Abstract
Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system (CNS). It is characterized by demyelination and neuronal loss that is induced by attack of autoreactive T cells to the myelin sheath and endogenous remyelination failure, eventually leading to functional neurological disability. Although recent evidence suggests that MS relapses are induced by environmental and exogenous triggers such as viral infections in a genetic background, its very complex pathogenesis is not completely understood. Therefore, the efficiency of current immunosuppression-based therapies of MS is too low, and emerging disease-modifying immunomodulatory agents such as fingolimod and dimethyl fumarate cannot stop progressive neurodegenerative process. Thus, the cell replacement therapy approach that aims to overcome neuronal cell loss and remyelination failure and to increase endogenous myelin repair capacity is considered as an alternative treatment option. A wide variety of preclinical studies, using experimental autoimmune encephalomyelitis model of MS, have recently shown that grafted cells with different origins including mesenchymal stem cells (MSCs), neural precursor and stem cells, and induced-pluripotent stem cells have the ability to repair CNS lesions and to recover functional neurological deficits. The results of ongoing autologous hematopoietic stem cell therapy studies, with the advantage of peripheral administration to the patients, have suggested that cell replacement therapy is also a feasible option for immunomodulatory treatment of MS. In this chapter, we overview cell sources and applications of the stem cell therapy for treatment of MS. We also discuss challenges including those associated with administration route, immune responses to grafted cells, integration of these cells to existing neural circuits, and risk of tumor growth. Finally, future prospects of stem cell therapy for MS are addressed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- AD-MSCs :
-
Adipose tissue-derived MSCs
- AHSCT :
-
Autologous hematopoietic stem cell transplantation
- APC:
-
Antigen-presenting cells
- ASC:
-
Adult stem cells
- BBB:
-
Blood–brain barrier
- CNS:
-
Central nervous system
- Cy:
-
Cyclophosphamide
- DC:
-
Dendritic cells
- DMDs:
-
Disease-modifying drugs
- Dpi:
-
Days of post immunization
- EAE:
-
Experimental autoimmune encephalomyelitis
- EDSS:
-
Expanded Disability Status Scale
- ESC:
-
Embryonic stem cells
- G-CSF:
-
Granulocyte colony-stimulating factor
- GWAS:
-
Genome-wide association studies
- HLA:
-
Human leukocyte antigen
- HSC:
-
Hematopoietic stem cell
- HSCT:
-
Hematopoietic stem cell transplantation
- IDO:
-
Indoleamine 2,3-dioxygenase
- IFNÉ£:
-
Interferon gamma
- IL-10:
-
Interleukin-10
- IL-1β:
-
Interleukin-1beta
- iNSC:
-
Induced neural stem cell
- iOL:
-
Induced oligodendrocyte
- iOPC:
-
Induced oligodendrocyte progenitor cell
- iPSC:
-
Induced pluripotent stem cell
- MBP:
-
Myelin basic protein
- MHC:
-
Major histocompatibility complex
- MOG:
-
Myelin oligodendrocyte glycoprotein
- MRI:
-
Magnetic resonance imaging
- MS:
-
Multiple sclerosis
- MSC:
-
Mesenchymal stem cell
- NK:
-
Natural killer
- NPC:
-
Neural progenitor cells
- NSC:
-
Neural stem cell
- OPC:
-
Oligodendrocyte progenitor cell
- PBMC:
-
Peripheral blood mononuclear cells
- PMS:
-
Progressive MS
- RRMS:
-
Relapsing-remitting multiple sclerosis
- SCT:
-
Stem cell transplantation
- SNP:
-
Single nucleotide polymorphism
- SPMS:
-
Secondary progressive multiple sclerosis
- SVZ:
-
Subventricular zone
- Th:
-
T helper
- TNF:
-
Tumor necrosis factor
- Tregs:
-
T cell regulatory
- TRM:
-
Transplantation related mortality
References
Aharonowiz, M., Einstein, O., Fainstein, N., Lassmann, H., Reubinoff, B., & Ben-Hur, T. (2008 Sep 5). Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One, 3(9), e3145. https://doi.org/10.1371/journal.pone.0003145 Pub Med PMID: 18773082; Pub Med Central PMCID: PMC2522282.
