Skip to main content

Clostridium difficile Colitis Prevention and Treatment

  • Chapter
  • First Online:
Probiotics and Child Gastrointestinal Health

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 1125))

Abstract

Clostridium difficile (C. diff) is the most common causative agent of antibiotic-associated diarrhea and colitis. This spore-forming, obligate anaerobic, gram-positive bacillus is becoming responsible for an increasing number of infections worldwide, both in community and in hospital settings, whose severity can vary widely from an asymptomatic infection to a lethal disease. While discontinuation of antimicrobial agents and antibiotic treatment of the infection remain the cornerstone of therapy, the use of probiotics, especially Saccharomyces boulardii, and more recently of fecal microbiota transplantation have become valid forms of prevention and/or therapy and are here critically examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams DJ, Eberly MD, Rajnik M et al (2017) Risk factors for community-associated clostridium difficile infection in children. J Pediatr 186:105–109

    PubMed  Google Scholar 

  • Ambalam P, Kondepudi KK, Balusupati P et al (2015) Prebiotic preferences of human lactobacilli strains in co-culture with bifidobacteria and antimicrobial activity against clostridium difficile. J Appl Microbiol 119:1672–1682

    CAS  PubMed  Google Scholar 

  • Buts JP, Corthier G, Delmee M (1993) Saccharomyces boulardii for Clostridium difficile – associated enteropathies in infants. J Pediatr Gastroenterol Nutr 16:419–425

    CAS  PubMed  Google Scholar 

  • Buts JP, De Keyser N, Marandi S et al (1999) Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gut 45:89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron D, Hock QS, Kadim M et al (2017) Probiotics for gastrointestinal disorders: proposed recommendations for children of the Asia-Pacific region. World J Gastroenterol 23:7952–7964

    PubMed  PubMed Central  Google Scholar 

  • Cammarota G, Ianiro G, Gasbarrini A (2014) Fecal microbiota transplantation for the treatment of clostridium difficile infection: a systematic review. J Clin Gastroenterol 48:693–702

    PubMed  Google Scholar 

  • Castagliuolo I, Riegler MF, Valenick L et al (1999) Saccharomyces boulardii protease inhibits the effects of clostridium difficile toxins A and B in human colonic mucosa. Infect Immun 67:302–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Kokkotou EG, Mustafa N et al (2006) Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against clostridium difficile toxin A-induced enteritis. J Biol Chem 281:24449–24454

    CAS  PubMed  Google Scholar 

  • Crow JR, Davis SL, Chaykosky DM et al (2015) Probiotics and fecal microbiota transplant for primary and secondary prevention of clostridium difficile infection. Pharmacotherapy 35:1016–1025

    CAS  PubMed  Google Scholar 

  • D’Ostroph AR, So TY (2017) Treatment of pediatric Clostridium difficile infection: a review on treatment efficacy and economic value. Infect Drug Resist 10:365–375

    PubMed  PubMed Central  Google Scholar 

  • Davidovics ZH, Michail S, Nicholson MR et al (2018) FMT special interest group of the North American society of pediatric gastroenterology hepatology and nutrition and the European society for pediatric gastroenterology hepatology and nutrition. Fecal microbiota transplantation for recurrent Clostridium difficile infection and other potential applications in children: clinical report. J Pediatr Gastroenertol Nutr. submitted

    Google Scholar 

  • Drekonja D, Reich J, Gezahegn S et al (2015) Fecal microbiota transplantation for Clostridium difficile infection: a systematic review. Ann Intern Med 162:630–638

    PubMed  Google Scholar 

  • El-Hawiet A, Kitova EN, Kitov PI et al (2011) Binding of clostridium difficile toxins to human milk oligosaccharides. Glycobiology 21:1217–1227

    CAS  PubMed  Google Scholar 

  • El-Hawiet A, Kitova EN, Klassen JS (2015) Recognition of human milk oligosaccharides by bacterial exotoxins. Glycobiology 25:845–854

    CAS  PubMed  Google Scholar 

  • Elmer GW, McFarland LV, Surawicz CM et al (1999) Behaviour of Saccharomyces boulardii in recurrent Clostridium difficile disease patients. Almin Pharmacol Ther 13:1663–1668

    CAS  Google Scholar 

  • Faden HS, Ma CX (2016) Trends in oral antibiotic, proton pump inhibitor, and Histamine 2 Receptor Blocker prescription patterns for children compared with adults: implications for Clostridium difficile infection in the community. Clin Pediatr (Phila) 55:712–716

    Google Scholar 

  • Flatley EA, Wilde AM, Nailor MD (2015) Saccharomyces boulardii for the prevention of hospital onset clostridium difficile infection. J Gastrointestin Liver Dis 24:21–24

