Skip to main content

Stem Cells Derived from Dental Tissues

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1144))

Abstract

Stem cells are undifferentiated cells located in different parts of the body. The major role of stem cells is to restore of injured tissues. Since the discover of stem cells, they gained a big attention due to their differentiation and regeneration capacity. The main source of stem cells was known as bone marrow. However, different sources for obtaining stem cells were discovered. Dental tissues, a new source for stem cells, provide cells having mesenchymal stem cell characteristics such as fibroblast-like structure, expression of surface antigens specific for mesenchymal stem cells, regeneration ability, multilineage differentiation capacity and immunomodulatory features. Dental pulp stem cells (DPSCs), dental follicle progenitor cells (DFPCs), stem cells from apical papilla (SCAP), tooth germ stem cells (TGSCs) and periodontal ligament stem cells (PDLSCs) are stem cells derived from dental tissues as well as stem cells from exfoliated deciduous teeth (SHED). Dental stem cells express mesenchymal stem cell markers like Stro-1, CD146, CD106, CD90, CD73 CD29 and CD13. However, they do not express hematopoietic stem cell markers such as CD11b, CD45 and CD34. Dental stem cells are able to undergo myogenic, chondrogenic, adipogenic, neurogenic, osteogenic and odontogenic differentiation. Thanks to these differentiation ability of dental stem cells, they can easily be manipulated in regenerative medicine. Dental stem cells, that can effortlessly be transfected, can also be used in cell therapy application. Immunomodulatory features of dental stem cells make them suitable candidates for the therapy of immune-related disorders. Dental stem cells with high potentials such as ability of self-renewal, mesenchymal stem cell characteristics, multilineage differentiation and immunomodulation are promising tool for in vitro and in vivo differentiation studies as well as the therapy of immune-related diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADSCs:

Stem cells derived from adipose tissue

ASCs:

Adult stem cells

BMP:

Bone morphogenic protein

BMSCs:

Bone marrow stem cells

CFU-F:

Colony forming unit fibroblast assay

Col-I:

Collagen-I

DFPCs:

Dental follicle progenitor cells

DPSCs:

Dental pulp stem cells

ESCs:

Embryonic stem cells

FGF:

Fibroblast growth factor

HGF:

Hepatocyte growth factor

HLA-G:

Human leukocyte antigen G

ICA:

Islet cell aggregates

IDO:

Indole amine 2,3-dioxygenase

IDPSCs:

Immature DPSCs

IL-6:

Interleukin-6

iPSCs:

Induced pluripotent stem cells

MI:

Myocardial infarction

MSCs:

Mesenchymal stem cells

NO:

Nitric oxide

PBMCs:

Peripheral Blood Mononuclear Cells

PDLSCs:

Periodontal ligament stem cells

PGE2:

Prostaglandin E2

SCAP:

Stem cells from apical papilla

SHED:

Stem cells from exfoliated deciduous teeth

SLE:

Systemic lupus erythematosus

SSEA:

Stage-specific embryonic antigens

TGF-β:

Transforming growth factor beta

TGSCs:

Tooth germ stem cells

Th17:

T helper 17

VEGF:

Vascular endothelial growth factor

References

  • Anitua E, Troya M, Zalduendo M (2018) Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 20(4):479–498

    Article  PubMed  Google Scholar 

  • Armiñán A et al (2009) Cardiac differentiation is driven by NKX2. 5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells Dev 18:907–918

    Article  CAS  PubMed  Google Scholar 

  • Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26:1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Aydin S, Yalvac ME, ÖZCAN F, ŞAHİN F (2016) Pluronic PF68 increases transfection efficiency in electroporationof mesenchymal stem cells. Turk J Biol 40:747–754

    Article  CAS  Google Scholar 

  • Bartold PM, Mcculloch CA, Narayanan AS, Pitaru S (2000) Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontology 24(1):253–269