An, N., Xu, H., Gao, W. Q., & Yang, H. (2016). Direct conversion of somatic cells into induced neurons. Molecular Neurobiology, 55, 642. https://doi.org/10.1007/s12035-016-0350-0.
Atkins, H. L., & Freedman, M. S. (2013). Hematopoietic stem cell therapy for multiple sclerosis: Top 10 lessons learned. Neurotherapeutics, 10, 68–76. https://doi.org/10.1007/s13311-012-0162-5.
Bai, L., et al. (2012). Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nature Neuroscience, 15, 862–870. https://doi.org/10.1038/nn.3109.
Bai, L., Lennon, D. P., Eaton, V., Maier, K., Caplan, A. I., Miller, S. D., & Miller, R. H. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia, 57, 1192–1203. https://doi.org/10.1002/glia.20841.
Bang, O. Y., Kim, E. H., Cha, J. M., & Moon, G. J. (2016). Adult stem cell therapy for stroke: Challenges and progress. Journal of Stroke, 18, 256–266. https://doi.org/10.5853/jos.2016.01263.
Bell, S. M., Sharrack, B., & Snowden, J. A. (2017). Autologous hematopoietic cell transplantation in multiple sclerosis. Expert Opinion on Biological Therapy, 17, 77–86. https://doi.org/10.1080/14712598.2017.1239706.
Ben-Hur, T., Einstein, O., Mizrachi-Kol, R., Ben-Menachem, O., Reinhartz, E., Karussis, D., & Abramsky, O. (2003). Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia, 41, 73–80. https://doi.org/10.1002/glia.10159.
Bonab, M. M., et al. (2012). Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: An open label study. Current Stem Cell Research & Therapy, 7, 407–414.
Browne, P., Chandraratna, D., Angood, C., Tremlett, H., Baker, C., Taylor, B. V., & Thompson, A. J. (2014). Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neurology, 83, 1022–1024. https://doi.org/10.1212/WNL.0000000000000768.
Burman, J., et al. (2014). Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: The Swedish experience. Journal of Neurology, Neurosurgery, and Psychiatry, 85, 1116–1121. https://doi.org/10.1136/jnnp-2013-307207.
Burt, R. K., et al. (2015). Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA, 313, 275–284. https://doi.org/10.1001/jama.2014.17986.
Burt, R. K., Balabanov, R., Voltarelli, J., Barreira, A., & Burman, J. (2012). Autologous hematopoietic stem cell transplantation for multiple sclerosis--if confused or hesitant, remember: ‘Treat with standard immune suppressive drugs and if no inflammation, no response’. Multiple Sclerosis, 18, 772–775. https://doi.org/10.1177/1352458512442993.
Cao, W., et al. (2011). Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity, 35, 273–284. https://doi.org/10.1016/j.immuni.2011.06.011.
Casanova, B., et al. (2017). Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: Comparison with secondary progressive multiple sclerosis. Neurological Sciences, 38, 1213–1221. https://doi.org/10.1007/s10072-017-2933-6.
Chen, L., Coleman, R., Leang, R., Tran, H., Kopf, A., Walsh, C. M., Sears-Kraxberger, I., Steward, O., Macklin, W. B., Loring, J. F., & Lane, T. E. (2014 May 15). Human neural precursor cells promote neurologic recovery in a viral model of multiple sclerosis. Stem Cell Reports., 2(6), 825–837. https://doi.org/10.1016/j.stemcr.2014.04.005 eCollection 2014 Jun 3. Pub Med PMID: 24936469; Pub Med Central PMCID: PMC4050357.
Cieslar-Pobuda, A., et al. (2017). Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochimica et Biophysica Acta, 1864, 1359–1369. https://doi.org/10.1016/j.bbamcr.2017.04.017.
