Skip to main content

Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration

Part of the Advances in Experimental Medicine and Biology book series (CBTMED,volume 1107)

Abstract

In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients’ quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calcium phosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.

Keywords

  • Bioceramics
  • Bone regeneration
  • Calcium phosphate
  • Dental
  • Mesenchymal stem cells
  • Tissue engineering

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/5584_2018_249
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-04185-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Abbreviations

ALP:

Alkaline phosphatase

BM:

Bone marrow

BMPs:

Bone morphogenetic proteins

CaP:

calcium phosphate

CD:

Cluster of differentiation

DFPCs:

Dental follicle progenitor cells

DPSCs:

Dental pulp

GMSCs:

Gingival mesenchymal stem cells

HA:

Hydroxyapatite

HUVEC:

Human umbilical vein endothelial cells

IDO:

Indoleamine 2, 3-dioxygenase

IFN-γ:

Interferon-γ

IL-:

Interleukin-

MSCs:

Mesenchymal stem cells

PD:

programmed death

PDGF:

Platelet-derived growth factor

PDLSCs:

Periodontal ligament

PGE2:

Prostaglandin E2

PLC-BCP:

Poly-ɛ-caprolacton coated-biphasic calcium phosphate

Runx2:

Runt-related transcription factor 2

SCAP:

Apical papilla derived stem cells

SDF-1:

Stromal cell-derived factor 1

SHED:

Exfoliated deciduous teeth

TGF-β1:

Transforming growth factor-β1

Th:

T helper

TNF-α:

Tumor necrosis factor-α

Tregs:

T Regulatory

Β-TCP:

beta-tricalcium phosphate

References

  • AbdulQader ST, Kannan TP, Rahman IA, Ismail H, Mahmood Z (2015) Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells. Mater Sci Eng C Mater Biol Appl 49:225–233

    CrossRef  CAS  PubMed  Google Scholar 

  • AbdulQader ST, Rahman IA, Thirumulu KP, Ismail H, Mahmood Z (2016) Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells. J Biomater Appl 30(9):1300–1311

    CrossRef  CAS  PubMed  Google Scholar 

  • Ahmed REG (2004) Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J Biomed Mater Res A 69A:490–501

    CrossRef  CAS  Google Scholar 

  • Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Alcayaga-Miranda F, Cuenca J, Martin A, Contreras L, Figueroa FE, Khoury M (2015) Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem Cell Res Ther 6:199

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcayaga-Miranda F, Cuenca J, Khoury M (2017) Antimicrobial activity of mesenchymal stem cells: current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol 8:33

    CrossRef  CAS  Google Scholar 

  • Atluri K, Seabold D, Hong L, Elangovan S, Salem AK (2015) Nanoplex-mediated Codelivery of fibroblast growth factor and bone morphogenetic protein genes promotes osteogenesis in human adipocyte-derived mesenchymal stem cells. Mol Pharm 12:3032–3042

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakopoulou A, About I (2016) Stem cells of dental origin: current research trends and key milestones towards clinical application. Stem Cells Int 2016:4209891

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P (2013) Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta 1836:321–335

    CAS  PubMed  Google Scholar 

  • Bateman ME, Strong AL, McLachlan JA, Burow ME, Bunnell BA (2017) The effects of endocrine disruptors on Adipogenesis and osteogenesis in mesenchymal stem cells: a review. Front Endocrinol (Lausanne) 7:171

    CrossRef  Google Scholar 

  • Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2:1–13

    CrossRef  CAS  PubMed  Google Scholar 

  • Blau HM, Brazelton T, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 05:829–841

    CrossRef  Google Scholar 

  • Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1980) The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res:263–270

    Google Scholar 

  • Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regenaration therapy. J Cell Biochem 56:283–294

    CrossRef  CAS  PubMed  Google Scholar 

  • Bueno EM, Glowacki J (2011) Biologic foundations for skeletal tissue engineering. Synth Lect Tissue Eng 3:1–220

    CrossRef  Google Scholar 

  • Čamernik K, Barlič A, Drobnič M, Marc J, Jeras M (2018) Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration? Stem Cell Rev 14:346–369. https://doi.org/10.1007/s12015-018-9800-6. [Epub ahead of print]