    Article  CAS  Google Scholar 

  • Blau HM, Brazelton T, Weimann J (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841

    Article  CAS  PubMed  Google Scholar 

  • Bosshardt D (2005) Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84:390–406

    Article  CAS  PubMed  Google Scholar 

  • Carinci F et al (2008) Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpar stem cells. J Craniofac Sur 19:616–625

    Article  Google Scholar 

  • Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee K (2006) Essentials of oral histology. Jaypee Brothers, Medical Publishers. https://doi.org/10.5005/jp/books/10289

  • d’Aquino R, Papaccio G, Laino G, Graziano A (2008) Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 4:21–26

    Article  PubMed  Google Scholar 

  • d’Aquino R et al (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83

    Article  PubMed  Google Scholar 

  • da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  CAS  PubMed  Google Scholar 

  • d’Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14:1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Derfoul A, Perkins GL, Hall DJ, Tuan RS (2006) Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 24:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Doğan A, Yalvaç ME, Şahin F, Kabanov AV, Palotás A, Rizvanov AA (2012) Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. Int J Nanomedicine 7:4849

    PubMed  PubMed Central  Google Scholar 

  • Erickson CA, Reedy MV (1998) 5 neural crest development: the interplay between morphogenesis and cell differentiation. In: Current topics in developmental biology, vol 40. Elsevier, London, pp 177–209

    Chapter  Google Scholar 

  • Esmaeilzadeh A, Reyhani E, Bahmaie N (2016) Immunobiology of dental tissue-derived stem cells; as a potentiated candidate for cell therapy. Gene Cell Ther 3:28–29

    Google Scholar 

  • Estrela C, AHGD A, Kitten GT, Vencio EF, Gava E (2011) Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J 22:91–98

    Article  PubMed  Google Scholar 

  • Feng F et al (2010) Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis 16:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedenstein A, Chailakhjan R, Lalykina K (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif 3:393–403

    Article  CAS  Google Scholar 

  • Gandia C et al (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26:638–645

    Article  PubMed  Google Scholar 

  • Gay IC, Chen S, MacDougall M (2007) Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res 10:149–160

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy V et al (2011) Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 90:646–652

    Article  CAS  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 97:13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronthos S et al (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article  CAS  PubMed  Google Scholar 

  • Guzmán-Uribe D, Estrada KNA, AdJP G, Pérez SM, Ibáñez RR (2012) Development of a three-dimensional tissue construct from dental human Ectomesenchymal stem cells: in vitro and in vivo study. Open Dent J 6(Suppl 1):226–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasharoni A, Zilberman Y, Turgeman G, Helm GA, Liebergall M, Gazit D (2005) Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein—2. J Neurosurg Spine 3:47–52

    Article  PubMed  Google Scholar 

  • Huang T, He D, Kleiner G, Kuluz JT (2007) Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. J Spinal Cord Med 30:S35–S40

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang AHC, Chen YK, Lin LM, Shieh TY, Chan AWS (2008) Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med 37:571–574

    Article  CAS  PubMed  Google Scholar 

  • Huang G-J, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda E et al (2008) Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation 76:495–505

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  CAS  PubMed  Google Scholar 

  • Johnston CJ, Smyth DJ, Dresser DW, Maizels RM (2016) TGF-β in tolerance, development and regulation of immunity. Cell Immunol 299:14–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaöz E et al (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133:95–112

    Article  CAS  PubMed  Google Scholar 

  • Kerkis I et al (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184:105–116

    Article  CAS  PubMed  Google Scholar 

  • Khan K, Cook J, Bonar F, Harcourt P, Astrom M (1991) Caplan AI: mesenchymal stem cells. J Orthop Res 9(42):641–650