Cohen, J. A. (2013). Mesenchymal stem cell transplantation in multiple sclerosis. Journal of the Neurological Sciences, 333, 43–49. https://doi.org/10.1016/j.jns.2012.12.009.
Cohen, J. A., et al. (2017). Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Multiple Sclerosis, 24(4), 501–511. https://doi.org/10.1177/1352458517703802.
Comi, G., Radaelli, M., & Soelberg Sorensen, P. (2017). Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet, 389, 1347–1356. https://doi.org/10.1016/S0140-6736(16)32388-1.
Compston, A., & Coles, A. (2008). Multiple sclerosis. Lancet, 372, 1502–1517. https://doi.org/10.1016/S0140-6736(08)61620-7.
Connick, P., et al. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurology, 11, 150–156. https://doi.org/10.1016/S1474-4422(11)70305-2.
Curro, D., & Mancardi, G. (2016). Autologous hematopoietic stem cell transplantation in multiple sclerosis: 20 years of experience. Neurological Sciences, 37, 857–865. https://doi.org/10.1007/s10072-016-2564-3.
Czepiel, M., et al. (2011). Differentiation of induced pluripotent stem cells into functional oligodendrocytes. Glia, 59, 882–892. https://doi.org/10.1002/glia.21159.
Czepiel, M., Leicher, L., Becker, K., Boddeke, E., & Copray, S. (2014). Overexpression of polysialylated neural cell adhesion molecule improves the migration capacity of induced pluripotent stem cell-derived oligodendrocyte precursors. Stem Cells Translational Medicine, 3, 1100–1109. https://doi.org/10.5966/sctm.2014-0041.
Dargahi, N., Katsara, M., Tselios, T., Androutsou, M. E., de Courten, M., Matsoukas, J., & Apostolopoulos, V. (2017). Multiple sclerosis: Immunopathology and treatment update. Brain Sciences, 7. https://doi.org/10.3390/brainsci7070078.
Delbue, S., Comar, M., & Ferrante, P. (2017). Natalizumab treatment of multiple sclerosis: New insights. Immunotherapy, 9, 157–171. https://doi.org/10.2217/imt-2016-0113.
Derkus, B., Emregul, K. C., & Emregul, E. (2017). A new approach in stem cell research-Exosomes: Their mechanism of action via cellular pathways. Cell Biology International, 41, 466–475. https://doi.org/10.1002/cbin.10742.
Disanto, G., Morahan, J. M., Barnett, M. H., Giovannoni, G., & Ramagopalan, S. V. (2012). The evidence for a role of B cells in multiple sclerosis. Neurology, 78, 823–832. https://doi.org/10.1212/WNL.0b013e318249f6f0.
Dominici, M., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317. https://doi.org/10.1080/14653240600855905.
Dorr, J. (2016). Haemopoietic stem-cell transplantation for multiple sclerosis: What next? Lancet, 388, 536–538. https://doi.org/10.1016/S0140-6736(16)30377-4.
Douvaras, P., et al. (2014). Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports, 3, 250–259. https://doi.org/10.1016/j.stemcr.2014.06.012.
Durnaoglu, S., Genc, S., & Genc, K. (2011). Patient-specific pluripotent stem cells in neurological diseases. Stem Cells International, 2011, 212487. https://doi.org/10.4061/2011/212487.
Einstein, O., et al. (2007). Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Annals of Neurology, 61, 209–218. https://doi.org/10.1002/ana.21033.
Einstein, O., et al. (2006). Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Experimental Neurology, 198, 275–284. https://doi.org/10.1016/j.expneurol.2005.11.007.
Einstein, O., Karussis, D., Grigoriadis, N., Mizrachi-Kol, R., Reinhartz, E., Abramsky, O., & Ben-Hur, T. (2003). Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Molecular and Cellular Neurosciences, 24, 1074–1082.
Fassas, A., Anagnostopoulos, A., Kazis, A., Kapinas, K., Sakellari, I., Kimiskidis, V., & Tsompanakou, A. (1997). Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: First results of a pilot study. Bone Marrow Transplantation, 20, 631–638. https://doi.org/10.1038/sj.bmt.1700944.
