Skip to main content

The Horizon of Gene Therapy in Modern Medicine: Advances and Challenges

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 8

Abstract

Gene therapy as a novel study in molecular medicine will have a significant impact on human health in the near future. In recent years, the scope of gene therapy has been developed and is now beginning to revolutionize therapeutic approaches. Accordingly, many types of diseases are now being studied and treated in clinical trials through various gene delivery vectors. The emergence of recombinant DNA technology which provides the possibility of fetal genetic screening and genetic counseling is a good case in point. Therefore, gene therapy advances are being applied to correct inherited genetic disorders such as hemophilia, cystic fibrosis, and familial hypercholesterolemia as well as acquired diseases like cancer, AIDS, Alzheimer’s disease, Parkinson’s disease, and infectious diseases like HIV. As a result, gene therapy approaches have the ability to help the vast majority of newborns with different diseases. Since these ongoing treatments and clinical trials are being developed, many more barriers and challenges have been created. In order to continue this positive growth, these challenges need to be recognized and addressed. Accordingly, safety, efficiency and also risks and benefits of gene therapy trials for each disease should be considered. As a result, sustained manufacturing of the therapeutic gene product without any harmful side effects is the least requirement for gene therapy. Herein, different aspects of gene therapy, an overview of the progress, and also the prospects for the future have been discussed for the successful practice of gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BMT:

Bone Marrow Transplant

G-CSF :

Granulocyte-Colony Stimulating Factor

HCT:

Hematopoietic Cell Transplantation

HSC:

Hematopoietic Stem Cell

HSCT:

Hematopoietic Stem Cell Transplantation

CRISPR/Cas9:

Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9

RNAi:

RNA interference

PIDs:

Primary Immune Deficiencies

SCID:

Severe Combined Immunodeficiency

SCID-X1:

X-linked Severe Combined Immunodeficiency

ADA-SCID:

Adenosine Deaminase deficient Severe Combined Immunodeficiency

CGD:

Chronic Granulomatous Disease

WAS:

Wiskott – Aldrich Syndrome

WASP:

Wiskott – Aldrich syndrome Protein

ALD:

Adrenoleukodystrophy

MLD:

Metachromatic Leukodystrophy

gp91phox :

Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2

ABCD1:

ATP Binding Cassette Subfamily D Member 1

ARSA:

Arylsulfatase A

IL2RyC :

Interleukin 2 Receptor

CCR5:

C-C Chemokine Receptor type 5

SB-transposon:

Sleeping Beauty (SB) transposon

Anti-CD19 CAR:

Anti-CD19 Chimeric Antigen Receptor

SIN-lentiviral:

Self-Inactivating (SIN) lentiviral vector

LDL receptor:

Low-Density Lipoprotein Receptor

P53 (TP53):

Tumor Protein P53

LPLD:

Lipoprotein Lipase Deficiency

SERCA2a:

Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPase

RPE65:

Retinal Pigment Epithelium-specific 65

GAD:

Glutamate Decarboxylase

FIX:

Factor IX Padua

ASPA:

Aspartoacylase

LPL:

Lipoprotein lipase

CNS:

Central Nervous System

SMA:

Spinal Muscular Atrophy

LCA:

Leber Congenital Amaurosis

LCA2:

LCA type 2

SCA:

Sickle Cell Anaemia

CF:

Cystic Fibrosis

CFTR:

Cystic Fibrosis Transmembrane Regulator

DSB:

Double Stranded Break

HDR:

Homology Directed Repair

NHEJ:

Non-Homologous End Joining

MN:

Meganuclease

ZFNs:

Zinc-Finger Nucleases

ZFPs:

Zinc Finger Proteins

TALE:

Transcription Activator Like Effector

TALENs:

Transcription Activator-Like Effector Nucleases

PAM:

Protospacer Adjacent Motif

HBB:

Hemoglobin subunit Beta

HPV:

Human Papillomaviruses

HIV:

