Skip to main content

Stem Cells from Human Extracted Deciduous Teeth Expanded in Foetal Bovine and Human Sera Express Different Paracrine Factors After Exposure to Freshly Prepared Human Serum

  • Conference paper
  • First Online:
Tissue Engineering and Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1084))

Abstract

Background: The response of stem cells to paracrine factors within the host’s body plays an important role in the regeneration process after transplantation. The aim of this study was to determine the viability and paracrine factor profile of stem cells from human extracted deciduous teeth (SHED) pre-cultivated in media supplemented with either foetal bovine serum (FBS) or pooled human serum (pHS) in the presence of individual human sera (iHS).

Methods: SHED (n = 3) from passage 4 were expanded in FBS (FBS-SHED) or pHS (pHS-SHED) supplemented media until passage 7. During expansion, the proliferation of SHED was determined. Cells at passage 7 were further expanded in human serum from four individual donors (iHS) for 120 h followed by assessment of cell viability and profiling of the secreted paracrine factors.

Results: Proliferation of SHED was significantly higher (p < 0.05) in pHS supplemented media compared to FBS supplemented media. pHS-SHED also maintained their higher proliferation rate compared to FBS-SHED in the presence of iHS. In iHS supplemented media, FBS-SHED expressed significantly higher levels of SDF-1A (p < 0.05) after 24 h compared to pHS-SHED. Similar results were found for HGF (p < 0.01), LIF (p < 0.05), PDGF-BB (p < 0.05), SDF-1A (p < 0.01), and IL-10 (p < 0.05) when cell culture supernatants from FBS-SHED were profiled 120 h post-incubation.

Conclusion: SHED expanded in pHS instead of FBS have higher proliferative capacity and show an altered secretion profile. Further studies are needed to determine whether these differences could result in better engraftment and regeneration following transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CPD:

cumulative population doubling time

FBS:

foetal bovine serum

FGF-2:

fibroblast growth factor 2

G-CSF:

granulocyte colony stimulating factor

HGF:

hepatocyte growth factor

IGF-1:

insulin like growth factor 1

iHS:

individual human sera

IL:

interleukin

ISCT:

International Society for Cellular Therapy

LIF:

leukaemia inhibitory factor

MSCs:

mesenchymal stem cells

PDGF-BB:

platelet-derived growth factor BB

pHS:

pooled human serum

SCF:

stem cell factor

SDF-1A:

stromal cell-derived factor-1A

SHED:

stem cells from human extracted deciduous teeth

VEGF:

vascular endothelial growth factor

References

  • Ahn, H. J., Lee, W. J., Kwack, K., & Kwon, Y. D. (2009). FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Letters, 583(17), 2922–2926.

    Article  CAS  PubMed  Google Scholar 

  • Aldahmash, A., Haack-Sorensen, M., Al-Nbaheen, M., Harkness, L., Abdallah, B. M., & Kassem, M. (2011). Human serum is as efficient as fetal bovine serum in supporting proliferation and differentiation of human multipotent stromal (mesenchymal) stem cells in vitro and in vivo. Stem Cell Reviews, 7(4), 860–868.

    Article  Google Scholar 

  • Bassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., Kain, D., Rajchman, D., Leach, J., Riabov Bassat, D., Udi, Y., Sarig, R., Sagi, I., Martin, J. F., Bursac, N., Cohen, S., & Tzahor, E. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutler, B. A., Milsark, I. W., & Cerami, A. (1985). Cachectin/tumor necrosis factor: Production, distribution, and metabolic fate in vivo. Journal of Immunology, 135(6), 3972–3977.

    CAS  Google Scholar 

  • Bianchi, G., Banfi, A., Mastrogiacomo, M., Notaro, R., Luzzatto, L., Cancedda, R., & Quarto, R. (2003). Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Experimental Cell Research, 287(1), 98–105.

    Article  CAS  PubMed  Google Scholar 

  • Bieback, K., Hecker, A., Schlechter, T., Hofmann, I., Brousos, N., Redmer, T., Besser, D., Kluter, H., Muller, A. M., & Becker, M. (2012). Replicative aging and differentiation potential of human adipose tissue-derived mesenchymal stromal cells expanded in pooled human or fetal bovine serum. Cytotherapy, 14(5), 570–583.