    Google Scholar 

  • Kim H-S et al (2010) Immunomodulatory effect of canine periodontal ligament stem cells on allogenic and xenogenic peripheral blood mononuclear cells. J Periodontal Implant Sci 40:265–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim B-C, Bae H, Kwon I-K, Lee E-J, Park J-H, Khademhosseini A, Hwang Y-S (2012) Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev 18:235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DK, Song SU (2018) Immunomodulatory mechanisms of mesenchymal stem cells and their therapeutic applications. Cell Immunol 326:68–76

    Article  CAS  PubMed  Google Scholar 

  • Lee S et al (2011) Comparison of mesenchymal-like stem/progenitor cells derived from supernumerary teeth with stem cells from human exfoliated deciduous teeth. Regen Med 6:689–699

    Article  PubMed  Google Scholar 

  • Lin L, Du L (2018) The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol 326:24–32

    Article  CAS  PubMed  Google Scholar 

  • Lindroos B, Mäenpää K, Ylikomi T, Oja H, Suuronen R, Miettinen S (2008) Characterisation of human dental stem cells and buccal mucosa fibroblasts. Biochem Biophys Res Commun 368:329–335

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Li W, Shi S, Habelitz S, Gao C, DenBesten P (2005) MEPE is downregulated as dental pulp stem cells differentiate. Arch Oral Biol 50:923–928

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Jin T, Chang S, Ritchie HH, Smith AJ, Clarkson BH (2007) Matrix and TGF-β-related gene expression during human dental pulp stem cell (DPSC) mineralization. In Vitro Cell Dev Biol Anim 43:120–128

    Article  CAS  PubMed  Google Scholar 

  • Liu J et al (2015) Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells 33:627–638

    Article  CAS  PubMed  Google Scholar 

  • Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Giannobile W, Helms J, Hollister S, Krebsbach P, Longaker M, Shi S (2006) Craniofacial tissue engineering by stem cells. J Dent Res 85:966–979

    Article  CAS  PubMed  Google Scholar 

  • Martens W, Bronckaers A, Politis C, Jacobs R, Lambrichts I (2013) Dental stem cells and their promising role in neural regeneration: an update. Clin Oral Investig 17:1969–1983

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto R et al (2005) Vascular endothelial growth factor–expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol 25:1168–1173

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci 100:5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morsczeck C et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M (2009) Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 35:1536–1542

    Article  PubMed  Google Scholar 

  • Nör J (2006) Buonocore memorial lecture: tooth regeneration in operative dentistry. Oper Dent 31:633–642

    Article  PubMed  Google Scholar 

  • Nuti N, Corallo C, Chan B, Ferrari M, Gerami-Naini B (2016) Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep 12:511–523

    Article  CAS  PubMed  Google Scholar 

  • Özdemir AT, Özdemir RBÖ, Kırmaz C, Sarıboyacı AE, Halbutoğlları ZSÜ, Özel C, Karaöz E (2016) The paracrine immunomodulatory interactions between the human dental pulp derived mesenchymal stem cells and CD4 T cell subsets. Cell Immunol 310:108–115

    Article  CAS  PubMed  Google Scholar 

  • Pereira R et al (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci 92:4857–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitaru S, Pritzki A, Bar-Kana I, Grosskopf A, Savion N, Narayanan A (2002) Bone morphogenetic protein 2 induces the expression of cementum attachment protein in human periodontal ligament clones. Connect Tissue Res 43:257–264

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Pivoriūnas A et al (2009) Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth. Stem Cells Dev 19:1081–1093

    Article  CAS  Google Scholar 

  • Rodríguez-Lozano FJ et al (2011) Mesenchymal stem cells derived from dental tissues. Int Endod J 44:800–806

    Article  PubMed  Google Scholar 

  • Seo B-M et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  • Seo B-M, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S (2005) Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 84:907–912

    Article  PubMed  Google Scholar 

  • Shi S, Bartold P, Miura M, Seo B, Robey P, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199

