Skip to main content

Targeting Food Allergy with Probiotics

  • Chapter
  • First Online:
Probiotics and Child Gastrointestinal Health

Abstract

The dramatic increase in food allergy prevalence and severity globally is demanding effective strategies. Food allergy derives from a defect in immune tolerance mechanisms. Immune tolerance is modulated by gut microbiota composition and function, and gut microbiota dysbiosis has been associated with the development of food allergy. Selected probiotic strains could act on immune tolerance mechanisms. The mechanisms are multiple and still not completely defined. Increasing evidence is providing useful information on the choice of optimal bacterial species/strains, dosage, and timing for intervention. The increased knowledge on the crucial role played by gut microbiota-derived metabolites, such as butyrate, is also opening the way to a post-biotic approach in the stimulation of immune tolerance.

Authors Lorella Paparo, Rita Nocerino, Carmen Di Scala, Giusy Della Gatta and Margherita Di Costanzo have been equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BLG:

β-lactoglobulin

CMA:

cow’s milk allergy

EHCF:

extensively hydrolyzed casein formula

FA:

food allergy

LAB:

lactic acid bacteria

LGG:

Lactobacillus rhamnosus GG

OIT:

oral food immunotherapy

OVA:

ovalbumin

PBMCs:

peripheral blood mononuclear cells

SCFAs:

short-chain fatty acids

SU:

sustained unresponsiveness

Tregs:

regulatory T cells

References

  • Ai C, Ma N, Zhang Q et al (2016) Immunomodulatory effects of different lactic acid bacteria on allergic response and its relationship with in vitro properties. PLoS One 11:e0164697

    PubMed  PubMed Central  Google Scholar 

  • Aitoro R, Paparo L, Amoroso A et al (2017a) Gut microbiota as a target for preventive and therapeutic intervention against food allergy. Nutrients 9(7):pii: E672

    Google Scholar 

  • Aitoro R, Simeoli R, Amoroso A et al (2017b) Extensively hydrolyzed casein formula alone or with L. rhamnosus GG reduces β-lactoglobulin sensitization in mice. Pediatr Allergy Immunol 28:230–237

    PubMed  Google Scholar 

  • Allen KJ, Koplin JJ (2016) Prospects for prevention of food allergy. J Allergy Clin Immunol Pract 4:215–220

    PubMed  Google Scholar 

  • Arpaia N, Campbell C (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504:451–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baldassarre ME, Laforgia N, Fanelli M et al (2010) Lactobacillus GG improves recovery in infants with blood in the stools and presumptive allergic colitis compared with extensively hydrolyzed formula alone. J Pediatr 156:397–401

    CAS  PubMed  Google Scholar 

  • Ben-Shoshan M, Harrington DW, Soller L et al (2010) A population-based study on peanut, tree nut, fish, shellfish, and sesame allergy prevalence in Canada. J Allergy Clin Immunol 125:1327–1335

    CAS  PubMed  Google Scholar 

  • Berin MC (2014) Future therapies for IgE mediated food allergy. Curr Pediatr Rep 2:119–126

    PubMed  PubMed Central  Google Scholar 

  • Berni Canani R, Nocerino R, Terrin G et al (2012a) Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy a randomized trial. J Allergy Clin Immunol 129:580–582; (582 e 1–5)

    PubMed  Google Scholar 

  • Berni Canani R, Nocerino R, Terrin G et al (2012b) Effect of extensively hydrolyzed casein formula supplemented with Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy: a randomized trial. J Allergy Clin Immunol 129:580–582

    PubMed  Google Scholar 

  • Berni Canani R, Nocerino R, Terrin G et al (2013) Formula selection for management of children with cow milk allergy influences the rate of acquisition of tolerance: a prospective multicenter study. J Pediatr 163:771–777

    CAS  PubMed  Google Scholar 

  • Berni Canani R, Gilber JA, Nagler CR (2015) The role of the commensal microbiota in the regulation of tolerance to dietary allergens. Curr Opin Allergy Clin Immunol 15:243–249