    CAS  CrossRef  Google Scholar 

  • Caplan AI (2015) Adult mesenchymal stem cells: when, where, and how. Stem Cells Int 2015:628767

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6:1445–1451

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chalisserry EP, Nam SY, Park SH, Anil S (2017) Therapeutic potential of dental stem cells. J Tissue Eng 8:204173141770253

    CrossRef  CAS  Google Scholar 

  • Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85:1544–1552

    CrossRef  PubMed  Google Scholar 

  • Cheung HY, Lau KT, Lu TP, Hui D (2007) A critical review on polymer-based bio-engineered materials for scaffold development. Compos Part B 38:291–300

    CrossRef  CAS  Google Scholar 

  • Clinicaltrials, 2018. https://clinicaltrials.gov. Accessed 25 Apr 2018

  • Crane JL, Cao X (2014) Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest 124:466–472

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane JL, Zhao L, Frye JS, Xian L, Qiu T, Cao X (2013) IGF-1 signaling is essential for differentiation of mesenchymal stem cells for peak bone mass. Bone Res 28:186–194

    CrossRef  CAS  Google Scholar 

  • Davies LC, Heldring N, Kadri N, Le Blanc K (2017) Mesenchymal stromal cell secretion of programmed Death-1 ligands regulates T cell mediated immunosuppression. Stem Cells 35:766–776

    CrossRef  CAS  PubMed  Google Scholar 

  • De Bari C, Roelofs AJ (2018) Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol 40:74–80

    CrossRef  CAS  PubMed  Google Scholar 

  • Del Rosario C, Rodríguez-Évora M, Reyes R, Delgado A, Évora C (2015) BMP-2, PDGF-BB, and bone marrow mesenchymal cells in a macroporous β -TCP scaffold for critical-size bone defect repair in rats. Biomed Mater 10:045008

    CrossRef  CAS  PubMed  Google Scholar 

  • Devine SM (2000) Mesenchymal stem cells: will they have a role in the clinic? J Cell Biochem Suppl 38:73–79

    Google Scholar 

  • Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281

    CrossRef  CAS  PubMed  Google Scholar 

  • Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404

    CrossRef  PubMed  Google Scholar 

  • Dorozhkin SV (2010) Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater 1:22–107

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggli PSMD, Moller WPD, Schenk RKMD (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits: a comparative histomorphometric and histologic study of bony ingrowth and implant substitution. SO – Clin Orthopaedics & Related Res 232:127–138

    CAS  Google Scholar 

  • Egusa H, Sonoyama W, Nishimira M, Atsuta I, Akiyama K (2012) Stem cells in dentistry- part II: clinical applications. J Prosthodontics Res 56:229–248

    CrossRef  Google Scholar 

  • Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel) 10:pii: E334

    Google Scholar 

  • Ercal P, Pekozer GG, Kose GT (2018) Dental stem cells in bone tissue engineering: current overview and challenges. Adv Exp Med Biol [Epub ahead of print]

    Google Scholar 

  • Eurell JA, Stewart M, Jamison RD (2006) Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. J Biomed Mater Res A 76A:366–376

    CrossRef  CAS  Google Scholar 

  • Flautre B, Descamps M, Delecourt C, Blary MC, Hardouin P (2001) Porous HA ceramic for bone replacement: role of the pores and interconnections – experimental study in the rabbit. J Mater Sci Mater Med 12:679–682

    CrossRef  CAS  PubMed  Google Scholar 

  • Fortier LA (2005) Stem cells: classifications, controversies, and clinical applications. Vet Surg 34:415–423

    CrossRef  PubMed  Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  PubMed  Google Scholar 

  • Frith J, Genever P (2008) Transcriptional control of mesenchymal stem cell differentiation. Transfus Med hemotherapy Off Organ der DtschGesellschaft fur̈ Transfusionsmedizin und Immunham̈atologie 35:216–227

    CrossRef  Google Scholar 

  • Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100:143–155

    CrossRef  CAS  PubMed  Google Scholar 

  • Galois L, Mainard D (2004) Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg 70:598–603