Human Immunodeficiency Virus

HBV:

Hepatitis B virus

ALL:

Acute Lymphoblastic Leukemia

GGE:

Germline Gene Editing

DDR:

DNA Damage Response

ICL:

Interstrand Crosslink

BER:

Base Excision Repair

NER:

Nucleotide Excision Repair

TC-NER:

Transcription-Coupled NER

GG-NER:

Global Genome NER

MMR:

Mismatch Repair

HR:

Homologous Recombination

ROS:

Reactive Oxygen Species

NO:

Nitric Oxide

UV:

Ultraviolet light

CPDs:

Cyclobutane Pyrimidine Dimers

PAH:

Polycyclic Aromatic Hydrocarbon

AGTs:

O6-Alkylguanine-DNA Alkyltransferases

MSH:

MutS Homolog

MLH/PMS:

MutL Homolog/ Premenstrual Syndrome

TLS:

Translesion Synthesis

AEP:

Archaeo-Eukaryotic Primase

alt-EJ:

alternative End Joining

SSA:

Single-Strand Annealing

TGE:

Transient Gene Expression

R-proteins:

Recombinant Proteins

HEK:

Human Embryonic Kidney

CHO:

Chinese Hamster Ovary

CMV:

Cytomegalovirus

HCMV:

Human Cytomegalovirus

EBNA-1:

Epstein–Barr virus Nuclear Antigen-1

VLPs:

Virus-Like Particles

BEVS:

Baculovirus Expression Vector System

PEI:

Polyethylenimine

ds:

double-stranded

ss:

single-stranded

AAV:

Adeno Associated Viruses

rAAV:

recombinant Adeno Associated Virus

LV:

Lentiviral

IBCs:

Institutional Biosafety Committees

NIH:

National Institutes of Health

RAC:

Recombinant DNA Advisory Committee

BSL:

Biosafety Level

CBER:

Center for Biologics Evaluation and Research

cGMP:

current Good Manufacturing Practices

IND:

Investigational New Drug

GLP:

Good Laboratory Practice

RODAC:

Replicate Organism Detection and Counting

DMD:

Duchenne Muscular Dystrophy

T1DM:

Type 1 Diabetes Mellitus

T2DM:

Type 2 Diabetes Mellitus

CFR:

Code of Federal Regulations

IGF1:

Insulin-like Growth Factor 1

HGF gene:

Hepatocyte Growth Factor gene

Reg3g:

Regenerating islet-derived protein 3 gamma gene

G6Pase:

Glucose-6-Phosphatase

SAEs:

Serious Adverse Events

OTC:

Ornithine Transcarbamylase

OTCD:

Ornithine Transcarbamylase Deficiency

ATMPs:

Advanced therapy medicinal products

GTMP:

Gene Therapy Medicinal Products

sCTMPs:

somatic Cell Therapy Medicinal Products

TEPs:

Tissue-Engineered Products

MMA:

Marketing Authorization Application

CAT:

Committee for Advanced Therapies

FDA:

Food and Drug Administration

IND:

Investigational New Drug

OCTGT:

Office of Cellular, Tissue and Gene Therapy

CHMP:

Committee for Medicinal Products for Human Use

References

  • Adelman ZN, Albritton LM, Boris-Lawrie K, Buchmeier MJ, Cannon P, Cho M, DiGiusto D, Donahue JK, Federoff HJ, Hammarskjold ML, Hardison AD (2018) Protect NIH’s DNA advisory committee. Science (New York, NY) 26;362(6413):409

    Google Scholar 

  • Anguela XM, High KA (2019) Entering the modern era of gene therapy. Annu Review Med 27(70):273–88

    Google Scholar 

  • Amer MH (2014) Gene therapy for cancer: present status and future perspective. Mol Cell Ther 2:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Arjmand B, Abdollahi M, Larijani B (2017) Study break: precision medicine: a new revolution in healthcare system. Iran Biomed J 21(5):282–283