    Article  CAS  PubMed  Google Scholar 

  • Blazquez-Prunera, A., Almeida, C. R., & Barbosa, M. A. (2017a). Human bone marrow mesenchymal stem/stromal cells preserve their immunomodulatory and chemotactic properties when expanded in a human plasma derived Xeno-free medium. Stem Cells International, 2017, 2185351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazquez-Prunera, A., Diez, J. M., Gajardo, R., & Grancha, S. (2017b). Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction. Stem Cell Research & Therapy, 8(1), 103.

    Article  CAS  Google Scholar 

  • Choi, P., & Reiser, H. (1998). IL-4: Role in disease and regulation of production. Clinical and Experimental Immunology, 113(3), 317–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couper, K. N., Blount, D. G., & Riley, E. M. (2008). IL-10: The master regulator of immunity to infection. Journal of Immunology, 180(9), 5771–5777.

    Article  CAS  Google Scholar 

  • Cristofalo, V. J., Allen, R. G., Pignolo, R. J., Martin, B. G., & Beck, J. C. (1998). Relationship between donor age and the replicative lifespan of human cells in culture: A reevaluation. Proceedings of the National Academy of Sciences U S A, 95(18), 10614–10619.

    Article  CAS  Google Scholar 

  • da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213.

    Article  PubMed  CAS  Google Scholar 

  • Diez, J. M., Bauman, E., Gajardo, R., & Jorquera, J. I. (2015). Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. Stem Cell Research & Therapy, 6, 28.

    Article  CAS  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  PubMed  Google Scholar 

  • dos Santos, V. T. M., Mizukami, A., Orellana, M. D., Caruso, S. R., da Silva, F. B., Traina, F., de Lima Prata, K., Covas, D. T., & Swiech, K. (2017). Characterization of human AB serum for mesenchymal stromal cell expansion. Transfusion Medicine and Hemotherapy, 44(1), 11–21.

    Article  PubMed  Google Scholar 

  • Fattori, E., Cappelletti, M., Costa, P., Sellitto, C., Cantoni, L., Carelli, M., Faggioni, R., Fantuzzi, G., Ghezzi, P., & Poli, V. (1994). Defective inflammatory response in interleukin 6-deficient mice. The Journal of Experimental Medicine, 180(4), 1243–1250.

    Article  CAS  PubMed  Google Scholar 

  • Fierro, F., Illmer, T., Jing, D., Schleyer, E., Ehninger, G., Boxberger, S., & Bornhauser, M. (2007). Inhibition of platelet-derived growth factor receptorbeta by imatinib mesylate suppresses proliferation and alters differentiation of human mesenchymal stem cells in vitro. Cell Proliferation, 40(3), 355–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forte, G., Minieri, M., Cossa, P., Antenucci, D., Sala, M., Gnocchi, V., Fiaccavento, R., Carotenuto, F., De Vito, P., Baldini, P. M., Prat, M., & Di Nardo, P. (2006). Hepatocyte growth factor effects on mesenchymal stem cells: Proliferation, migration, and differentiation. Stem Cells, 24(1), 23–33.

    Article  CAS  PubMed  Google Scholar 

  • Gabay, C. (2006). Interleukin-6 and chronic inflammation. Arthritis Research & Therapy, 8(Suppl 2 (2)), S3.

    Article  CAS  Google Scholar 

  • Gnanasegaran, N., Govindasamy, V., Simon, C., Gan, Q. F., Vincent-Chong, V. K., Mani, V., Krishnan Selvarajan, K., Subramaniam, V., Musa, S., & Abu Kasim, N. H. (2017). Effect of dental pulp stem cells in MPTP-induced old-aged mice model. European Journal of Clinical Investigation, 47(6), 403–414.

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy, V., Abdullah, A. N., Ronald, V. S., Musa, S., Ab Aziz, Z. A., Zain, R. B., Totey, S., Bhonde, R. R., & Abu Kasim, N. H. (2010). Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontia, 36(9), 1504–1515.

    Article  Google Scholar 

  • Haque, N., & Abu Kasim, N. H. (2017). Pooled human serum increases regenerative potential of in vitro expanded stem cells from human extracted deciduous teeth. In Advances in experimental medicine and biology (pp. 1–16). Boston: Springer US. https://doi.org/10.1007/5584_2017_74.

    Chapter  Google Scholar 

  • Haque, N., Kasim, N. H., & Rahman, M. T. (2015). Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. International Journal of Biological Sciences, 11(3), 324–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque, N., Kasim, N. H. A., Kassim, N. L. A., & Rahman, M. T. (2017). Autologous serum supplement favours in vitro regenerative paracrine factors synthesis. Cell Proliferation, 50(4), e12354.

