Skip to main content

Evaluation of Proliferation and Osteogenic Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Porous Scaffolds

  • Conference paper
  • First Online:
Tissue Engineering and Regenerative Medicine

Abstract

Introduction: Human umbilical cord-derived mesenchymal stem cells (UCMSCs) are multiple potential stem cells that can differentiate into various kinds of functional cells, including adipocytes, osteoblasts, and chondroblasts. Thus, UCMSCs have recently been used in both stem cell therapy and tissue engineering applications to produce various functional tissues. This study aimed to evaluate the proliferation and differentiation of UCMSCs on porous scaffolds.

Methods: UCMSCs were established in a previous study and kept in liquid nitrogen. They were thawed and expanded in vitro to yield enough cells for further experiments. The cells were characterized as having MSC phenotype. They were seeded onto culture medium-treated porous scaffolds or on non-treated porous scaffolds at different densities of UCMSCs (105, 2.1 × 105, and 5 × 105 cells/0.005 g scaffold). The existence of UCMSCs on the scaffold was evaluated by nucleic staining using Hoechst 33342 dye, while cell proliferation on the scaffold was determined by MTT assay. Osteogenic differentiation was evaluated by changes in cellular morphology, accumulation of extracellular calcium, and expression of osteoblast-specific genes (including runx2, osteopontin (OPN), and osteocalcin (OCN)).

Results: The data showed that UCMSCs could attach, proliferate, and differentiate on both treated and non-treated scaffolds but were better on the treated scaffold. At a cell density of 105 cells/0.005 g scaffold, the adherent and proliferative abilities of UCMSCs were higher than that of the other densities after 14 days of culture (p < 0.05). Adherent UCMSCs on the scaffold could be induced into osteoblasts in the osteogenic medium after 21 days of induction. These cells accumulated calcium in the extracellular matrix that was positive with Alizarin Red staining. They also expressed some genes related to osteoblasts, including runx2, OPN, and OCN.

Conclusion: UCMSCs could adhere, proliferate, and differentiate into osteoblasts on porous scaffolds. Therefore, porous scaffolds (such as Variotis) may be suitable scaffolds for producing bone tissue in combination with UCMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

HAc:

Hyaluronic acid

OCN :

Osteocalcin

OPN :

Osteopontin

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

UCMSCs:

Umbilical cord-derived mesenchymal stem cells

References

  • Ahmadi, M., Seyedjafari, E., Zargar, S. J., Birhanu, G., Zandi-Karimi, A., Beiki, B., & Tuzlakoglu, K. (2017). Osteogenic differentiation of mesenchymal stem cells cultured on PLLA scaffold coated with Wharton’s Jelly. EXCLI Journal, 16, 785–794.

    PubMed  PubMed Central  Google Scholar 

  • Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone tissue engineering: Recent advances and challenges. Critical Reviews in Biomedical Engineering, 40(5), 363–408.

    Article  Google Scholar 

  • Aravamudhan, A., Ramos, D. M., Nip, J., Harmon, M. D., James, R., Deng, M., Laurencin, C. T., Yu, X., & Kumbar, S. G. (2013). Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. Journal of Biomedical Nanotechnology, 9(4), 719–731.

    Article  CAS  Google Scholar 

  • Ark, M., Boughton, P., Lauto, A., Tran, G. T., Chen, Y., Cosman, P. H., & Dunstan, C. R. (2016). Characterisation of a novel light activated adhesive scaffold: Potential for device attachment. Journal of the Mechanical Behavior of Biomedical Materials, 62(Supplement C), 433–445.

    Article  CAS  Google Scholar 

  • Bruderer, M., Richards, R., Alini, M., & Stoddart, M. (2014). Role and regulation of RUNX2 in osteogenesis. European Cells & Materials, 28(28), 269–286.

    Article  CAS  Google Scholar 

  • Chen, W., Liu, J., Manuchehrabadi, N., Weir, M. D., Zhu, Z., & Xu, H. H. (2013). Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects. Biomaterials, 34(38), 9917–9925.

    Article  CAS  Google Scholar 

  • Cooper, G. M. (2000). Cell proliferation in development and differentiation. In The cell: A molecular approach (2nd ed.). Sunderland: Sinauer Associates.