Filippi, M., Boido, M., & Terreno, E. (2017a). Imaging of MSC transplantation in neuroscience. Oncotarget, 8, 10781–10782. https://doi.org/10.18632/oncotarget.14643.
Filippi, M., Preziosa, P., & Rocca, M. A. (2017b). Microstructural MR imaging techniques in multiple sclerosis. Neuroimaging Clinics of North America, 27, 313–333. https://doi.org/10.1016/j.nic.2016.12.004.
Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., & Keiliss-Borok, I. V. (1974). Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 17, 331–340.
Galvez-Martin, P., Sabata, R., Verges, J., Zugaza, J. L., Ruiz, A., & Clares, B. (2016). Mesenchymal stem cells as therapeutics agents: Quality and environmental regulatory aspects. Stem Cells International, 2016, 1. https://doi.org/10.1155/2016/9783408.
Garg, N., & Smith, T. W. (2015). An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain and Behavior, 5, e00362. https://doi.org/10.1002/brb3.362.
Gerdoni, E., et al. (2007). Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Annals of Neurology, 61, 219–227. https://doi.org/10.1002/ana.21076.
Gharibi, T., Ahmadi, M., Seyfizadeh, N., Jadidi-Niaragh, F., & Yousefi, M. (2015). Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cellular Immunology, 293, 113–121. https://doi.org/10.1016/j.cellimm.2015.01.002.
Giacoppo, S., Bramanti, P., & Mazzon, E. (2017). The transplantation of mesenchymal stem cells derived from unconventional sources: An innovative approach to multiple sclerosis therapy. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 65, 363. https://doi.org/10.1007/s00005-017-0460-z.
Gomes Mda, M., & Engelhardt, E. (2013). Jean-Martin Charcot, father of modern neurology: An homage 120 years after his death. Arquivos de Neuro-Psiquiatria, 71, 815–817. https://doi.org/10.1590/0004-282X20130128.
Grigoriadis, N., van Pesch, V., & Paradig, M. S. G. (2015). A basic overview of multiple sclerosis immunopathology. European Journal of Neurology, 22(Suppl 2), 3–13. https://doi.org/10.1111/ene.12798.
Guan, Y., Jiang, Z., Ciric, B., Rostami, A. M., & Zhang, G. X. (2008). Upregulation of chemokine receptor expression by IL-10/IL-4 in adult neural stem cells. Experimental and Molecular Pathology, 85, 232–236. https://doi.org/10.1016/j.yexmp.2008.07.003.
Guo, B. (2016). IL-10 modulates Th17 pathogenicity during autoimmune diseases. Journal of Clinical & Cellular Immunology, 07, 7. https://doi.org/10.4172/2155-9899.1000400.
Gupta, N., et al. (2012). Neural stem cell engraftment and myelination in the human brain. Science Translational Medicine, 4, 155ra137. https://doi.org/10.1126/scitranslmed.3004373.
Harding, J., & Mirochnitchenko, O. (2014). Preclinical studies for induced pluripotent stem cell-based therapeutics. The Journal of Biological Chemistry, 289, 4585–4593. https://doi.org/10.1074/jbc.R113.463737.
Harlow, D. E., Honce, J. M., & Miravalle, A. A. (2015). Remyelination therapy in multiple sclerosis. Frontiers in Neurology, 6, 257. https://doi.org/10.3389/fneur.2015.00257.
Harris, V. K., Yan, Q. J., Vyshkina, T., Sahabi, S., Liu, X., & Sadiq, S. A. (2012 Feb 15). Clinical and pathological effects of intrathecal injection of mesenchymal stem cell-derived neural progenitors in an experimental model of multiple sclerosis. Journal of the Neurological Sciences, 313(1–2), 167–177. https://doi.org/10.1016/j.jns.2011.08.036 Epub 2011 Oct 1.Pub Med PMID: 21962795.