    PubMed  Google Scholar 

  • Armstrong DK, Cunningham S, Davies JC, Alton EW (2014) Gene therapy in cystic fibrosis. Arch Dis Child 99(5):465–468

    Article  PubMed  Google Scholar 

  • Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383(9911):69–82

    Article  PubMed  Google Scholar 

  • Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79(2):137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayen A, Jimenez Martinez Y, Marchal JA, Boulaiz H (2018) Recent progress in gene therapy for ovarian cancer. Int J Mol Sci 19(7)

    Google Scholar 

  • Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239

    Article  CAS  PubMed  Google Scholar 

  • Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29(5):677–684

    Article  CAS  PubMed  Google Scholar 

  • Bank A (1996) Human somatic cell gene therapy. BioEssays 18(12):999–1007

    Article  CAS  PubMed  Google Scholar 

  • Barar J, Omidi Y (2012) Translational approaches towards cancer gene therapy: hurdles and hopes. Bioimpacts 2(3):127–143

    PubMed  PubMed Central  Google Scholar 

  • Baum C, Dullmann J, Li Z, Fehse B, Meyer J, Williams DA, von Kalle C (2003) Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101(6):2099–2114

    Article  CAS  PubMed  Google Scholar 

  • Bischof J, Vietor I, Cotten M, Huber LA (1999) Transient transfection of mammary epithelial cells with a PEI/DNA/adenovirus system. Biol Chem 380(2):269–273

    Article  CAS  PubMed  Google Scholar 

  • Burger SR (2000) Design and operation of a current good manufacturing practices cell-engineering laboratory. Cytotherapy 2(2):111–122

    Article  CAS  PubMed  Google Scholar 

  • Burnight ER, Wiley LA, Mullins RF, Stone EM, Tucker BA (2014) Gene therapy using stem cells. Cold Spring Harb Perspect Med 5(4)

    Google Scholar 

  • Carvalho M, Sepodes B, Martins AP (2017) Regulatory and scientific advancements in gene therapy: state-of-the-art of clinical applications and of the supporting European regulatory framework. Front Med (Lausanne) 4:182

    Article  Google Scholar 

  • Castellani C, Assael BM (2017) Cystic fibrosis: a clinical view. Cell Mol Life Sci 74(1):129–140

    Article  CAS  PubMed  Google Scholar 

  • Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti S, Lewis LA (2016) Phase-variable heptose I glycan extensions modulate efficacy of 2C7 vaccine antibody directed against Neisseria gonorrhoeae Lipooligosaccharide. J Immunol 196(11):4576–4586

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain JR, Chamberlain JS (2017) Progress toward gene therapy for duchenne muscular dystrophy. Mol Ther 25(5):1125–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasegaran S (2017) Recent advances in the use of ZFN-mediated gene editing for human gene therapy. Cell Gene Ther Insights 3(1):33–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58(5):235–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan DK, Sivam NS, Teoh KX, Leong WP, Fui TZ, Chooi K, Khoo N, Yi FJ, Chellian J, Cheng LL, Dahiya R, Gupta G, Singhvi G, Nammi S, Hansbro PM, Dua K (2018) Gene therapy and type 1 diabetes mellitus. Biomed Pharmacother 108:1188–1200

    Article  CAS  PubMed  Google Scholar 

  • Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31(3):230–232

    Article  CAS  PubMed  Google Scholar 

  • David RM, Doherty AT (2017) Viral vectors: the road to reducing genotoxicity. Toxicol Sci 155(2):315–325

    Article  CAS  PubMed  Google Scholar 

  • Deakin CT, Alexander IE, Kerridge I (2009) Accepting risk in clinical research: is the gene therapy field becoming too risk-averse? Mol Ther 17(11):1842–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dexheimer TS (2013) DNA repair pathways and mechanisms. DNA repair of cancer stem cells. Springer, pp 19–32