    PubMed  Google Scholar 

  • Gandolfi MG, Spagnuolo G, Siboni F, Procino A, Rivieccio V, Pelliccioni GA, Prati C, Rengo S (2015) Calcium silicate/calcium phosphate biphasic cements for vital pulp therapy: chemical-physical properties and human pulp cells response. Clin Oral Investig 19:2075–2089

    CrossRef  CAS  PubMed  Google Scholar 

  • Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA (2017) Prospective review of mesenchymal stem cells differentiation into osteoblasts. Orthop Surg 9:13–19

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gauthier O, Bouler J-M, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 19:133–139

    CrossRef  CAS  PubMed  Google Scholar 

  • Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS, Soleimani M (2018) Characterization and classification of mesenchymal stem cells in several species using surface markers for cell therapy purposes. Indian J Clin Biochem 33:46–52

    CrossRef  CAS  PubMed  Google Scholar 

  • Ghannam S, Pène J, Moquet-Torcy G, Jorgensen C, Yssel H (2017) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312

    CrossRef  CAS  Google Scholar 

  • Gupta PK, Chullikana A, Rengasamy M, Shetty N, Pandey V, Agarwal V, Wagh SY, Vellotare PK, Damodaran D, Viswanathan P, Thej C, Balasubramanian, Majumdar AS (2016) Efficacy and safety of adult human bone marrow- derived, cultured, pooled, allogeneic mesenchymal stromal cells (StempeucelJ): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res Ther 18:301

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Habibovic P, de Groot K (2007) Osteoinductive biomaterials--properties and relevance in bone repair. J Tissue Eng Regen Med 1:25–32

    CrossRef  CAS  PubMed  Google Scholar 

  • Habraken W, Habibovic P, Epple M, Marc Bohner M (2016) Calcium phosphates in biomedical applications: materials for the future?. Mater Today 19(2):69–87

    Google Scholar 

  • Han J, Menicanin D, Gronthos S, Bartold PM (2014) Stem cells, tissue engineering and periodontal regeneration. Aust Dent J 59(Suppl 1):117–130

    CrossRef  PubMed  Google Scholar 

  • Handa K, Saito M, Tsunoda A, Yamauchi M, Hattori S, Sato S, Toyoda M, Teranaka T, Narayanan AS (2002) Progenitor cells from dental follicle are able to form cementum matrix in vivo. Connect Tissue Res 43:406–408

    CrossRef  PubMed  Google Scholar 

  • Hernández-Monjaraz B, Santiago-Osorio E, Monroy-García A, Ledesma-Martínez E, Mendoza-Núñez VM (2018) Mesenchymal stem cells of dental origin for inducing tissue regeneration in periodontitis: a mini-review. Int J Mol Sci 19:pii: E944

    Google Scholar 

  • Hing KA, Annaz B, Saeed S, Revell PA, Buckland T (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16:467–475

    CrossRef  CAS  PubMed  Google Scholar 

  • Ho CY, Sanghani A, Hua J, Coathup M, Kalia P, Blunn G (2015) Mesenchymal stem cells with increased SDF-1 expression enhanced fracture healing. Tissue Eng Part A 21:594–602

    CrossRef  CAS  PubMed  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–24

    Google Scholar 

  • Hollister SJ (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater 21:3330–3342

    CrossRef  CAS  PubMed  Google Scholar 

  • Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, Wilke EN, Van Lenthe GH, Müller R, Wirtz T, Das S, Feinberg SE, Krebsbach PH (2005) Engineering craniofacial scaffolds. Orthod Craniofac Res 8:162–173

    CrossRef  CAS  PubMed  Google Scholar 

  • Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Nöth U, Jakob F, Rudert M, Groll J, Hutmacher DW (2013) How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev 65:581–603

    CrossRef  CAS  PubMed  Google Scholar 

  • Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Yin C, Zhao F, Ali A, Ma J, Qian A (2018) Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci 19:. pii: E360