Harris, V. K., Vyshkina, T., & Sadiq, S. A. (2016). Clinical safety of intrathecal administration of mesenchymal stromal cell-derived neural progenitors in multiple sclerosis. Cytotherapy, 18, 1476–1482. https://doi.org/10.1016/j.jcyt.2016.08.007.
Hemmer, B., Kerschensteiner, M., & Korn, T. (2015). Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurology, 14, 406–419. https://doi.org/10.1016/S1474-4422(14)70305-9.
Heslop, J. A., Hammond, T. G., Santeramo, I., Tort Piella, A., Hopp, I., Zhou, J., Baty, R., Graziano, E. I., Proto Marco, B., Caron, A., Sköld, P., Andrews, P. W., Baxter, M. A., Hay, D. C., Hamdam, J., Sharpe, M. E., Patel, S., Jones, D. R., Reinhardt, J., Danen, E. H., Ben-David, U., Stacey, G., Björquist, P., Piner, J., Mills, J., Rowe, C., Pellegrini, G., Sethu, S., Antoine, D. J., Cross, M. J., Murray, P., Williams, D. P., Kitteringham, N. R., Goldring, C. E., & Park, B. K. (2015 Apr). Concise review: Workshop review: Understanding and assessing the risks of stem cell-based therapies. Stem Cells Translational Medicine, 4(4), 389–400. https://doi.org/10.5966/sctm.2014-0110 Epub 2015 Feb 26. Review. Pub Med PMID: 25722427; Pub Med Central PMCID: PMC4367503.
Hwang, Y., Broxmeyer, H. E., & Lee, M. R. (2017). Generating autologous hematopoietic cells from human-induced pluripotent stem cells through ectopic expression of transcription factors. Current Opinion in Hematology, 24, 283–288. https://doi.org/10.1097/MOH.0000000000000343.
Jarmalaviciute, A., & Pivoriunas, A. (2016). Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharmacological Research, 113, 816–822. https://doi.org/10.1016/j.phrs.2016.02.002.
Jones, A., & Hawiger, D. (2017). Peripherally induced regulatory T cells: Recruited protectors of the central nervous system against autoimmune neuroinflammation. Frontiers in Immunology, 8, 532. https://doi.org/10.3389/fimmu.2017.00532.
Karnell, F. G., et al. (2017). Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clinical and Experimental Immunology, 189, 268. https://doi.org/10.1111/cei.12985.
Karussis, D., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of Neurology, 67, 1187–1194. https://doi.org/10.1001/archneurol.2010.248.
Karussis, D., & Slavin, S. (2004). Hematopoietic stem cell transplantation in multiple sclerosis: Experimental evidence to rethink the procedures. Journal of the Neurological Sciences, 223, 59–64. https://doi.org/10.1016/j.jns.2004.04.021.
Kawachi, I., & Lassmann, H. (2017). Neurodegeneration in multiple sclerosis and neuromyelitis optica. Journal of Neurology, Neurosurgery, and Psychiatry, 88, 137–145. https://doi.org/10.1136/jnnp-2016-313300.
Kelsey, P. J., Oliveira, M. C., Badoglio, M., Sharrack, B., Farge, D., & Snowden, J. A. (2016). Haematopoietic stem cell transplantation in autoimmune diseases: From basic science to clinical practice. Current Research in Translational Medicine, 64, 71–82. https://doi.org/10.1016/j.retram.2016.03.003.
King, N. M., & Perrin, J. (2014). Ethical issues in stem cell research and therapy. Stem Cell Research & Therapy, 5, 85. https://doi.org/10.1186/scrt474.
Klose, J., Schmidt, N. O., Melms, A., Dohi, M., Miyazaki, J., Bischof, F., & Greve, B. (2013). Suppression of experimental autoimmune encephalomyelitis by interleukin-10 transduced neural stem/progenitor cells. Journal of Neuroinflammation, 10, 117. https://doi.org/10.1186/1742-2094-10-117.
Laterza, C., et al. (2013). iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nature Communications, 4, 2597. https://doi.org/10.1038/ncomms3597.