    Google Scholar 

  • Doi K, Takeuchi Y (2015) Gene therapy using retrovirus vectors: vector development and biosafety at clinical trials. Uirusu 65(1):27–36

    Article  PubMed  Google Scholar 

  • Doshi BS, Arruda VR (2018) Gene therapy for hemophilia: what does the future hold? Ther Adv Hematol 9(9):273–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubé K, Simoni J, Louella M, Sylla L, Mohamed ZH, Patel H, Luter S, Collier AC (2019) Acceptability of cell and gene therapy for curing HIV infection among people living with HIV in the Northwestern United States: a qualitative study. AIDS Res Hum Retrovir 35:649–659

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M (2018) Gene therapy comes of age. Science 359(6372):eaan4672

    Article  PubMed  CAS  Google Scholar 

  • Epstein S (1996) Impure science: AIDS, activism, and the politics of knowledge. Med Soc (Berkeley):1–466

    Google Scholar 

  • Falkenhagen A, Joshi S (2018) Genetic strategies for HIV treatment and prevention. Mol Ther Nucleic Acids 13:514–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang F, Zhu P (2013) New hope of gene therapy results from improvements of lentiviral vectors-review. Zhongguo Shi Yan Xue Ye Xue Za Zhi 21(5):1336–1339

    CAS  PubMed  Google Scholar 

  • Felgner J, Heidorn K, K­rbðcher D, Frahm SO, Parwaresch R (1999) Cell lineage specificity in G-CSF receptor gene methylation. Leukemia. 1999 Apr;13(4):530–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10214858

  • Flotte TR (2015) Therapeutic germ line alteration: has CRISPR/Cas9 technology forced the question? Hum Gene Ther 26(5):245–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederickson RM, Brenner MK (2013) Introducing molecular therapy–methods & clinical development. Mol Ther 21(6):1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Liu D (2014) Gene therapy for obesity: progress and prospects. Discov Med 17(96):319–328

    PubMed  Google Scholar 

  • Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20(5):e3015

    Article  PubMed  Google Scholar 

  • Goncalves GAR, Paiva RMA (2017) Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo) 15(3):369–375

    Article  Google Scholar 

  • Gonin P, Buchholz CJ, Pallardy M, Mezzina M (2005) Gene therapy bio-safety: scientific and regulatory issues. Gene Ther 12(Suppl 1):S146–S152

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi P, Aghayan HR, Larijani B, Soleimani M, Dehpour AR, Sahebjam M, Ghaderi F, Arjmand B (2015) Stem cell-based approach for the treatment of Parkinson’s disease. Med J Islam Repub Iran 29:168

    PubMed  PubMed Central  Google Scholar 

  • Goodwin TJ, Zhou Y, Musetti SN, Liu R, Huang L (2016) Local and transient gene expression primes the liver to resist cancer metastasis. Sci Transl Med 8(364):364ra153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griesenbach U, Pytel KM, Alton EW (2015) Cystic fibrosis gene therapy in the UK and elsewhere. Hum Gene Ther 26(5):266–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griesenbach U, Davies JC, Alton E (2016) Cystic fibrosis gene therapy: a mutation-independent treatment. Curr Opin Pulm Med 22(6):602–609

    Article  CAS  PubMed  Google Scholar 

  • Griffith F (1928) The significance of Pneumococcal types. J Hyg (Lond) 27(2):113–159

    Article  CAS  Google Scholar 

  • Grilley BJ, Gee AP (2003) Gene transfer: regulatory issues and their impact on the clinical investigator and the good manufacturing production facility. Cytotherapy 5(3):197–207

    Article  CAS  PubMed  Google Scholar 

  • Guggino WB, Cebotaru L (2017) Adeno-associated virus (AAV) gene therapy for cystic fibrosis: current barriers and recent developments. Expert Opin Biol Ther 17(10):1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Shukla P (2017) Gene editing for cell engineering: trends and applications. Crit Rev Biotechnol 37(5):672–684