    CAS  PubMed  Google Scholar 

  • Berni Canani R, Sangwan N, Stefka AT et al (2016) Lactobacillus rhamnosus GG supplemented formula expands butyrate producing bacterial strains in food allergic infants. ISME J 10:742–750

    CAS  PubMed  Google Scholar 

  • Berni Canani R, Di Costanzo M, Bedogni G et al (2017) Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestation sin children with cow’s milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol 139:1906–1913

    CAS  PubMed  Google Scholar 

  • Borchers AT, Keen CL, Gershwin ME (2002) The influence of yogurt/Lactobacillus on the innate and acquired immune response. Clin Rev Allergy Immunol 22:207–230

    PubMed  Google Scholar 

  • Borthakur A, Gill RK, Tyagi S et al (2008) The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells. J Nutr 138:1355–1359

    CAS  PubMed  Google Scholar 

  • Boyce JA, Assa’ad A, Burks AW et al (2010) Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol 126:1105–1118

    PubMed  PubMed Central  Google Scholar 

  • Braat H, van den Brande J, van Tol E et al (2004) Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am J Clin Nutr 80:1618–1625

    CAS  PubMed  Google Scholar 

  • Burks AW, Sampson HA, Plaut M et al (2018) Treatment for food allergy. J Allergy Clin Immunol 141:1–9

    PubMed  Google Scholar 

  • Chafen JJ, Newberry SJ, Riedl MA et al (2010) Diagnosing and managing common food allergies: a systematic review. JAMA 303:1848–1856

    PubMed  Google Scholar 

  • Cross ML, Gill HS (2001) Can immunoregulatory lactic acid bacteria be used as dietary supplements to limit allergies? Int Arch Allergy Immunol 125:112–119

    CAS  PubMed  Google Scholar 

  • Di Costanzo M, Amoroso A, Berni Canani R et al (2016) Gut microbiota as a target for food allergy. J Pediatr Gastroenterol Nutr 63:S11–S13

    PubMed  Google Scholar 

  • Donato KA, Gareau MG, Wang YJ (2010) Lactobacillus rhamnosus GG attenuates interferon-γ and tumor-necrosis factor-α- induced barrier dysfunction and pro-inflammatory signaling. Microbiology 156:3288–3297

    CAS  PubMed  Google Scholar 

  • du Toit G, Sampson HA, Plaut M et al (2016) Prevention of food allergy. J Allergy Clin Immunol 137:998–1010

    PubMed  Google Scholar 

  • Fiocchi A, Brozek J, Shunemann H et al (2010) World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. World Allergy Organ J 3:57–161

    PubMed  PubMed Central  Google Scholar 

  • Flinterman AE, Knol EF, van Ieperen AG et al (2007) Probiotics have a different immunomodulatory potential in vitro versus ex vivo upon oral administration in children with food allergy. Int Arch Allergy Immunol 143:237–244

    CAS  PubMed  Google Scholar 

  • Furusawa Y, Obata Y (2013) Commensal microbe-derived butyrate induces differentiation of colonic regulatory T-cells. Nature 504:446–450

    CAS  PubMed  Google Scholar 

  • Ghadimi D, Fölster-Holst R, de Vrese M et al (2008) Effects of probiotic bacteria and their genomic DNA on TH1/TH2-cytokine production by peripheral blood mononuclear cells (PBMCs) of healthy and allergic subjects. Immunobiology 213:677–692

    CAS  PubMed  Google Scholar 

  • Ghadimi D, Helwig U, Schrezenmeir J et al (2012) Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system. J Leukoc Biol 92:895–911

    CAS  PubMed  Google Scholar 

  • Gupta RS, Springston EE, Warrier MR et al (2011) The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics 128:e9–e17

    PubMed  Google Scholar 

  • Gupta R, Holdford D, Bilaver L et al (2013) The economic impact of childhood food allergy in the United States. JAMA Pediatr 167:1026–1031

    PubMed  Google Scholar 

  • Gupta RS, Walkner MM, Greenhawt M et al (2016) Food allergy sensitization and presentation in siblings of food allergic children. J Allergy Clin Immunol Pract 4:956–962