Lee, H., Narayanan, S., Brown, R. A., Chen, J. T., Atkins, H. L., Freedman, M. S., & Arnold, D. L. (2017). Brain atrophy after bone marrow transplantation for treatment of multiple sclerosis. Multiple Sclerosis, 23, 420–431. https://doi.org/10.1177/1352458516650992.
Lee, Y. E., et al. (2015). The synergistic local immunosuppressive effects of neural stem cells expressing indoleamine 2,3-Dioxygenase (IDO) in an Experimental Autoimmune Encephalomyelitis (EAE) Animal Model. PLoS One, 10, e0144298. https://doi.org/10.1371/journal.pone.0144298.
Li, X., Zhang, Y., Yan, Y., Ciric, B., Ma, C. G., Gran, B., Curtis, M., Rostami, A., & Zhang, G. X. (2016 Aug). Neural stem cells engineered to express three therapeutic factors mediate recovery from chronic stage CNS autoimmunity. Molecular Therapy, 24(8), 1456–1469. https://doi.org/10.1038/mt.2016.104 Epub 2016 May 16. Pub Med PMID: 27203442; Pub Med Central PMCID: PMC5023377.
Li, J., et al. (2017). Therapeutic effects of Human Adipose Tissue-Derived Stem Cell (hADSC) transplantation on Experimental Autoimmune Encephalomyelitis (EAE) mice. Scientific Reports, 7, 42695. https://doi.org/10.1038/srep42695.
Li, Y. H., Feng, L., Zhang, G. X., & Ma, C. G. (2015). Intranasal delivery of stem cells as therapy for central nervous system disease. Experimental and Molecular Pathology, 98, 145–151. https://doi.org/10.1016/j.yexmp.2015.01.016.
Lin, C. C., & Edelson, B. T. (2017). New insights into the role of IL-1beta in experimental autoimmune encephalomyelitis and multiple sclerosis. Journal of Immunology, 198, 4553–4560. https://doi.org/10.4049/jimmunol.1700263.
Liu, S., et al. (2016). Strategies to optimize adult stem cell therapy for tissue regeneration. International Journal of Molecular Sciences, 17. https://doi.org/10.3390/ijms17060982.
Llufriu, S., et al. (2014). Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One, 9, e113936. https://doi.org/10.1371/journal.pone.0113936.
Londono, A. C., & Mora, C. A. (2016). Autologous bone marrow transplantation in multiple sclerosis: Biomarker relevance for patient recruitment and follow up. Journal of Clinical & Cellular Immunology, 7. https://doi.org/10.4172/2155-9899.1000455.
Lublin, F. D., et al. (2014). Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology, 83, 278–286. https://doi.org/10.1212/WNL.0000000000000560.
Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T. C., & Wernig, M. (2012). Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 2527–2532. https://doi.org/10.1073/pnas.1121003109.
Maeder, M. L., & Gersbach, C. A. (2016). Genome-editing technologies for gene and cell therapy. Molecular Therapy, 24, 430–446. https://doi.org/10.1038/mt.2016.10.
Mahfouz, M. M., Abdelsalam, R. M., Masoud, M. A., Mansour, H. A., Ahmed-Farid, O. A., & Kenawy, S. A. (2017). The neuroprotective effect of mesenchymal stem cells on an experimentally induced model for multiple sclerosis in mice. Journal of Biochemical and Molecular Toxicology, 31. https://doi.org/10.1002/jbt.21936.
Mancardi, G. L., et al. (2015). Autologous hematopoietic stem cell transplantation in multiple sclerosis: A phase II trial. Neurology, 84, 981–988. https://doi.org/10.1212/WNL.0000000000001329.
Mariano, E. D., Teixeira, M. J., Marie, S. K., & Lepski, G. (2015). Adult stem cells in neural repair: Current options, limitations and perspectives. World Journal of Stem Cells, 7, 477–482. https://doi.org/10.4252/wjsc.v7.i2.477.
Marks, P. W., Witten, C. M., & Califf, R. M. (2017). Clarifying stem-cell therapy’s benefits and risks. The New England Journal of Medicine, 376, 1007–1009. https://doi.org/10.1056/NEJMp1613723.