    Article  CAS  PubMed Central  Google Scholar 

  • He, X., Ma, J., & Jabbari, E. (2010). Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1alpha from poly(lactide ethylene oxide fumarate) hydrogels. International Journal of Pharmaceutics, 390(2), 107–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinina, N. I., Sysoeva, V. Y., Rubina, K. A., Parfenova, Y. V., & Tkachuk, V. A. (2011). Mesenchymal stem cells in tissue growth and repair. Acta Naturae, 3(4), 30–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaltschmidt, B., Kaltschmidt, C., & Widera, D. (2012). Adult craniofacial stem cells: Sources and relation to the neural crest. Stem Cell Reviews, 8(3), 658–671.

    Article  Google Scholar 

  • Kawada, H., Fujita, J., Kinjo, K., Matsuzaki, Y., Tsuma, M., Miyatake, H., Muguruma, Y., Tsuboi, K., Itabashi, Y., Ikeda, Y., Ogawa, S., Okano, H., Hotta, T., Ando, K., & Fukuda, K. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104(12), 3581–3587.

    Article  CAS  PubMed  Google Scholar 

  • Khanna-Jain, R., Vanhatupa, S., Vuorinen, A., Sandor, G., Suuronen, R., Mannerstrom, B., & Miettinen, S. (2012). Growth and differentiation of human dental pulp stem cells maintained in fetal bovine serum, human serum and serum-free/Xeno-free culture media. Journal of Stem Cell Research & Therapy, 2, 4.

    Article  CAS  Google Scholar 

  • Kolf, C. M., Cho, E., & Tuan, R. S. (2007). Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. Arthritis Research & Therapy, 9(1), 204.

    Article  CAS  Google Scholar 

  • Komoda, H., Okura, H., Lee, C. M., Sougawa, N., Iwayama, T., Hashikawa, T., Saga, A., Yamamoto-Kakuta, A., Ichinose, A., Murakami, S., Sawa, Y., & Matsuyama, A. (2010). Reduction of N-glycolylneuraminic acid xenoantigen on human adipose tissue-derived stromal cells/mesenchymal stem cells leads to safer and more useful cell sources for various stem cell therapies. Tissue Engineering. Part A, 16(4), 1143–1155.

    Article  CAS  PubMed  Google Scholar 

  • Krausgrill, B., Vantler, M., Burst, V., Raths, M., Halbach, M., Frank, K., Schynkowski, S., Schenk, K., Hescheler, J., Rosenkranz, S., & Muller-Ehmsen, J. (2009). Influence of cell treatment with PDGF-BB and reperfusion on cardiac persistence of mononuclear and mesenchymal bone marrow cells after transplantation into acute myocardial infarction in rats. Cell Transplantation, 18(8), 847–853.

    Article  PubMed  Google Scholar 

  • Lennartsson, J., & Ronnstrand, L. (2012). Stem cell factor receptor/c-Kit: From basic science to clinical implications. Physiological Reviews, 92(4), 1619–1649.

    Article  CAS  PubMed  Google Scholar 

  • Li, C. Y., Wu, X. Y., Tong, J. B., Yang, X. X., Zhao, J. L., Zheng, Q. F., Zhao, G. B., & Ma, Z. J. (2015). Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Research & Therapy, 6(1), 55.

    Article  CAS  Google Scholar 

  • Li, M., Sun, X., Ma, L., Jin, L., Zhang, W., Xiao, M., & Yu, Q. (2017). SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3beta/beta-catenin pathways. Scientific Reports, 7, 40161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf, D. (2003). The unsolved enigmas of leukemia inhibitory factor. Stem Cells, 21(1), 5–14.

    Article  CAS  PubMed  Google Scholar 

  • Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., Sano, S., Okano, T., Kitamura, S., & Mori, H. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 12(4), 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, M., Horibe, H., Iohara, K., Hayashi, Y., Osako, Y., Takei, Y., Nakata, K., Motoyama, N., Kurita, K., & Nakashima, M. (2013). The use of granulocyte-colony stimulating factor induced mobilization for isolation of dental pulp stem cells with high regenerative potential. Biomaterials, 34(36), 9036–9047.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, S., Yamada, Y., Katagiri, W., Sugito, T., Ito, K., & Ueda, M. (2009). Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. Journal of Endodontia, 35(11), 1536–1542.