    Google Scholar 

  • Huang J, Best S (2007) Ceramic Biomaterials. In: Boccaccini G (ed) Tissue engineering using ceramics and polymers. Woodhead Publishing Ltd, Cambridge, pp 3–31

    CrossRef  Google Scholar 

  • Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S (2010) Stem/progenitor cell–mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng A 16:605–615

    CrossRef  CAS  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    CrossRef  CAS  PubMed  Google Scholar 

  • Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    CrossRef  CAS  PubMed  Google Scholar 

  • Ito H (2011) Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod Rheumatol 21:113–121

    CrossRef  CAS  PubMed  Google Scholar 

  • James AW (2013) Review of signaling pathways governing MSC osteogenic and Adipogenic differentiation. Scientifica (Cairo) 2013:684736

    Google Scholar 

  • Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598

    CrossRef  CAS  PubMed  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials Elsevier, pp 5474–5491

    Google Scholar 

  • Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT (2008) Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 90(Suppl 1):36–42

    CrossRef  PubMed  Google Scholar 

  • Khorsand A, Eslaminejad MB, Arabsolghar M, Paknejad M, Ghaedi B, Rokn AR, Moslemi N, Nazarian H, Jahangir S (2013) Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. J Oral Implantol 39:433–443

    CrossRef  PubMed  Google Scholar 

  • Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS (2017) Biomimetic materials and fabrication approaches for bone tissue engineering. Adv Healthc Mater 6(23). Epub ahead of print

    Google Scholar 

  • Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60:813–823

    CrossRef  CAS  PubMed  Google Scholar 

  • Knaack D, Goad ME, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD (1998) Resorbable calcium phosphate bone substitute. J Biomed Mater Res 43:399–409

    CrossRef  CAS  PubMed  Google Scholar 

  • Koch H, Jadlowiec JA, Campbell PG (2005) Insulin-like growth factor-i induces early osteoblast gene expression in human mesenchymal stem cells. Stem Cells Dev 14:621–631

    CrossRef  CAS  PubMed  Google Scholar 

  • Krasnodembskaya A, Song Y, Gupta N, Serikov V, Lee JW, Matthay MA (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28:2229–2238

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee JW, Gupta N, Petrini M, Matthay MA (2012) Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol 302:L1003–L1013

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and Chondrogenesis. J Bone Joint Surg Am 83:S105–S115

    CrossRef  PubMed  Google Scholar 

  • Lan Levengood SK, Polak SJ, Poellmann MJ, Hoelzle DJ, Maki AJ, Clark SG, Wheeler MB, Wagoner Johnson AJ (2010a) The effect of BMP-2 on micro- and macroscale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity. Acta Biomater 6:3283–3291

    CrossRef  CAS  PubMed  Google Scholar 

  • Lan Levengood SK, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD, Wagoner Johnson AJ (2010b) Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 31:3552–3563

    CrossRef  CAS  PubMed  Google Scholar 

  • Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213:18–26

    CrossRef  CAS  PubMed  Google Scholar 

  • Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA, Philbrick K, Punreddy S, Rigby S, Smith R, Feng Q, Murrell JR, Rook MS (2017) Process development for expansion of human mesenchymal stromal cells in a 50 L single-use stirred tank bioreactor. Biochem Eng J 120:49–62

    CrossRef  CAS  Google Scholar 

  • Lee KD (2008) Applications of mesenchymal stem cells: an updated review. Chang Gung Med J 31:228–236

    PubMed  Google Scholar 

  • LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108:4742–4753

    CrossRef  CAS  PubMed  Google Scholar 

  • Li CJ, Madhu V, Balian G, Dighe AS, Cui Q (2015) Cross-talk between VEGF and BMP-6 pathways accelerates osteogenic differentiation of human adipose-derived stem cells. J Cell Physiol 230:2671–2682

    CrossRef  CAS  PubMed  Google Scholar 

  • Li Y, Jiang T, Zheng L, Zhao J (2017) Osteogenic differentiation of mesenchymal stem cells (MSCs) induced by three calcium phosphate ceramic (CaP) powders: a comparative study. Mater Sci Eng C Mater Biol Appl 80:296–300