    Google Scholar 

  • Costa-Pinto, A. R., Reis, R. L., & Neves, N. M. (2011). Scaffolds based bone tissue engineering: The role of chitosan. Tissue Engineering Part B, Reviews, 17(5), 331–347.

    Article  CAS  Google Scholar 

  • David, J., Magee, J. E. Z., & Quillen, W. S. (2007). Scientific foundations and principles of practice in musculoskeletal rehabilitation. In Musculoskeletal Rehabilitation Series (MRS), Chapter 1 (pp. 1–22). Missouri: Saunders Elsevier.

    Google Scholar 

  • Ding, H., Chen, S., Yin, J. H., Xie, X. T., Zhu, Z. H., Gao, Y. S., & Zhang, C. Q. (2014). Continuous hypoxia regulates the osteogenic potential of mesenchymal stem cells in a time-dependent manner. Molecular Medicine Reports, 10(4), 2184–2190.

    Article  CAS  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  Google Scholar 

  • Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., & Karsenty, G. (1997). Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 89(5), 747–754.

    Article  CAS  Google Scholar 

  • Fakhry, M., Hamade, E., Badran, B., Buchet, R., & Magne, D. (2013). Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World Journal of Stem Cells, 5(4), 136–148.

    Article  Google Scholar 

  • Goldstein, A. S. (2001). Effect of seeding osteoprogenitor cells as dense clusters on cell growth and differentiation. Tissue Engineering, 7(6), 817–827.

    Article  CAS  Google Scholar 

  • Hall, B. K., & Miyake, T. (2000). All for one and one for all: Condensations and the initiation of skeletal development. BioEssays, 22(2), 138–147.

    Article  CAS  Google Scholar 

  • Holzmann, P., Niculescu-Morzsa, E., Zwickl, H., Halbwirth, F., Pichler, M., Matzner, M., Gottsauner-Wolf, F., & Nehrer, S. (2010). Investigation of bone allografts representing different steps of the bone bank procedure via the CAM-model. ALTEX-Alternatives to Animal Experimentation, 27(2), 97–103.

    Google Scholar 

  • Huang, W., Yang, S., Shao, J., & Li, Y.-P. (2007). Signaling and transcriptional regulation in osteoblast commitment and differentiation. Frontiers in Bioscience: a Journal and Virtual Library, 12, 3068.

    Article  CAS  Google Scholar 

  • Huycke, T. R., Eames, B. F., & Kimmel, C. B. (2012). Hedgehog-dependent proliferation drives modular growth during morphogenesis of a dermal bone. Development, 139(13), 2371–2380.

    Article  CAS  Google Scholar 

  • Jafary, F., Hanachi, P., & Gorjipour, K. (2017). Osteoblast differentiation on collagen scaffold with immobilized alkaline phosphatase. International Journal of Organ Transplantation Medicine, 8(4), 195–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, E., & Hinds, P. (2012). The retinoblastoma protein in osteosarcomagenesis. Rijeka: InTech.

    Book  Google Scholar 

  • Lian, J. B., Stein, G. S., Stewart, C., Puchacz, E., Mackowiak, S., Aronow, M., Von Deck, M., & Shalhoub, V. (1989). Osteocalcin: Characterization and regulated expression of the rat gene. Connective Tissue Research, 21(1–4), 61–68. discussion 69.

    Article  CAS  Google Scholar 

  • Lian, J. B., Stein, G. S., Stein, J. L., & van Wijnen, A. J. (1998). Osteocalcin gene promoter: Unlocking the secrets for regulation of osteoblast growth and differentiation. Journal of Cellular Biochemistry. Supplement, 30–31, 62–72.

    Article  Google Scholar 

  • McKee, M. D., & Nanci, A. (1996). Osteopontin: An interfacial extracellular matrix protein in mineralized tissues. Connective Tissue Research, 35(1–4), 197–205.

    Article  CAS  Google Scholar 

  • Mishra, R., Bishop, T., Valerio, I. L., Fisher, J. P., & Dean, D. (2016). The potential impact of bone tissue engineering in the clinic. Regenerative Medicine, 11(6), 571–587.

    Article  CAS  Google Scholar 

  • Oldberg, A., Franzén, A., & Heinegård, D. (1986). Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proceedings of the National Academy of Sciences, 83(23), 8819–8823.