    Article  Google Scholar 

  • Oikonomopoulos, A., van Deen, W. K., Manansala, A. R., Lacey, P. N., Tomakili, T. A., Ziman, A., & Hommes, D. W. (2015). Optimization of human mesenchymal stem cell manufacturing: The effects of animal/xeno-free media. Scientific Reports, 5, 16570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, S., Dangaria, S., Gopinathan, G., Yan, X., Lu, X., Kolokythas, A., Niu, Y., & Luan, X. (2013). SCF promotes dental pulp progenitor migration, neovascularization, and collagen remodeling – Potential applications as a homing factor in dental pulp regeneration. Stem Cell Reviews, 9(5), 655–667.

    Article  CAS  PubMed Central  Google Scholar 

  • Park, S., Jang, H., Kim, B. S., Hwang, C., Jeong, G. S., & Park, Y. (2017). Directional migration of mesenchymal stem cells under an SDF-1alpha gradient on a microfluidic device. PLoS One, 12(9), e0184595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patrikoski, M., Juntunen, M., Boucher, S., Campbell, A., Vemuri, M. C., Mannerstrom, B., & Miettinen, S. (2013). Development of fully defined xeno-free culture system for the preparation and propagation of cell therapy-compliant human adipose stem cells. Stem Cell Research & Therapy, 4(2), 27.

    Article  CAS  Google Scholar 

  • Peters, M., Jacobs, S., Ehlers, M., Vollmer, P., Mullberg, J., Wolf, E., Brem, G., Meyer zum Buschenfelde, K. H., & Rose-John, S. (1996). The function of the soluble interleukin 6 (IL-6) receptor in vivo: Sensitization of human soluble IL-6 receptor transgenic mice towards IL-6 and prolongation of the plasma half-life of IL-6. Journal of Experimental Medicine, 183(4), 1399–1406.

    Article  CAS  PubMed  Google Scholar 

  • Pierson, W., & Liston, A. (2010). A new role for interleukin-10 in immune regulation. Immunology and Cell Biology, 88(8), 769–770.

    Article  PubMed  Google Scholar 

  • Pons, J., Huang, Y., Arakawa-Hoyt, J., Washko, D., Takagawa, J., Ye, J., Grossman, W., & Su, H. (2008). VEGF improves survival of mesenchymal stem cells in infarcted hearts. Biochemical and Biophysical Research Communications, 376(2), 419–422.

    Article  CAS  PubMed  Google Scholar 

  • Ponte, A. L., Marais, E., Gallay, N., Langonne, A., Delorme, B., Herault, O., Charbord, P., & Domenech, J. (2007). The in vitro migration capacity of human bone marrow mesenchymal stem cells: Comparison of chemokine and growth factor chemotactic activities. Stem Cells, 25(7), 1737–1745.

    Article  CAS  PubMed  Google Scholar 

  • Rousset, F., Garcia, E., Defrance, T., Peronne, C., Vezzio, N., Hsu, D. H., Kastelein, R., Moore, K. W., & Banchereau, J. (1992). Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proceedings of the National Academy of Sciences, 89(5), 1890–1893.

    Article  CAS  Google Scholar 

  • Salcedo, R., Wasserman, K., Young, H. A., Grimm, M. C., Howard, O. M., Anver, M. R., Kleinman, H. K., Murphy, W. J., & Oppenheim, J. J. (1999). Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. The American Journal of Pathology, 154(4), 1125–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan, A. J., & Waddington, R. J. (2009). Dental pulp stem cells: What, where, how? International Journal of Paediatric Dentistry, 19(1), 61–70.

    Article  PubMed  Google Scholar 

  • Son, B. R., Marquez-Curtis, L. A., Kucia, M., Wysoczynski, M., Turner, A. R., Ratajczak, J., Ratajczak, M. Z., & Janowska-Wieczorek, A. (2006). Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 24(5), 1254–1264.

    Article  CAS  PubMed  Google Scholar 

  • Sulpice, E., Ding, S., Muscatelli-Groux, B., Berge, M., Han, Z. C., Plouet, J., Tobelem, G., & Merkulova-Rainon, T. (2009). Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biology of the Cell, 101(9), 525–539.

    Article  CAS  PubMed  Google Scholar 

  • Tamama, K., Fan, V. H., Griffith, L. G., Blair, H. C., & Wells, A. (2006). Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells, 24(3), 686–695.