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu T, Li J, Shao Z, Ma K, Zhang Z, Wang B, Zhang Y (2018) Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Med Eng Phys 56:9–15

    CrossRef  PubMed  Google Scholar 

  • Lobo SE, Glickman R, da Silva WN, Arinzeh TL, Kerkis I (2015) Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell Tissue Res 361:477–495

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucaciu O, Soriţău O, Gheban D, Ciuca DR, Virtic O, Vulpoi A, Dirzu N, Câmpian R, Băciuţ G, Popa C, Simon S, Berce P, Băciuţ M, Crisan B (2015) Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol 15:114

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquis ME, Lord E, Bergeron E, Drevelle O, Park H, Cabana F, Senta H, Faucheux N (2009) Bone cells-biomaterials interactions. Front Biosci 4:1023–1067

    CrossRef  Google Scholar 

  • Masaoka T, Yoshii T, Yuasa M, Yamada T, Taniyama T, Torigoe I, Shinomiya K, Okawa A, Morita S, Sotome S (2016) Bone defect regeneration by a combination of a β-Tricalcium phosphate scaffold and bone marrow stromal cells in a non-human primate model. Open Biomed Eng J 10:2–11

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthay MA, Pati S, Lee JW (2017) Concise review: mesenchymal stem (stromal) cells: biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or Sepsis. Stem Cells 35:316–324

    CrossRef  PubMed  Google Scholar 

  • Meisel R, Brockers S, Heseler K, Degistirici O, Bülle H, Woite C, Stuhlsatz S, Schwippert W, Jäger M, Sorg R, Henschler R, Seissler J, Dilloo D, Däubener W (2011) Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia 25:648–654

    CrossRef  CAS  PubMed  Google Scholar 

  • Mellor AL, Lemos H, Huang L (2017) Indoleamine 2,3-dioxygenase and tolerance: where are we now? Front Immunol 8:1360

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Miteva K, Van Linthout S, Pappritz K, Müller I, Spillmann F, Haag M, Stachelscheid H, Ringe J, Sittinger M, Tschöpe C (2016) Human endomyocardial biopsy specimen-derived stromal cells modulate angiotensin ii-induced cardiac remodeling. Stem Cells Transl Med 5:1707–1718

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    CrossRef  CAS  PubMed  Google Scholar 

  • Parton S, Mason C (2012) A decade of cell therapy clinical trials (2000–2010). Regen Med 7:455–462

    CrossRef  CAS  Google Scholar 

  • Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22:73–79

    CrossRef  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CrossRef  CAS  PubMed  Google Scholar 

  • Poggi A, Varesano S, Zocchi MR (2018) How to hit mesenchymal stromal cells and make the tumor microenvironment Immunostimulant rather than immunosuppressive. Front Immunol 9:262

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P (2017) Bioceramics in endodontics – a review. J Istanb Univ Fac Dent 51:S128–S137

    PubMed  PubMed Central  Google Scholar 

  • Ravindran S, Huang CC, George A (2014) Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs. Front Physiol 4:395

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Saberi EA, Karkehabadi H, Mollashahi NF (2016) Cytotoxicity of various endodontic materials on stem cells of human apical papilla. Iran Endod J Winter 11:17–22

    CAS  Google Scholar 

  • Sadiasa A, Sarkar SK, Franco RA, Min YK, Lee BT (2014) Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration. J Biomater Appl 28:739–756

    CrossRef  CAS  PubMed  Google Scholar 

  • Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529

    CrossRef  PubMed  Google Scholar 

  • Salzig D, Leber J, Merkewitz K, Lange MC, Köster N, Czermak P (2015) Attachment, growth and detachment of human mesenchymal stem cells in a chemically defined medium. Stem Cells Int 2016:1–10

    CrossRef  CAS  Google Scholar 

  • Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM (2017) Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 6:2173–2185

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Salcedo S, Arcos D, Vallet-Regí M (2008) Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng Mater 377:19–42

    CrossRef  Google Scholar 

  • Schek RM, Wilke EN, Hollister SJ, Krebsbach PH (2006) Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. Biomaterials 27:1160–1166