    Article  CAS  PubMed  Google Scholar 

  • Sonoyama W et al (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT-J (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Suchánek J, Soukup T, Ivancaková R, Karbanová J, Hubková V, Pytlík R, Kucerová L (2007) Human dental pulp stem cells-isolation and long term cultivation. Acta Med (Hradec Kralove) 50:195–201

    Article  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Tang T, Xu X, Dai K, Yu C, Yue B, Lou J (2005) Ectopic bone formation of human bone morphogenetic protein-2 gene transfected goat bone marrow-derived mesenchymal stem cells in nude mice. Chin J Traumatol Zhonghua chuang shang za zhi 8:3–7

    CAS  PubMed  Google Scholar 

  • Taşlı PN, Yalvaç ME, Sofiev N, Şahin F (2013) Effect of F68, F127, and P85 pluronic block copolymers on odontogenic differentiation of human tooth germ stem cells. J Endod 39:1265–1271

    Article  PubMed  Google Scholar 

  • Taşlı PN, Aydın S, Yalvaç ME, Şahin F (2014) Bmp 2 and bmp 7 induce odonto-and osteogenesis of human tooth germ stem cells. Appl Biochem Biotechnol 172:3016–3025

    Article  CAS  PubMed  Google Scholar 

  • Taşlı PN, Aydın S, Şahin F (2016a) Immunomodulatory properties of stem cells derived from dental tissues. In: Dental stem cells. Springer, Cham, pp 29–45

    Chapter  Google Scholar 

  • Taşlı PN, Doğan A, Demirci S, Şahin F (2016b) Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology 68:319–329

    Article  CAS  PubMed  Google Scholar 

  • Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I (2007) Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem Biophys Res Commun 357:917–923

    Article  CAS  PubMed  Google Scholar 

  • Volponi AA, Pang Y, Sharpe PT (2010) Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 20:715–722

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S, Wang S (2010) Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 19:1375–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23:392–402

    Article  CAS  PubMed  Google Scholar 

  • Yalvaç ME (2008) Investigation of pluripotent stem cells in human dental follicle. M. Sc. dissertation. Istanbul Technical University, Institute of Science and Technology

    Google Scholar 

  • Yalvac M et al (2010) Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo-and neurogenesis. Pharmacogenomics J 10:105–113

    Article  CAS  PubMed  Google Scholar 

  • Yalvaç ME et al (2011) Differentiation and neuro-protective properties of immortalized human tooth germ stem cells. Neurochem Res 36:2227–2235

    Article  CAS  PubMed  Google Scholar 

  • Yamaza T et al (2010) Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 1:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2007a) Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology 107:17–29

    Article  PubMed  Google Scholar 

  • Yang X, Zhang W, van den Dolder J, Walboomers XF, Bian Z, Fan M, Jansen JA (2007b) Multilineage potential of STRO-1+ rat dental pulp cells in vitro. J Tissue Eng Regen Med 1:128–135

    Article  CAS  PubMed  Google Scholar 

  • Yao S, Pan F, Prpic V, Wise G (2008) Differentiation of stem cells in the dental follicle. J Dent Res 87:767–771

    Article  CAS  PubMed  Google Scholar 

  • Yildirim S, Zibandeh N, Genc D, Ozcan EM, Goker K, Akkoc T (2016) The comparison of the immunologic properties of stem cells isolated from human exfoliated deciduous teeth, dental pulp, and dental follicles. Stem Cells Int 2016:4682875

    Article  CAS  PubMed  Google Scholar 

  • Zhang XS et al (2004) Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. J Gene Med 6:4–15

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA (2006a) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12:2813–2823

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Walboomers XF, van Kuppevelt TH, Daamen WF, Bian Z, Jansen JA (2006b) The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials 27:5658–5668

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safa Aydin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aydin, S., Şahin, F. (2019). Stem Cells Derived from Dental Tissues. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 5. Advances in Experimental Medicine and Biology(), vol 1144. Springer, Cham. https://doi.org/10.1007/5584_2018_333

Download citation

Publish with us

Policies and ethics