2011) Protective role of transient pore openings in calcium handling by cardiac mitochondria. J Biol Chem 286:34851–34857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korge P, Calmettes G, John SA, Weiss JN (2017a) Reactive oxygen species production induced by pore opening in cardiac mitochondria: the role of complex III. J Biol Chem 292:9882–9895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korge P, John SA, Calmettes G, Weiss JN (2017b) Reactive oxygen species production induced by pore opening in cardiac mitochondria: the role of complex II. J Biol Chem 292:9896–9905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosugi A, Shearer GM (1991) Effect of cyclosporin A on lymphopoiesis. III. Augmentation of the generation of natural killer cells in bone marrow transplanted mice treated with cyclosporin A. J Immunol 146:1416–1421

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (1996) Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett 378:150–152

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Netto LES, Vercesi AE (1998) The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition: evidence for the participation of reactive oxygen species in this mechanism. J Biol Chem 273:12766–12769

    Article  CAS  PubMed  Google Scholar 

  • Krauskopf A, Eriksson O, Craigen WJ, Forte MA, Bernardi P (2006) Properties of the permeability transition in VDAC1-/- mitochondria. Biochim Biophys Acta Bioenerg 1757:590–595

    Article  CAS  Google Scholar 

  • Krestinin R, Baburina Y, Odinokova I, Kruglov A, Fadeeva I, Zvyagina A, Sotnikova L, Krestinina O (2020) Isoproterenol-induced permeability transition pore-related dysfunction of heart mitochondria is attenuated by astaxanthin. Biomedicine 8:1–20

    Google Scholar 

  • Ku DH, Kagan J, Chen ST, Chang CD, Baserga R, Wurzel J (1990) The human fibroblast adenine nucleotide translocator gene. Molecular cloning and sequence. J Biol Chem 265:16060–16063

    Article  CAS  PubMed  Google Scholar 

  • Kwong JQ, Davis J, Baines CP, Sargent MA, Karch J, Wang X, Huang T, Molkentin JD (2014) Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ 21:1209–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JM (1998) Inhibition of p53-dependent apoptosis by the KIT tyrosine kinase: regulation of mitochondrial permeability transition and reactive oxygen species generation. Oncogene 17:1653–1662

    Article  CAS  PubMed  Google Scholar 

  • Leger PL, De Paulis D, Branco S, Bonnin P, Couture-Lepetit E, Baud O, Renolleau S, Ovize M, Gharib A, Charriaut-Marlangue C (2011) Evaluation of cyclosporine A in a stroke model in the immature rat brain. Exp Neurol 230:58–66

    Article  CAS  PubMed  Google Scholar 

  • LêQuôc K, LêQuôc D (1988) Involvement of the ADP ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 265:249–257

    Article  Google Scholar 

  • Li K, Warner CK, Hodge JA, Minoshima S, Kudoh J, Fukuyama R, Maekawa M, Shimizu Y, Shimizu N, Wallace DC (1989) A human muscle adenine nucleotide translocator gene has four exons, is located on chromosome 4, and is differentially expressed. J Biol Chem 264:13998–14004

    Article  CAS  PubMed  Google Scholar 

  • Li S, Guo J, Ying Z, Chen S, Yang L, Chen K, Long Q, Qin D, Pei D, Liu X (2015) Valproic acid-induced hepatotoxicity in alpers syndrome is associated with mitochondrial permeability transition pore opening-dependent apoptotic sensitivity in an induced pluripotent stem cell model. Hepatology 61:1730–1739

    Article  CAS  PubMed  Google Scholar 

  • Lim CH, Hamazaki T, Braun EL, Wade J, Terada N (2011) Evolutionary genomics implies a specific function of Ant4 in mammalian and anole lizard male germ cells. PLoS One 6:e23122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay DP, Camara AKS, Stowe DF, Lubbe R, Aldakkak M (2015) Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes I and III. Front Physiol 6:1–10

    Article  Google Scholar 

  • Lingan JV, Porter GA (2016) Permeability transition pore closure increases mitochondrial maturation and myocyte differentiation in the neonatal heart. Biophys J 110:309a

    Article  Google Scholar 

  • Lingan JV, Alanzalon RE, Porter GA (2017) Preventing permeability transition pore opening increases mitochondrial maturation, myocyte differentiation and cardiac function in the neonatal mouse heart. Pediatr Res 81:932–941

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Kwong JQ, Molkentin JD, Bers DM (2016) Individual cardiac mitochondria undergo rare transient permeability transition pore openings. Circ Res 118:834–841

    Article  CAS  PubMed  Google Scholar 

  • Lunardi J, Hurko O, Engel WK, Attardi G (1992) The multiple ADP/ATP translocase genes are differentially expressed during human muscle development. J Biol Chem 267:15267–15270