    CrossRef  CAS  PubMed  Google Scholar 

  • Scopus, 2018. https://www.scopus.com. Accessed 25 Apr 2018

  • Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222

    CrossRef  CAS  PubMed  Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2014) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    CrossRef  CAS  Google Scholar 

  • Seol YJ, Park JY, Jung JW, Jang J, Girdhari R, Kim SW, Cho DW (2014) Improvement of bone regeneration capability of ceramic scaffolds by accelerated release of their calcium ions. Tissue Eng Part A 20:2840–2849

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23:1357–1366

    CrossRef  CAS  PubMed  Google Scholar 

  • Shamir C, Venugopal C, Dhanushkodi A (2015) Dental pulp stem cells for treating neurodegenerative diseases. Neural Regen Res 10:1910–1911

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sharpe PT (2016) Dental mesenchymal stem cells. Development 143:2273–2280

    CrossRef  CAS  PubMed  Google Scholar 

  • Shen B, Bhargav D, Wei A, Williams LA, Tao H, Ma DDF, Diwan AD (2009) BMP-13 emerges as a potential inhibitor of bone formation. Int J Biol Sci 5:192–200

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2015) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199

    CrossRef  Google Scholar 

  • Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ (2004) Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35:562–569

    CrossRef  CAS  PubMed  Google Scholar 

  • Sivanathan KN, Rojas-Canales DM, Hope CM, Krishnan R, Carroll RP, Gronthos S, Grey ST, Coates PT (2015) Interleukin-17A-induced human mesenchymal stem cells are superior modulators of immunological function. Stem Cells 33:2850–2863

    CrossRef  CAS  PubMed  Google Scholar 

  • Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848

    CrossRef  PubMed  Google Scholar 

  • Stains JP, Civitelli R (2003) Genomic approaches to identifying transcriptional regulators of osteoblast differentiation. Genome Biol 4:222

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sun X, Su W, Ma X, Zhang H, Sun Z, Li X (2018) Comparison of the osteogenic capability of rat bone mesenchymal stem cells on collagen, collagen/hydroxyapatite, hydroxyapatite and biphasic calcium phosphate. Regen Biomater 5:93–103

    CrossRef  PubMed  Google Scholar 

  • Tang N, Song WX, Luo J, Luo X, Chen J, Sharff KA, Bi Y, He BC, Huang JY, Zhu GH, Su YX, Jiang W, Tang M, He Y, Wang Y, Chen L, Zuo GW, Shen J, Pan X, Reid RR, Luu HH, Haydon RC, He TC (2009) BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med 13:2448–2464

    CrossRef  PubMed  Google Scholar 

  • Tang Z, Wang Z, Qing F, Ni Y, Fan Y, Tan Y, Zhang X (2015) Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics. J Biomed Mater Res A 103:1001–1010

    CrossRef  CAS  PubMed  Google Scholar 

  • Thanunchai M, Hongeng S, Thitithanyanont A (2015) Mesenchymal stromal cells and viral infection. Stem Cells Int 2015:860950

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson Z, Miclau T, Hu D, Helms JA (2002) A model for intramembranous ossification during fracture healing. J Orthop Res 20:1091–1098

    CrossRef  CAS  PubMed  Google Scholar 

  • van Blitterswijk C, Moroni L, Rouwkema J, Siddappa R, Sohier J (2008) Tissue engineering – an introduction. In: van Blitterswijk CA, Thomsen P, Lindahl A, Williams D, Hubbel J, Cancedda R, de Bruijn J, Sohier J (eds) Tissue engineering. Academic, pp 13–36

    Google Scholar 

  • Van Gaalen S, Kruyt M, Meijer G, Mistry A, Mikos A, Beucken JVD, Jansen J, De Groot K, Cancedda R, Olivo C, Yaszemski M, Dhert W (2008) Tissue engineering of bone. Tissue engineering. Academic, Burlington, pp 559–610

    Google Scholar 

  • Venkatesh D, Kumar KPM, Alur JB (2017) Gingival mesenchymal stem cells. J Oral Maxillofac Pathol 21:296–298