    PubMed  PubMed Central  Google Scholar 

  • Hardy H, Harris J, Lyon W et al (2013) Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 5:1869–1912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heine RG (2018) Food allergy prevention and treatment by targeted nutrition. Ann Nutr Metab 72:27–39

    Google Scholar 

  • Hill C, Guarner F, Reid G et al (2014) Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    PubMed  Google Scholar 

  • Ho H, Bunyavanich S (2018) Role of the microbiome in food allergy. Curr Allergy Asthma Rep 18:27

    PubMed  Google Scholar 

  • Hol J, van Leer EH, Elink Schuurman BE et al (2008) The acquisition of tolerance towards cow’s milk through probiotic supplementation: a randomized controlled trial. J Allergy Clin Immunol 121:1448–1454

    CAS  PubMed  Google Scholar 

  • Hong X, Hao K, Ladd-Acosta C et al (2015) Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun 6:6304

    CAS  PubMed  Google Scholar 

  • Huang YJ, Marsland BJ, Bunyavanich S et al (2017) The microbiome in allergic disease: current understanding and future opportunities—2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol 139:1099–1110

    PubMed  PubMed Central  Google Scholar 

  • Isolauri E, Arvola T, Sutas Y et al (2000) Probiotics in the management of atopic eczema. Clin Exp Allergy 30:1604–1161

    CAS  PubMed  Google Scholar 

  • Juan Z, Hui S, Qiuhong L et al (2017) Oral administration of Clostridium butyricum CGMCC0313.1 inhibits β-lactoglobulin-induced intestinal anaphylaxis in a mouse model of food allergy. Gut Pathogens 9:11

    Google Scholar 

  • Karlsson H, Larsson P, Wold AE et al (2004) Pattern of cytokine responses to Gram-positive and Gram-negative commensal bacteria is profoundly changed when monocytes differentiate into dendritic cells. Infect Immun 72:2671–2678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Choi YO, GE J (2008) Effect of oral probiotics (Bifidobacterium lactis AD011 and Lactobacillus acidophilus AD031) administration on ovalbumin-induced food allergy mouse model. J Microbiol Biotechnol 18:1393–1400

    CAS  PubMed  Google Scholar 

  • Kukkonen K, Savilahti E, Haahtela T et al (2007) Probiotics and prebiotic galactooligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 119:192–198

    CAS  PubMed  Google Scholar 

  • Linglin F, Jixiang P, Shushu Z et al (2017) Lactic acid bacteria-specific induction of CD4+Foxp3+T cells ameliorates shrimp tropomyosin induced allergic response in mice via suppression of mTOR signaling. Sci Rep 7:1987

    Google Scholar 

  • Maassen CB, van Holten-Neelen C, Balk F et al (2000) Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 18:2613–2623

    CAS  PubMed  Google Scholar 

  • Maiga MA, Morin S, Bernard H et al (2017) Neonatal mono-colonization of germ-free mice with Lactobacillus casei enhances casein immunogenicity after oral sensitization to cow’s milk. Mol Nutr Food Res 61:10–1002

    Google Scholar 

  • Malin M, Verronen P, Korhonen H et al (1997) Dietary therapy with Lactobacillus GG, bovine colostrum or bovine immune colostrum in patients with juvenile chronic arthritis: evaluation of effect on gut defence mechanisms. Inflammopharmacology 5:219–236

    CAS  PubMed  Google Scholar 

  • McBride D, Keil T, Grabenhenrich L et al (2012) The EuroPrevall birth cohort study on food allergy: baseline characteristics of 12,000 newborns and their families from nine European countries. Pediatr Allergy Immunol 23:230–239

    CAS  PubMed  Google Scholar 

  • Meng-Yun L, Zhen-Yu Y, Wen-Kui D et al (2017) Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and b-lactoglobulininduced intestinal food allergy mouse models. World J Gastroenterol 23:2149–2158

    Google Scholar 

  • Mileti E, Matteoli G, Iliev D et al (2009) Comparison of the immunomodulatory properties of three probiotics strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS One 4:e7056