    Article  CAS  PubMed  Google Scholar 

  • Maciel EN, Vercesi AE, Castilho RF (2001) Oxidative stress in Ca2+-induced membrane permeability transition in brain mitochondria. J Neurochem 79:1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Mantel C, Messina-Graham SV, Broxmeyer HE (2011) Superoxide flashes, reactive oxygen species, and the mitochondrial permeability transition pore: potential implications for hematopoietic stem cell function. Curr Opin Hematol 18:208–213

    Article  CAS  PubMed  Google Scholar 

  • Mantel CR, O’Leary HA, Chitteti BR, Huang X, Cooper S, Hangoc G, Brustovetsky N, Srour EF, Lee MR, Messina-Graham S et al (2015) Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161:1553–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto S, Murozono M, Kanazawa M, Nara T, Ozawa T, Watanabe Y (2018) Edaravone and cyclosporine A as neuroprotective agents for acute ischemic stroke. Acute Med Surg 5:213–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, Chin HS et al (2018) BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359:eaao6047

    Article  PubMed  Google Scholar 

  • McCommis KS, Baines CP (2012) The role of VDAC in cell death: friend or foe? Biochim Biophys Acta Biomembr 1818:1444–1450

    Article  CAS  Google Scholar 

  • Menazza S, Wong R, Nguyen T, Wang G, Gucek M, Murphy E (2013) CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism. J Mol Cell Cardiol 56:81–90

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 41:445–502

    Article  CAS  PubMed  Google Scholar 

  • Mnatsakanyan N, Beutner G, Porter GA, Alavian KN, Jonas EA (2017) Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr 49:13–25

    Article  CAS  PubMed  Google Scholar 

  • Mnatsakanyan N, Llaguno MC, Yang Y, Yan Y, Weber J, Sigworth FJ, Jonas EA (2019) A mitochondrial megachannel resides in monomeric F1FO ATP synthase. Nat Commun 10:5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morciano G, Giorgi C, Bonora M, Punzetti S, Pavasini R, Wieckowski MR, Campo G, Pinton P (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 78:142–153

    Article  CAS  PubMed  Google Scholar 

  • Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ (2021) The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev 96:2489–2521

    Article  CAS  PubMed  Google Scholar 

  • Nacev BA, Low WK, Huang Z, Su TT, Su Z, Alkuraya H, Kasuga D, Sun W, Träger M, Braun M et al (2011) A calcineurin-independent mechanism of angiogenesis inhibition by a nonimmunosuppressive cyclosporin A analog. J Pharmacol Exp Ther 338:466–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    Article  CAS  PubMed  Google Scholar 

  • Neginskaya MA, Solesio ME, Berezhnaya EV, Amodeo GF, Mnatsakanyan N, Jonas EA, Pavlov EV (2019) ATP synthase C-subunit-deficient mitochondria have a small cyclosporine A-Sensitive Channel, but lack the permeability transition pore. Cell Rep 26:11–17.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317

    Article  CAS  PubMed  Google Scholar 

  • Noskov SY, Rostovtseva TK, Chamberlin AC, Teijido O, Jiang W, Bezrukov SM (2016) Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC). Biochim Biophys Acta Biomembr 1858:1778–1790

    Article  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  • Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S et al (2010) NCLX is an essential component of mitochondrial Na+/Ca 2+ exchange. Proc Natl Acad Sci U S A 107:436–441

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA et al (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15:1464–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey R, Botros MA, Nacev BA, Albig AR (2015) Cyclosporin A disrupts notch signaling and vascular lumen maintenance. PLoS One 10:e0119279

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez MJ, Quintanilla RA (2017) Development or disease: duality of the mitochondrial permeability transition pore. Dev Biol 426:1–7

    Article  PubMed  Google Scholar 

  • Petronilli V, Costantini P, Scorrano L, Colonna R, Passamonti S, Bernardi P (1994) The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem 269:16638–16642

    Article  CAS  PubMed  Google Scholar 

  • Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinke G, Zhou L, Sazanov LA (2020) Cryo-EM structure of the entire mammalian F-type ATP synthase. Nat Struct Mol Biol 27:1077–1085

    Article  CAS  PubMed  Google Scholar 

  • Porter GA, Beutner G (2018) Cyclophilin D, somehow a master regulator of mitochondrial function. Biomol Ther 8:176

    Google Scholar 

  • Porter GA, Hom JR, Hoffman DL, Quintanilla RA, de Bentley KLM, Sheu SS (2011) Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog Pediatr Cardiol 31:75–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Pressman BC (1976) Biological applications of ionophores. Annu Rev Biochem 45:501–530

    Article  CAS  PubMed  Google Scholar 

  • Qian T, Nieminen AL, Herman B, Lemasters JJ (1997) Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol Cell Physiol 273:C1783–C1792