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Vicente V, Meseguer L, Martinez F, Galian A, Rodriguez J, Alcaraz M, Clavel M (1996) Ultrastructural study of the osteointegration of bioceramics (whitlockite and composite beta-TCP + collagen) in rabbit bone. Ultrastruct Pathol 20:179–188

    CrossRef  CAS  PubMed  Google Scholar 

  • Vivanco J, Slane J, Nay R, Simpson A, Ploeg HL (2011) The effect of sintering temperature on the microstructure and mechanical properties of a bioceramic bone scaffold. J Mech Behav Biomed Mater 4:2150–2160

    CrossRef  CAS  PubMed  Google Scholar 

  • Vivanco J, Aiyangar A, Araneda A, Ploeg HL (2012) Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds. J Mech Behav Biomed Mater 9:137–152

    CrossRef  CAS  PubMed  Google Scholar 

  • Volarevic V, Gazdic M, SimovicMarkovic B, Jovicic N, Djonov V, Arsenijevic N (2017) Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. Biofactors 43:633–644

    CrossRef  CAS  PubMed  Google Scholar 

  • Wahab NFAC, Kannan TP, Mahmood Z, Rahman IA, Ismail H (2018) Genotoxicity assessment of biphasic calcium phosphate of modified porosity on human dental pulp cells using Ames and comet assays. Toxicol In Vitro 47:207–212

    CrossRef  CAS  PubMed  Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang L, Yan M, Wang Y, Lei G, Yu Y, Zhao C, Tang Z, Zhang G, Tang C, Yu J, Liao H (2013) Proliferation and osteo/odontoblastic differentiation of stem cells from dental apical papilla in mineralization-inducing medium containing additional KH(2)PO(4). Cell Prolif 46:214–222

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhao L, Chen W, Liu X, Weir MD, Xu HH (2014) Stem cells and calcium phosphate cement scaffolds for bone regeneration. J Dent Res 93:618–625

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang P, Weir MD, Reynolds MA, Zhao L, Xu HH (2016) Hydrogel fibers encapsulating human stem cells in an injectable calcium phosphate scaffold for bone tissue engineering. Biomed Mater 11(6):065008

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Ma T, Guo D, Hu K, Shu Y, Xu HHK, Schneider A (2018) Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells. J Tissue Eng Regen Med 12:437–446

    CrossRef  CAS  PubMed  Google Scholar 

  • Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    CrossRef  CAS  PubMed  Google Scholar 

  • Wiltfang J, Merten HA, Schlegel KA, Schultze-Mosgau S, Kloss FR, Rupprecht S, Kessler P (2002) Degradation characteristics of alpha and beta tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res 63:115–121

    CrossRef  CAS  PubMed  Google Scholar 

  • Winning L, Robinson L, Boyd AR, El Karim IA, Lundy FT, Meenan BJ (2017) Osteoblastic differentiation of periodontal ligament stem cells on non-stoichiometric calcium phosphate and titanium surfaces. J Biomed Mater Res A 105:1692–1702

    CrossRef  CAS  PubMed  Google Scholar 

  • Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N (2017a) Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition. J Mater Sci Mater Med 28:25

    CrossRef  CAS  PubMed  Google Scholar 

  • Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N (2017b) Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects. J Mater Sci Mater Med 28:77

    CrossRef  CAS  PubMed  Google Scholar 

  • Wu AA, Drake V, Huang HS, Chiu S, Zheng L (2015) Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 4:e1016700

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Chen H, Zhang F, Bao C, Weir MD, Reynolds MA, Ma J, Gu N, Xu HHK (2018a) Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. Nanomedicine 14:35–45

    CrossRef  CAS  PubMed  Google Scholar 

  • Xia Y, Chen H, Zhang F, Wang L, Chen B, Reynolds MA, Ma J, Schneider A, Gu N, Xu HHK (2018b) Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Artif Cells Nanomed Biotechnol 21:1–11

    CrossRef  CAS  Google Scholar 

  • Xiao YT, Xiang LX, Shao JZ (2007) Bone morphogenetic protein. Biochem Biophys Res Commun 362:550–553