    PubMed  PubMed Central  Google Scholar 

  • Mohamadzadeh M, Olson S, Kalina WV et al (2005) Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci U S A 102:2880–2885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins RJ, Dear KB, Tang ML (2015) Time trends in Australian hospital anaphylaxis admissions in 1998–1999 to 2011–2012. J Allergy Clin Immunol 136:367–375

    PubMed  Google Scholar 

  • Mullins RJ, Wainstein BK, Barnes EH et al (2016) Increases in anaphylaxis fatalities in Australia from 1997 to 2013. Clin Exp Allergy 46:1099–1110

    CAS  PubMed  Google Scholar 

  • National Academies of Sciences (2016) Engineering and Medicine. Finding a path to safety in food allergy: assessment of global burden, causes, prevention, management, and public policy. National Academies of Sciences, Engineering and Medicine, Washington, DC

    Google Scholar 

  • Niers LE, Timmerman HM, Rijkers GT et al (2005) Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clin Exp Allergy 35:1481–1489

    CAS  PubMed  Google Scholar 

  • Nocerino R, Leone L, Cosenza L et al (2015) Increasing rate of hospitalizations for food-induced anaphylaxis in Italian children: an analysis of the Italian Ministry of Health database. J Allergy Clin Immunol 135:833–835.e3

    PubMed  Google Scholar 

  • Nowak-Wegrzyn A, Chatchatee P (2017) Mechanisms of tolerance induction. Ann Nutr Metab 70:7–24

    PubMed  Google Scholar 

  • Osborne NJ, Koplin JJ, Martin PE et al (2011) Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J Allergy Clin Immunol 127:668–676.e2

    CAS  PubMed  Google Scholar 

  • Pan SJ, Kuo CH, Lam KP (2010) Probiotics and allergy in infants -an update review. Pediatr Allergy Immunol 21:e659–e666

    PubMed  Google Scholar 

  • Paparo L, Aitoro R, Nocerino R et al (2018) Epigenetic regulation of early nutrition on immune system. In: Preedy VR, Patel VB (eds) Handbook of nutrition, diet, and epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_54-1

    Chapter  Google Scholar 

  • Prince BT, Mandel MJ, Nadeau K et al (2015) Gut microbiome and the development of food allergy and allergic disease. Pediatr Clin North Am 62:1479:92

    PubMed  Google Scholar 

  • Rachid R, Keet CA (2018) Current status and unanswered questions for food allergy treatments. J Allergy Clin Immunol Pract 6:377–382

    PubMed  Google Scholar 

  • Ramesh M, Yuenyongviwat A, Kostantinou GN et al (2016) Peanut T-cell epitope discovery: Ara h 1. J Allergy Clin Immunol 137:1764–1771.e4

    CAS  PubMed  Google Scholar 

  • Rautava S, Collado MC, Salminen S et al (2012) Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology 102:178–184

    PubMed  Google Scholar 

  • Sandin A, Bråbäck L, Norin E et al (2009) Faecal short chain fatty acid pattern and allergy in early childhood. Acta Paediatr 98:823–827

    PubMed  Google Scholar 

  • Savage J, Sicherer S, Wood R (2016) The natural history of food allergy. J Allergy Clin Immunol Pract 4:196–203

    PubMed  Google Scholar 

  • Savage JH, Lee-Sarwar KA, Sordillo J et al (2018) A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy 73(1):145–152

    CAS  PubMed  Google Scholar 

  • Schiavi E, Barletta B, Butteroni C et al (2011) Oral therapeutic administration of a probiotic mixture suppresses established Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy 66:499–508

    CAS  PubMed  Google Scholar 

  • Sicherer SH, Sampson HA (2018) Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol 141:41–48

    CAS  PubMed  Google Scholar 

  • Sicherer SH, Munoz-Furlong A, Godbold JH et al (2010) US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol 125:1322–1326

    CAS  PubMed  Google Scholar 

  • Sicherer SH, Wood RA, Vickery BP et al (2014) The natural history of milk allergy in an observational cohort. J Allergy Clin Immunol 133:492–498

    PubMed  PubMed Central  Google Scholar 

  • Sicherer SH, Allen K, Lack G et al (2017) Critical issues in food allergy: a national academies consensus report. Pediatrics 24:e20170194