    Article  CAS  Google Scholar 

  • Pavasant, P., Shizari, T. M., & Underhill, C. B. (1994). Distribution of hyaluronan in the epiphysial growth plate: Turnover by CD44-expressing osteoprogenitor cells. Journal of Cell Science, 107(Pt 10), 2669–2677.

    CAS  PubMed  Google Scholar 

  • Roach, H. (1994). Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biology International, 18(6), 617–628.

    Article  CAS  Google Scholar 

  • Robling, A. G., Castillo, A. B., & Turner, C. H. (2006). Biomechanical and molecular regulation of bone remodeling. Annual Review of Biomedical Engineering, 8, 455–498.

    Article  CAS  Google Scholar 

  • Rutkovskiy, A., Stensløkken, K.-O., & Vaage, I. J. (2016). Osteoblast differentiation at a glance. Medical Science Monitor Basic Research, 22, 95–106.

    Article  Google Scholar 

  • Sloan, A. J. (2015). Chapter 29: Biology of the dentin-pulp complex. In A. Vishwakarma, P. Sharpe, S. Shi, & M. Ramalingam (Eds.), Stem cell biology and tissue engineering in dental sciences (pp. 371–378). Boston: Academic.

    Chapter  Google Scholar 

  • Van Pham, P., Truong, N. C., Le, P. T.-B., Tran, T. D.-X., Vu, N. B., Bui, K. H.-T., & Phan, N. K. (2016). Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. Cell and Tissue Banking, 17(2), 289–302.

    Article  Google Scholar 

  • Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8–9), 991–1007.

    Article  CAS  Google Scholar 

  • Wang, L., Singh, M., Bonewald, L., & S Detamore, M. (2009). Signaling strategies for osteogenic differentiation of human umbilical cord mesenchymal stromal cells for 3D bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 3, 398–404.

    Article  CAS  Google Scholar 

  • Wang, L., Dormer, N. H., Bonewald, L. F., & Detamore, M. S. (2010). Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Engineering Part A, 16(6), 1937–1948.

    Article  CAS  Google Scholar 

  • Wang, P., Zhao, L., Liu, J., Weir, M. D., Zhou, X., & Xu, H. H. K. (2014). Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Research, 2, 14017.

    Article  CAS  Google Scholar 

  • Wei, J., & Karsenty, G. (2015). An overview of the metabolic functions of osteocalcin. Reviews in Endocrine & Metabolic Disorders, 16(2), 93–98.

    Article  CAS  Google Scholar 

  • Yassin, M. A., Leknes, K. N., Pedersen, T. O., Xing, Z., Sun, Y., Lie, S. A., Finne-Wistrand, A., & Mustafa, K. (2015). Cell seeding density is a critical determinant for copolymer scaffolds-induced bone regeneration. Journal of Biomedical Materials Research Part A, 103(11), 3649–3658.

    Article  CAS  Google Scholar 

  • Zhang, M., Boughton, P., Rose, B., Lee, C. S., & Hong, A. M. (2013). The use of porous scaffold as a tumor model. International Journal of Biomaterials, 2013, 396056.

    Article  Google Scholar 

  • Zhang, M., Rose, B., Lee, C. S., & Hong, A. M. (2015). In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines. Cancer Biology & Therapy, 16(8), 1231–1240.

    Article  Google Scholar 

  • Zhou, H., Weir, M. D., & Xu, H. H. (2011). Effect of cell seeding density on proliferation and osteodifferentiation of umbilical cord stem cells on calcium phosphate cement-fiber scaffold. Tissue Engineering Part A, 17(21–22), 2603–2613.

    Article  CAS  Google Scholar 

  • Ziros, P. G., Basdra, E. K., & Papavassiliou, A. G. (2008). Runx2: Of bone and stretch. The International Journal of Biochemistry & Cell Biology, 40(9), 1659–1663.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research is funded by the National University Ho Chi Minh City (VNU-HCM) under grant number NV2018-18-2.

Competing Interests

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Van Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dao, T.TT., Nguyen, C.TH., Vu, N.B., Le, H.TN., Nguyen, P.DN., Van Pham, P. (2019). Evaluation of Proliferation and Osteogenic Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Porous Scaffolds. In: Pham, P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology(), vol 1084. Springer, Cham. https://doi.org/10.1007/5584_2019_343

Download citation

Publish with us

Policies and ethics