    CrossRef  CAS  PubMed  Google Scholar 

  • Xu SJ, Qiu ZY, Wu JJ, Kong XD, Weng XS, Cui FZ, Wang XM (2016) Osteogenic differentiation gene expression profiling of hMSCs on hydroxyapatite and mineralized collagen. Tissue Eng Part A 22:170–181

    CrossRef  CAS  PubMed  Google Scholar 

  • Xu HH, Wang P, Wang L, Bao C, Chen Q, Weir MD, Chow LC, Zhao L, Zhou X, Reynolds MA (2017) Calcium phosphate cements for bone engineering and their biological properties. Bone Res 5:17056

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye G, Li C, Xiang X, Chen C, Zhang R, Yang X, Yu X, Wang J, Wang L, Shi Q, Weng Y (2014) Bone morphogenetic protein-9 induces PDLSCs osteogenic differentiation through the ERK and p38 signal pathways. Int J Med Sci 11:1065–1072

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi T, Jun CM, Kim SJ, Yun JH (2016) Evaluation of in vivo osteogenic potential of bone morphogenetic protein 2-overexpressing human periodontal ligament stem cells combined with biphasic calcium phosphate block scaffolds in a critical-size bone defect model. Tissue Eng Part A 22:501–512

    CrossRef  CAS  PubMed  Google Scholar 

  • Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. JBJS 80:1745–1757

    CrossRef  CAS  Google Scholar 

  • Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H (2016) Prospect of stem cells in bone tissue engineering: a review. Stem Cells Int 2016:6180487

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Li Y, de Bruijn JD, de Groot K, Zhang X (2000) Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials 21:1283–1290

    CrossRef  CAS  PubMed  Google Scholar 

  • Yubo M, Yanyan L, Li L, Tao S, Bo L, Lin C (2017) Clinical efficacy and safety of mesenchymal stem cell transplantation for osteoarthritis treatment: a meta-analysis. PLoS One 12(4):e0175449

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Morsi Y, Wang Y, Li Y, Ramakrishna S (2013) Review scaffold design and stem cells for tooth regeneration. Japn Dental Sci Rev 49:14–26

    CrossRef  Google Scholar 

  • Zhang J, Ma X, Lin D, Shi H, Yuan Y, Tang W, Zhou H, Guo H, Qian J, Liu C (2015) Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials 53:251–264

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhao N, Wu Z, Qin L, Guo Z, Li D (2015) Characteristics and tissue regeneration properties of gingiva-derived mesenchymal stem cells. Crit Rev Eukaryot Gene Expr 25:135–144

    CrossRef  PubMed  Google Scholar 

  • Zhou J, Xu C, Wu G, Cao X, Zhang L, Zhai Z, Zheng Z, Chen X, Wang Y (2011) In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomater 7:3999–4006

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhou X, Feng W, Qiu K, Chen L, Wang W, Nie W, Mo X, He C (2015) BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. ACS Appl Mater Interfaces 7:15777–15789

    CrossRef  CAS  PubMed  Google Scholar 

  • Zorin VL, Komlev VS, Zorina AI, Khromova NV, Solovieva EV, Fedotov AY, Eremin II, Kopnin PB (2014) Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater 9:055005

    CrossRef  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Marija Bozic for her excellent and valuable editorial assistance. We apologize to those colleagues whose work, although relevant to the issues dealt within this review, has not been included due to space limitations. This work was supported by Fondo Nacional de Ciencia y Tecnologia (FONDECYT No 11170957) and Ministry of education, Science and Technological Development of the Republic of Serbia (grants 175024 and 175053). We also thank to the support of visiting professor program of UBO to J.F.S.

Conflict of Interest

The authors declare no potential conflict of interest.

Ethical Approval

The authors declare that this article does not contain any studies with human participants or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Santibanez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Millan, C., Vivanco, J.F., Benjumeda-Wijnhoven, I.M., Bjelica, S., Santibanez, J.F. (2018). Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 3. Advances in Experimental Medicine and Biology(), vol 1107. Springer, Cham. https://doi.org/10.1007/5584_2018_249

Download citation