    Article  CAS  Google Scholar 

  • Radhakrishnan J, Bazarek S, Chandran B, Gazmuri RJ (2015) Cyclophilin-D: a resident regulator of mitochondrial gene expression. FASEB J 29:2734–2748

    Article  CAS  PubMed  Google Scholar 

  • Rajesh KG, Sasaguri S, Suzuki R, Maeda H (2003) Antioxidant MCI-186 inhibits mitochondrial permeability transition pore and upregulates Bcl-2 expression. Am J Physiol Heart Circ Physiol 285:H2171–H2178

    Article  CAS  PubMed  Google Scholar 

  • Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833

    Article  CAS  PubMed  Google Scholar 

  • Rekuviene E, Ivanoviene L, Borutaite V, Morkuniene R (2017) Rotenone decreases ischemia-induced injury by inhibiting mitochondrial permeability transition in mature brains. Neurosci Lett 653:45–50

    Article  CAS  PubMed  Google Scholar 

  • Rolland AD, Lehmann KP, Johnson KJ, Gaido KW, Koopman P (2011) Uncovering gene regulatory networks during mouse fetal germ cell development. Biol Reprod 84:790–800

    Article  CAS  PubMed  Google Scholar 

  • Schiebel K, Weiss B, Wöhrle D, Rappold G (1993) A human pseudoautosomal gene, ADP/ATP translocase, escapes X–inactivation whereas a homologue on Xq is subject to X–inactivation. Nat Genet 3:82–87

    Article  CAS  PubMed  Google Scholar 

  • Shevach E (1985) The effects of Cyclosporin A on the immune system. Annu Rev Immunol 3:397–423

    Article  CAS  PubMed  Google Scholar 

  • Shyh-Chang N, Ng HH (2017) The metabolic programming of stem cells. Genes Dev 31:336–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Å ileikyte J, Blachly-Dyson E, Sewell R, Carpi A, Menabò R, Di Lisa F, Ricchelli F, Bernardi P, Forte M (2014) Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (translocator protein of 18 kDa (TSPO)). J Biol Chem 289:13769–13781

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Faccenda D, Campanella M (2021) Pharmacological advances in mitochondrial therapy. EBioMedicine 65:103244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spikes TE, Montgomery MG, Walker JE (2020) Structure of the dimeric ATP synthase from bovine mitochondria. Proc Natl Acad Sci U S A 117:23519–23526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepien G, Torroni A, Chung AB, Hodge JA, Wallaces DC (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267:14592–14597

    Article  CAS  PubMed  Google Scholar 

  • Suh DH, Kim M-K, Kim HS, Chung HH, Song YS (2013) Mitochondrial permeability transition pore as a selective target for anti-cancer therapy. Front Oncol 3:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Szabo I, Bernardi P, Zoratti M (1992) Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem 267:2940–2946

    Article  CAS  PubMed  Google Scholar 

  • Szeto HH (2006) Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 8:521–531

    Article  Google Scholar 

  • Taddeo EP, Laker RC, Breen DS, Akhtar YN, Kenwood BM, Liao JA, Zhang M, Fazakerley DJ, Tomsig JL, Harris TE et al (2014) Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Mol Metab 3:124–134

    Article  CAS  PubMed  Google Scholar 

  • Tanveer A, Virji S, Andreeva L, Totty NF, Hsuan JJ, Ward JM, Crompton M (1996) Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. Eur J Biochem 238:166–172

    Article  CAS  PubMed  Google Scholar 

  • Tavecchio M, Lisanti S, Bennett MJ, Languino LR, Altieri DC (2015) Deletion of Cyclophilin D impairs β-oxidation and promotes glucose metabolism. Sci Rep 5:15981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Territo PR, Mootha VK, French SA, Balaban RS (2000) Ca2+ activation of heart mitochondrial oxidative phosphorylation: role of the F0/F1-ATPase. Am J Physiol Cell Physiol 278:C423–C435

    Article  CAS  PubMed  Google Scholar 

  • Tiemeier GL, Wang G, Dumas SJ, Sol WMPJ, Avramut MC, Karakach T, Orlova VV, van den Berg CW, Mummery CL, Carmeliet P et al (2019) Closing the mitochondrial permeability transition pore in hiPSC-derived endothelial cells induces Glycocalyx formation and functional maturation. Stem Cell Rep 13:803–816

    Article  CAS  Google Scholar 

  • Torroni A, Stepien G, Hodge JA, Wallace DC (1990) Neoplastic transformation is associated with coordinate induction of nuclear and cytoplasmic oxidative phosphorylation genes. J Biol Chem 265:20589–20593

    Article  CAS  PubMed  Google Scholar 

  • Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A, Chauvin MA, Ji-Cao J, Zoulim F, Bartosch B, Ovize M et al (2014) Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63:3279–3294