    Google Scholar 

  • Skripak JM, Matsui EC, Mudd K et al (2007) The natural history of IgE-mediated cow’s milk allergy. J Allergy Clin Immunol 120:1172–1177

    CAS  PubMed  Google Scholar 

  • Smith PM, Howitt MR (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573

    CAS  PubMed  Google Scholar 

  • Smits HH, Engering A, van der Kleij D et al (2005) Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115:1260–1267

    CAS  PubMed  Google Scholar 

  • Sudo N, Sawamura S, Tanaka K et al (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159:1739–1745

    CAS  PubMed  Google Scholar 

  • Sütas Y, Hurme M, Isolauri E (1996) Down-regulation of anti-CD3 antibody-induced IL-4 production by bovine caseins hydrolysed with Lactobacillus GG-derived enzymes. Scand J Immunol 43:687–689

    PubMed  Google Scholar 

  • Takahashi S, Kawamura T, Kanda Y et al (2006a) Activation of CD1d-independent NK1.1+ T cells in the large intestine by Lactobacilli. Immunol Lett 102:74–78

    CAS  PubMed  Google Scholar 

  • Takahashi N, Kitazawa H, Iwabuchi N et al (2006b) Oral administration of an immunostimulatory DNA sequence from Bifidobacterium longum improves Th1/Th2 balance in a murine model. Biosci Biotechnol Biochem 70:2013–2017

    CAS  PubMed  Google Scholar 

  • Tan J, McKenzie C, Vuillermin PJ et al (2016) Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 15:2809–2824

    CAS  PubMed  Google Scholar 

  • Tang ML, Ponsonby AL, Orsini F et al (2015) Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol 135:737–744

    CAS  PubMed  Google Scholar 

  • Tao R, de Zoeten EF (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13:1299–1307

    CAS  PubMed  Google Scholar 

  • Thang CL, Baurhoo B, Boye JI et al (2011) Effects of Lactobacillus rhamnosus GG supplementation on cow’s milk allergy in a mouse model. Allergy Asthma Clin Immunol 6:7–20

    Google Scholar 

  • Torii A, Torii S, Fujiwara S et al (2007) Lactobacillus Acidophilus strain L-92 regulates the production of Th1 cytokine as well as Th2 cytokines. Allergol Int 56:293–301

    CAS  PubMed  Google Scholar 

  • Turner PJ, Gowland MH, Sharma V et al (2015) Increase in anaphylaxis-related hospitalizations but no increase in fatalities: an analysis of United Kingdom national anaphylaxis data, 1992–2012. J Allergy Clin Immunol 135:956–63.e1

    PubMed  PubMed Central  Google Scholar 

  • Viljanen M, Savilahti E, Haahtela T et al (2005) Probiotics in the treatment of atopic eczema/dermatitis syndrome in infants: a double-blind placebo controlled trial. Allergy 60:494–500

    CAS  PubMed  Google Scholar 

  • Wang J, Tang H, Zhang C et al (2015) Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9(1):1–15

    PubMed  Google Scholar 

  • Wood RA, Sicherer SH, Vickery BP et al (2013) The natural history of milk allergy in an observational cohort. J Allergy Clin Immunol 131:805–812.e4

    CAS  PubMed  Google Scholar 

  • Wu YJ, Wu WF, Hang CW et al (2017) Evaluation of efficacy and safety of Lactobacillus rhamnosus in children aged 4–48 months with atopic dermatitis: an 8-week, double-blind, randomized, placebo-controlled study. J Microbiol Immunol Infect 50:684–692

    PubMed  Google Scholar 

  • Yang B, Xiao L, Liu S et al (2017) Exploration of the effect of probiotics supplementation on intestinal microbiota of food allergic mice. Am J Transl Res 9:376–385

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Berni Canani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paparo, L. et al. (2019). Targeting Food Allergy with Probiotics. In: Guandalini, S., Indrio, F. (eds) Probiotics and Child Gastrointestinal Health. Advances in Experimental Medicine and Biology(), vol 1125. Springer, Cham. https://doi.org/10.1007/5584_2018_316

Download citation

Publish with us

Policies and ethics