    PubMed  Google Scholar 

  • Esposito S, Umbrello G, Castellazzi L et al (2015) Treatment of clostridium difficile infection in pediatric patients. Expert Rev Gastroenterol Hepatol 9:747–755

    CAS  PubMed  Google Scholar 

  • Gerding DN, Johnson S (2010) Management of clostridium difficile infection: thinking inside and outside the box. Clin Infect Dis 51:1306–1313

    PubMed  Google Scholar 

  • Gibson MK, Crofts TL, Dantas G (2015) Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbio 27:51–56

    CAS  Google Scholar 

  • Goldenberg JZ, Ma SS, Saxton JD et al (2013) Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev 5:CD006095

    Google Scholar 

  • Goldenberg JZ, Lytvyn L, Steurich J et al (2015) Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst 22:CD004827

    Google Scholar 

  • Goldenberg JZ, Mertz D, Johnston BC (2018) Probiotics to prevent clostridium difficile infection in patients receiving antibiotics. JAMA. (in press 320:499

    PubMed  Google Scholar 

  • Goldstein EJ, Tyrrel KL, Citron DM (2015) Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis 60(Suppl 2):98–107

    Google Scholar 

  • Ianiro G, Valerio L, Masucci L et al (2017) Predictors of failure after single faecal microbiota transplantation in patients with recurrent Clostridium difficile infection: results from a 3-year, single-centre cohort study. Clin Microbiol Infect 23:337.e1–337.e3

    CAS  Google Scholar 

  • Johnston BC, Ma SS, Goldenberg JZ et al (2012) Probiotics for the prevention of clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Ann Intern Med 157:878–888

    PubMed  Google Scholar 

  • Johnston BC, Goldenberg JZ, Parkin PC (2016) Probiotics and the prevention of antibiotic-associated diarrhea in infants and children. JAMA 316:1484–1485

    PubMed  Google Scholar 

  • Johnston BC, Lytvyn L, Lo CK et al (2018) Microbial preparations (Probiotics) for the prevention of clostridium difficile infection in adults and children: an individual patient data meta-analysis of 6,851 participants. Infect Control Hosp Epidemiol 39:771–781

    PubMed  Google Scholar 

  • Kassam Z, Lee CH, Yuan Y, Hunt RH (2013) Fecal microbiota transplantation for clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 108:500–508

    PubMed  Google Scholar 

  • Koon HW, Su B, Xu C et al (2016) Probiotic Saccharomyces boulardii CNCM I-745 prevents outbreak-associated clostridium difficile-associated cecal inflammation in hamsters. Am J Physiol Gastrointest Liver Physiol 311:G610–G623

    PubMed  PubMed Central  Google Scholar 

  • Lau CS, Chamberlain RS (2016) Probiotics are effective at preventing clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med 9:27–37

    PubMed  PubMed Central  Google Scholar 

  • Li N, Zheng B, Cai HF et al (2018) Cost-effectiveness analysis of oral probiotics for the prevention of clostridium difficile-associated diarrhoea in children and adolescents. J Hosp Infect 99:469–474

    CAS  PubMed  Google Scholar 

  • Mantegazza C, Molinari P, D’Auria E et al (2018) Probiotics and antibiotic-associated diarrhea in children: a review and new evidence on Lactobacillus rhamnosus GG during and after antibiotic treatment. Pharmacol Res 128:63–72

    PubMed  Google Scholar 

  • McFarland LV, Surawicz CM, Greenberg RN et al (1994) A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 271:1913–1918

    CAS  PubMed  Google Scholar 

  • McFarland LV, Ozen M, Dinleyici EC et al (2016) Comparison of pediatric and adult antibiotic-associated diarrhea and clostridium difficile infections. World J Gastroenterol 22:3078–3104

    PubMed  PubMed Central  Google Scholar 

  • McKonnie R, Kasti A (2017) Clostridium difficile, colitis, and colonoscopy: pediatric perspective. Curr Gastroenterol Rep 19:34

    Google Scholar 

  • Nguyen TT, Kim JW, Park JS (2016) Identification of oligosaccharides in human milk bound onto the toxin A carbohydrate binding site of Clostridium difficile. J Microbiol Biotechnol 26:659–665

    CAS  PubMed  Google Scholar 

  • Nylund CM, Eide M, Gorman GH (2014) Association of clostridium difficile infections with acid suppression medications in children. J Pediatr 165:979–984.e1

    CAS  PubMed  Google Scholar 

  • Ooi CY, Dilley AV, Day AS (2009) Saccharomyces boulardii in a child with recurrent Clostridium difficile. Pediatr Int 51:156–158

    PubMed  Google Scholar 

  • Pant C, Deshpande A, Altaf MA et al (2013) Clostridium difficile infection in children: a comprehensive review. Curr Med Res Opin 29:967–984