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Granados S, Cervera L, Kamen AA, Godia F (2018) Advancements in mammalian cell transient gene expression (TGE) technology for accelerated production of biologics. Crit Rev Biotechnol 38(6):918–940

    Article  CAS  PubMed  Google Scholar 

  • Gyngell C, Douglas T, Savulescu J (2017) The ethics of germline gene editing. J Appl Philos 34(4):498–513

    Article  PubMed  Google Scholar 

  • Hanna E, Rémuzat C, Auquier P, Toumi M (2017) Gene therapies development: slow progress and promising prospect. J Market Access Health Policy 5(1):1265293

    Article  Google Scholar 

  • Ishii T (2015) Germline genome-editing research and its socioethical implications. Trends Mol Med 21(8):473–481

    Article  PubMed  Google Scholar 

  • Jäger V, Büssow K, Schirrmann T (2015) Transient recombinant protein expression in mammalian cells. In: Animal cell culture. Springer, Cham, pp 27–64

    Chapter  Google Scholar 

  • Jimenez V, Jambrina C, Casana E, Sacristan V, Munoz S, Darriba S, Rodo J, Mallol C, Garcia M, Leon X, Marco S, Ribera A, Elias I, Casellas A, Grass I, Elias G, Ferre T, Motas S, Franckhauser S, Mulero F, Navarro M, Haurigot V, Ruberte J, Bosch F (2018) FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med 10(8)

    Google Scholar 

  • Karpati G, Lochmüller H (1997) The scope of gene therapy in humans: scientific, safety and ethical considerations. Neuromuscul Disord 7(5):273–276

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann KB, Buning H, Galy A, Schambach A, Grez M (2013) Gene therapy on the move. EMBO Mol Med 5(11):1642–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Mahmood MS, Rahman SU, Zafar H, Habibullah S, Khan Z, Ahmad A (2018) CRISPR/Cas9: the Jedi against the dark empire of diseases. J Biomed Sci 25(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kozarsky KF, Wilson JM (1995) Gene therapy of hypercholesterolemic disorders. Trends Cardiovasc Med 5(5):205–209

    Article  CAS  PubMed  Google Scholar 

  • Krokan HE, Bjoras M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5(4):a012583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • L’Abbe D, Bisson L, Gervais C, Grazzini E, Durocher Y (2018) Transient gene expression in suspension HEK293-EBNA1 cells. Methods Mol Biol 1850:1–16

    Article  PubMed  CAS  Google Scholar 

  • Larijani B, Arjmand B, Amoli MM, Ao Z, Jafarian A, Mahdavi-Mazdah M, Ghanaati H, Baradar-Jalili R, Sharghi S, Norouzi-Javidan A, Aghayan HR (2012) Establishing a cGMP pancreatic islet processing facility: the first experience in Iran. Cell Tissue Bank 13(4):569–575

    Article  PubMed  Google Scholar 

  • Lee J-H, Lim S-M, Park S-H, Min J-K, Lee GM, Kim Y-G (2017) Investigation of relationship between EBNA-1 expression level and specific foreign protein productivity in transient gene expression of HEK293 cells. Process Biochem 55:182–186

    Article  CAS  Google Scholar 

  • Li L, He Z-Y, Wei X-W, Gao G-P, Wei Y-Q (2015) Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther 26(7):452–462

    Article  CAS  PubMed  Google Scholar 

  • Longo PA, Kavran JM, Kim MS, Leahy DJ (2013) Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529:227–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukashev AN, Zamyatnin AA Jr (2016) Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Mosc) 81(7):700–708

    Article  CAS  Google Scholar 

  • Lundstrom K (2018) Viral vectors in gene therapy. Diseases 6(2)

    Google Scholar 

  • Lux CT, Scharenberg AM (2017) Therapeutic gene editing safety and specificity. Hematol Oncol Clin North Am 31(5):787–795