    Article  CAS  PubMed  Google Scholar 

  • Trounson, A., & McDonald, C. (2015). Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell, 17(1), 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Turnovcova, K., Ruzickova, K., Vanecek, V., Sykova, E., & Jendelova, P. (2009). Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media. Cytotherapy, 11(7), 874–885.

    Article  CAS  PubMed  Google Scholar 

  • van de Kamp, J., Paefgen, V., Woltje, M., Bobel, M., Jaekel, J., Rath, B., Labude, N., Knuchel, R., Jahnen-Dechent, W., & Neuss, S. (2017). Mesenchymal stem cells can be recruited to wounded tissue via hepatocyte growth factor-loaded biomaterials. Journal of Tissue Engineering and Regenerative Medicine, 11(11), 2988–2998.

    Article  PubMed  CAS  Google Scholar 

  • Vunjak-Novakovic, G., & Scadden, D. T. (2011). Biomimetic platforms for human stem cell research. Cell Stem Cell, 8(3), 252–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagers, A. J. (2012). The stem cell niche in regenerative medicine. Cell Stem Cell, 10(4), 362–369.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Johnsen, H. E., Mortensen, S., Bindslev, L., Ripa, R. S., Haack-Sorensen, M., Jorgensen, E., Fang, W., & Kastrup, J. (2006). Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart, 92(6), 768–774.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Sha, X. J., Li, G. H., Yang, F. S., Ji, K., Wen, L. Y., Liu, S. Y., Chen, L., Ding, Y., & Xuan, K. (2012). Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Archives of Oral Biology, 57(9), 1231–1240.

    Article  CAS  PubMed  Google Scholar 

  • Werner, S., & Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiological Reviews, 83(3), 835–870.

    Article  CAS  PubMed  Google Scholar 

  • Williams, A. R., Suncion, V. Y., McCall, F., Guerra, D., Mather, J., Zambrano, J. P., Heldman, A. W., & Hare, J. M. (2013). Durable scar size reduction due to allogeneic mesenchymal stem cell therapy regulates whole-chamber remodeling. Journal of the American Heart Association, 2(3), e000140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanada, S., Ochi, M., Kojima, K., Sharman, P., Yasunaga, Y., & Hiyama, E. (2006). Possibility of selection of chondrogenic progenitor cells by telomere length in FGF-2-expanded mesenchymal stromal cells. Cell Proliferation, 39(6), 575–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yim, H., Jeong, H., Cho, Y., Jeong, S., & Oh, I. (2016). Safety of mesenchymal stem cell therapy: A systematic review and meta-analysis. Cytotherapy, 18(6), S77–S77.

    Article  Google Scholar 

  • Youn, S. W., Lee, S. W., Lee, J., Jeong, H. K., Suh, J. W., Yoon, C. H., Kang, H. J., Kim, H. Z., Koh, G. Y., Oh, B. H., Park, Y. B., & Kim, H. S. (2011). COMP-Ang1 stimulates HIF-1alpha-mediated SDF-1 overexpression and recovers ischemic injury through BM-derived progenitor cell recruitment. Blood, 117(16), 4376–4386.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Q., Liu, L., Lin, J., Wang, Y., Xuan, X., Guo, Y., & Hu, S. (2015). SDF-1α/CXCR4 axis mediates the migration of mesenchymal stem cells to the hypoxic-ischemic brain lesion in a rat model. Cell Journal (Yakhteh), 16(4), 440–447.

    Google Scholar 

  • Yubo, M., Yanyan, L., Li, L., Tao, S., Bo, L., & Lin, C. (2017). Clinical efficacy and safety of mesenchymal stem cell transplantation for osteoarthritis treatment: A meta-analysis. PLoS One, 12(4), e0175449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by High Impact Research MOHE Grant UM.C/625/1/HIR/MOHE/DENT/01 from the Ministry of Higher Education Malaysia and University of Malaya Research Grant UMRG RP019/13HTM. The authors thank the staff nurses from the Oro-Maxillofacial Surgical and Medical Sciences Department, Faculty of Dentistry, University of Malaya, for their support in collection of blood from donors.

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Hayaty Abu Kasim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haque, N., Widera, D., Abu Kasim, N.H. (2018). Stem Cells from Human Extracted Deciduous Teeth Expanded in Foetal Bovine and Human Sera Express Different Paracrine Factors After Exposure to Freshly Prepared Human Serum. In: Pham, P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology(), vol 1084. Springer, Cham. https://doi.org/10.1007/5584_2018_299

Download citation

Publish with us

Policies and ethics