    PubMed  Google Scholar 

  • Sammons JS, Toltzis P, Zaoutis TE (2013) Clostridium difficile infection in children. JAMA Pediatr 167:567–573

    PubMed  Google Scholar 

  • Shen NT, Leff JA, Schneider Y et al (2017a) Cost-effectiveness analysis of probiotic use to prevent clostridium difficile infection in hospitalized adults receiving antibiotics. Open Forum Infect Dis 4:ofx148

    PubMed  PubMed Central  Google Scholar 

  • Shen NT, Maw A, Tmanova LL et al (2017b) Timely use of probiotics in hospitalized adults prevents clostridium difficile infection: a systematic review with meta-regression analysis. Gastroenterology 152:1889–1900.e9

    PubMed  Google Scholar 

  • Schutze GE, Willoughby RE, Committee on Infectious Diseases; American Academy of Pediatrics (2013) Clostridium difficile infection in infants and children. Pediatrics 131:196–200

    PubMed  Google Scholar 

  • Sinclair A, Xie X, Saab L et al (2016) Lactobacillus probiotics in the prevention of diarrhea associated with Clostridium difficile: a systematic review and Bayesian hierarchical meta-analysis. CMAJ Open 4:E706–E718

    PubMed  PubMed Central  Google Scholar 

  • Spigaglia P, Barbanti F, Castagnola E et al (2017) Clostridium difficile causing pediatric infections: new findings from a hospital-based study in Italy. Anaerobe 48:262–268

    PubMed  Google Scholar 

  • Surawicz CM, McFarland LV, Elmer G et al (1989b) Treatment of recurrent Clostridium difficile colitis with vancomycin and Saccharomyces boulardii. Am J Gastroenterol 84:1285–1287

    CAS  PubMed  Google Scholar 

  • Surawicz CM, Elmer GW, Speelman P et al (1989a) Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study. Gastroenterology 96:981–988

    CAS  PubMed  Google Scholar 

  • Surawicz CM, McFarland LV, Greenberg RN et al (2000) The search for a better treatment for recurrent clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin Infect Dis 31:1012–1017

    CAS  PubMed  Google Scholar 

  • Szajewska H, Canani RB, Guarino A et al (2016) ESPGHAN working group for probiotics & prebiotics. Probiotics for the prevention of antibiotic-associated diarrhea in Children. J Pediatr Gastroenterol Nutr 62:495–506

    CAS  Google Scholar 

  • Tannock GW, Munro K, Taylor C et al (2010) A new macrocyclic antibiotic, fidaxomicin (OPT-80), causes less alteration to the bowel microbiota of clostridium difficile-infected patients than does vancomycin. Microbiology 156.(Pt 11:3354–3359

    CAS  Google Scholar 

  • Turck D, Bernet JP, Marx J et al (2003) Incidence and risk factors of oral antibiotic associated diarrhea in an outpatient pediatric population. J Pediatr Gastroenterol Nutr 37:22–26

    CAS  PubMed  Google Scholar 

  • Valdés-Varela L, Gueimonde M, Ruas-Madiedo P (2018) Probiotics for prevention and treatment of clostridium difficile infection. Adv Exp Med Bio 1050:161–176

    Google Scholar 

  • Vermeersch SJ, Vandenplas Y, Tanghe A et al (2018) Economic evaluation of S boulardii CNCM I-745 for prevention of antibiotic-associated diarrhoea in hospitalized patients. Acta Gastro-Enterol Belg 81:269–276

    CAS  Google Scholar 

  • Vernaya M, McAdam J, Hampton MD (2017) Effectiveness of probiotics in reducing the incidence of clostridium difficile-associated diarrhea in elderly patients: a systematic review. JBI Database System Rev Implement Rep 15:140–164

    PubMed  Google Scholar 

  • Wei L, Ratnayake L, Phillips G et al (2017) Acid-suppression medications and bacterial gastroenteritis: a population-based cohort study. Br J Clin Pharmacol 83:1298–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi SH, Jernigan JA, McDonald LC (2016) Prevalence of probiotic use among inpatients: a descriptive study of 145 U.S. hospitals. Am J Infect Contro 44:548–553

    Google Scholar 

  • Zar FA, Bakkanagari SR, Moorthi KM et al (2007) A comparison of vancomycin and metronidazole for the treatment of clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis 45:302–307

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Vandenplas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinleyici, M., Vandenplas, Y. (2019). Clostridium difficile Colitis Prevention and Treatment. In: Guandalini, S., Indrio, F. (eds) Probiotics and Child Gastrointestinal Health. Advances in Experimental Medicine and Biology(), vol 1125. Springer, Cham. https://doi.org/10.1007/5584_2018_322

Download citation

Publish with us

Policies and ethics