    Article  CAS  PubMed  Google Scholar 

  • Twaroski DM, Yan Y, Zaja I, Clark E, Bosnjak ZJ, Bai X (2015) Altered mitochondrial dynamics contributes to propofol-induced cell death in human stem cell-derived neurons. Anesthesiology 123:1067–1083

    Article  CAS  PubMed  Google Scholar 

  • Upadhaya S, Madala S, Baniya R, Subedi SK, Saginala K, Bachuwa G (2017) Impact of cyclosporine A use in the prevention of reperfusion injury in acute myocardial infarction: a meta-analysis. Cardiol J 24:43–50

    Article  PubMed  Google Scholar 

  • Vieira HLA, Belzacq AS, Haouzi D, Bernassola F, Cohen I, Jacotot E, Ferri KF, El Hamel C, Bartle LM, Melino G et al (2001) The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene 20:4305–4316

    Article  CAS  PubMed  Google Scholar 

  • Villa A, García-Simón MI, Blanco P, Sesé B, Bogónez E, Satrustegui J (1998) Affinity chromatography purification of mitochondrial inner membrane proteins with calcium transport activity. Biochim Biophys Acta Biomembr 1373:347–359

    Article  CAS  Google Scholar 

  • Vorobjeva N, Galkin I, Pletjushkina O, Golyshev S, Zinovkin R, Prikhodko A, Pinegin V, Kondratenko I, Pinegin B, Chernyak B (2020) Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim Biophys Acta Mol basis Dis 1866:165664

    Article  CAS  PubMed  Google Scholar 

  • Vyssokikh MY, Brdiczka D (2003) The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim Pol 50:389–404

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang Y, Lin J, Chen QZ, Zhu N, Jiang DQ, Li MX (2015) Overexpression of mitochondrial Hsp75 protects neural stem cells against microglia-derived soluble factor-induced neurotoxicity by regulating mitochondrial permeability transition pore opening in vitro. Int J Mol Med 36:1487–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittington HJ, Ostrowski PJ, McAndrew DJ, Cao F, Shaw A, Eykyn TR, Lake HA, Tyler J, Schneider JE, Neubauer S et al (2018) Over-expression of mitochondrial creatine kinase in the murine heart improves functional recovery and protects against injury following ischaemia-reperfusion. Cardiovasc Res 114:858–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WiÈ©ckowski MR, Brdiczka D, Wojtczak L (2000) Long-chain fatty acids promote opening of the reconstituted mitochondrial permeability transition pore. FEBS Lett 484:61–64

    Article  PubMed  Google Scholar 

  • Yan P, Nagasawa A, Uosaki H, Sugimoto A, Yamamizu K, Teranishi M, Matsuda H, Matsuoka S, Ikeda T, Komeda M et al (2009) Cyclosporin-A potently induces highly cardiogenic progenitors from embryonic stem cells. Biochem Biophys Res Commun 379:115–120

    Article  CAS  PubMed  Google Scholar 

  • Ying Z, Xiang G, Zheng L, Tang H, Duan L, Lin X, Zhao Q, Chen K, Wu Y, Xing G et al (2018) Short-term mitochondrial permeability transition pore opening modulates histone lysine methylation at the early phase of somatic cell reprogramming. Cell Metab 28:935–945.e5

    Article  CAS  PubMed  Google Scholar 

  • Ying Z, Liu Z, Xiang G, Xin Y, Wang J, Liu X (2021) Protocols for analysis of mitochondrial permeability transition pore opening in mouse somatic cell reprogramming. STAR Protoc 2:100568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder MC (2012) Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2:a006692

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeth K, Zachariae U (2018) Ten years of high resolution structural research on the voltage dependent anion channel (VDAC)-recent developments and future directions. Front Physiol 9:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Marinelli F, Nief C, Faraldo-Gómez JD (2017) Atomistic simulations indicate the c-subunit ring of the F1Fo ATP synthase is not the mitochondrial permeability transition pore. elife 6:e23781

    Article  PubMed  PubMed Central  Google Scholar 

  • Zoratti M, Szabò I (1995) The mitochondrial permeability transition. BBA Rev Biomembr 1241:139–176

    Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res 83:213–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institutes of Health (R01DK111599) to P.L.W.

Conflict of Interest

The authors declare explicitly that there are no conflicts of interest in connection with this article.

Ethical Approval

The authors declare that this article does not contain any studies with human participants or animals.

Author Contributions

S.P.D. wrote the manuscript, and P.L.W. wrote and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela L. Wenzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dumbali, S.P., Wenzel, P.L. (2022). Mitochondrial Permeability Transition in Stem Cells, Development, and Disease. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 18. Advances in Experimental Medicine and Biology(), vol 1409. Springer, Cham. https://doi.org/10.1007/5584_2022_720

Download citation

Publish with us

Policies and ethics