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma M, Balasubramanian N, Dodge R, Zhang Y (2017) Challenges and opportunities in bioanalytical support for gene therapy medicinal product development. Bioanalysis 9(18):1423–1430

    Article  CAS  PubMed  Google Scholar 

  • Maeder ML, Gersbach CA (2016) Genome-editing technologies for gene and cell therapy. Mol Ther 24(3):430–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis JP, van Steeg H, Luijten M (2013) Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Signal 18(18):2409–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JK, Haber JE (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16(5):2164–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan RA, Gray D, Lomova A, Kohn DB (2017) Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell 21(5):574–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayerossadat N, Maedeh T, Ali PA (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407

    Article  CAS  PubMed  Google Scholar 

  • Nishitsuji H, Sawada L, Sugiyama R, Takaku H (2015) ZNF10 inhibits HIV-1 LTR activity through interaction with NF-κB and Sp1 binding motifs. FEBS Lett 589(15):2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Ohmori T (2018) Advances in gene therapy for hemophilia: basis, current status, and future perspectives. Int J Hematol

    Google Scholar 

  • O’Reilly M, Jambou R, Rosenthal E, Montgomery M, Hassani M, Gargiulo L, Corrigan-Curay J (2015) The National Institutes of Health oversight of human gene transfer research: enhancing science and safety. Adv Exp Med Biol 871:31–47

    Article  PubMed  Google Scholar 

  • Pardo B, Gomez-Gonzalez B, Aguilera A (2009) DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 66(6):1039–1056

    Article  CAS  PubMed  Google Scholar 

  • Payab M, Goodarzi P, Foroughi Heravani N, Hadavandkhani M, Zarei Z, Falahzadeh K, Larijani B, Rahim F, Arjmand B (2018) Stem cell and obesity: current state and future perspective. Adv Exp Med Biol 1089:1–22

    Article  CAS  PubMed  Google Scholar 

  • Pergament E (2016) The promise of gene therapy. Curr Opin Obstet Gynecol 28(2):132–135

    Article  PubMed  Google Scholar 

  • Pranke I, Golec A, Hinzpeter A, Edelman A, Sermet-Gaudelus I (2019) Emerging therapeutic approaches for cystic fibrosis. From gene editing to personalized medicine. Front Pharmacol 10:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prickett M, Jain M (2013) Gene therapy in cystic fibrosis. Transl Res 161(4):255–264

    Article  CAS  PubMed  Google Scholar 

  • Raghavan N, Tosto G (2017) Genetics of Alzheimer’s disease: the importance of polygenic and epistatic components. Curr Neurol Neurosci Rep 17(10):78

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy-an overview. J Clin Diagn Res 9(1):GE01–GE06

    PubMed  PubMed Central  Google Scholar 

  • Ramirez CL, Certo MT, Mussolino C, Goodwin MJ, Cradick TJ, McCaffrey AP, Cathomen T, Scharenberg AM, Joung JK (2012) Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res 40(12):5560–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redman M, King A, Watson C, King D (2016) What is CRISPR/Cas9? Arch Dis Child Educ Pract 101(4):213–215

    Article  Google Scholar 

  • Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol Ther 80(1):35–47

    Article  CAS  PubMed  Google Scholar 

  • Rogers GL, Cannon PM (2017) Gene therapy approaches to human immunodeficiency virus and other infectious diseases. Hematol Oncol Clin North Am 31(5):883–895

    Article  PubMed  Google Scholar 

  • Rogers GL, Herzog RW (2015) Gene therapy for hemophilia. Front Biosci (Landmark Ed) 20:556–603

    Article  CAS  Google Scholar 

  • Roy S (2017) Impact of UV radiation on genome stability and human health. Adv Exp Med Biol 996:207–219

    Article  CAS  PubMed  Google Scholar 

  • Sahu S, Roy P, Datta K, Rao GH, Sen D (2018) Gene therapy to treat obesity. Gene Ther Mol Biol 18

    Google Scholar 

  • Salmikangas P, Schuessler-Lenz M, Ruiz S, Celis P, Reischl I, Menezes-Ferreira M, Flory E, Renner M, Ferry N (2015) Marketing regulatory oversight of Advanced Therapy Medicinal Products (ATMPs) in Europe: the EMA/CAT perspective. Adv Exp Med Biol 871:103–130

    Article  PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santivasi WL, Xia F (2014) Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal 21(2):251–259

    Article  CAS  PubMed  Google Scholar 

  • Shim G, Kim D, Park GT, Jin H, Suh S-K, Oh Y-K (2017) Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin 38(6):738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sia RH, Dawson MH (1931) In vitro transformation of Pneumococcal types: II. The nature of the factor responsible for the transformation of Pneumococcal types. J Exp Med 54(5):701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Paques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11(1):11–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafeev YS, Menshikov MY, Parfyonova YV (2019) Gene therapy of type 2 diabetes mellitus: state of art. Ter Arkh 91(2):149–152

    PubMed  Google Scholar 

  • Steffin DHM, Hsieh EM, Rouce RH (2019) Gene therapy: Current applications and future possibilities. Adv Pediatr 66:37–54

    Article  PubMed  Google Scholar 

  • Stewart C, Ralyea C, Lockwood S (2019) Ovarian Cancer: an integrated review. Semin Oncol Nurs 35(2):151–156

    Article  PubMed  Google Scholar 

  • Swindle S (2018) Biosafety in handling gene transfer vectors. Curr Protoc Hum Genet 96(1):12.11. 11–12.11. 17

    Google Scholar 

  • Szybalska EH, Szybalski W (1962) Genetics of human cess line. IV. DNA-mediated heritable transformation of a biochemical trait. Proc Natl Acad Sci U S A 48:2026–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne B, Takeya R, Vitelli F, Swanson X (2018) Gene therapy. Adv Biochem Eng Biotechnol 165:351–399

    CAS  PubMed  Google Scholar 

  • Wang D, Gao G (2014) State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discov Med 18(98):151–161

    PubMed  PubMed Central  Google Scholar 

  • Wang H-X, Li M, Lee CM, Chakraborty S, Kim H-W, Bao G, Leong KW (2017) CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem Rev 117(15):9874–9906

    Article  CAS  PubMed  Google Scholar 

  • Wirth T, Ylä-Herttuala S (2014) Gene therapy used in cancer treatment. Biomedicine 2(2):149–162

    Google Scholar 

  • Wirth T, Parker N, Yla-Herttuala S (2013) History of gene therapy. Gene 525(2):162–169

    Article  CAS  PubMed  Google Scholar 

  • Yi C, He C (2013) DNA repair by reversal of DNA damage. Cold Spring Harb Perspect Biol 5(1):a012575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15(8):541

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Walter JC (2014) Mechanism and regulation of incisions during DNA interstrand cross-link repair. DNA Repair (Amst) 19:135–142

    Article  CAS  Google Scholar 

  • Zhang Y, Mu W, Wang H (2017) Gene editing in T cell therapy. J Genet Genomics 44(9):415–422

    Article  PubMed  Google Scholar 

  • Zhang HX, Zhang Y, Yin H (2019) Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol Ther 27(4):735–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Washington MT (2017) Translesion synthesis: insights into the selection and switching of DNA polymerases. Genes (Basel) 8(1)

    Google Scholar 

  • Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64(5):679–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mohsen Khorshidi and Dr. Seyed Majid Manavi for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arjmand, B. et al. (2019). The Horizon of Gene Therapy in Modern Medicine: Advances and Challenges. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 8. Advances in Experimental Medicine and Biology(), vol 1247. Springer, Cham. https://doi.org/10.1007/5584_2019_463

Download citation

Publish with us

Policies and ethics