Matta, A. P., et al. (2016). No evidence of disease activity in multiple sclerosis patients. Expert Review of Neurotherapeutics, 16, 1279–1284. https://doi.org/10.1080/14737175.2016.1202763.
Matysiak, M., Stasiolek, M., Orlowski, W., Jurewicz, A., Janczar, S., Raine, C. S., & Selmaj, K. (2008). Stem cells ameliorate EAE via an indoleamine 2,3-dioxygenase (IDO) mechanism. Journal of Neuroimmunology, 193, 12–23. https://doi.org/10.1016/j.jneuroim.2007.07.025.
Mentis, A. A., Dardiotis, E., Grigoriadis, N., Petinaki, E., & Hadjigeorgiou, G. M. (2017). Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurologica Scandinavica, 136, 606. https://doi.org/10.1111/ane.12775.
Miron, V. E. (2017). Beyond immunomodulation: The regenerative role for regulatory T cells in central nervous system remyelination. Journal of Cell Communication and Signaling, 11, 191–192. https://doi.org/10.1007/s12079-017-0392-8.
Mohajeri, M., Farazmand, A., Mohyeddin Bonab, M., Nikbin, B., & Minagar, A. (2011). FOXP3 gene expression in multiple sclerosis patients pre-and post mesenchymal stem cell therapy. Iranian Journal of Allergy, Asthma, and Immunology, 10, 155–161 doi:010.03/ijaai.155161.
Mohyeddin Bonab, M., Mohajeri, M., Sahraian, M. A., Yazdanifar, M., Aghsaie, A., Farazmand, A., & Nikbin, B. (2013). Evaluation of cytokines in multiple sclerosis patients treated with mesenchymal stem cells. Archives of Medical Research, 44, 266–272. https://doi.org/10.1016/j.arcmed.2013.03.007.
Mohyeddin Bonab, M., et al. (2007). Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iranian Journal Immunology, 4, 50–57 doi:IJIv4i1A7.
Muraro, P. A., et al. (2005). Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. The Journal of Experimental Medicine, 201, 805–816. https://doi.org/10.1084/jem.20041679.
Muraro, P. A., et al. (2017). Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurology, 74, 459–469. https://doi.org/10.1001/jamaneurol.2016.5867.
Muraro, P. A., et al. (2014). T cell repertoire following autologous stem cell transplantation for multiple sclerosis. The Journal of Clinical Investigation, 124, 1168–1172. https://doi.org/10.1172/JCI71691.
Najm, F. J., et al. (2013). Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nature Biotechnology, 31, 426–433. https://doi.org/10.1038/nbt.2561.
Nam, H., Lee, K. H., Nam, D. H., & Joo, K. M. (2015). Adult human neural stem cell therapeutics: Current developmental status and prospect. World Journal of Stem Cells, 7, 126–136. https://doi.org/10.4252/wjsc.v7.i1.126.
Nash, R. A., et al. (2015). High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): A 3-year interim report. JAMA Neurology, 72, 159–169. https://doi.org/10.1001/jamaneurol.2014.3780.
Natalwala, A., & Kunath, T. (2017). Preparation, characterization, and banking of clinical-grade cells for neural transplantation: Scale up, fingerprinting, and genomic stability of stem cell lines. Progress in Brain Research, 230, 133–150. https://doi.org/10.1016/bs.pbr.2017.02.007.
Ng, A. P., & Alexander, W. S. (2017). Haematopoietic stem cells: Past, present and future. Cell Death Discovery, 3, 17002. https://doi.org/10.1038/cddiscovery.2017.2.
Ngen, E. J., & Artemov, D. (2017). Advances in monitoring cell-based therapies with magnetic resonance imaging: Future perspectives. International Journal of Molecular Sciences, 18, 198. https://doi.org/10.3390/ijms18010198.
Nicaise, A. M., et al. (2017). iPS-derived neural progenitor cells from PPMS patients reveal defect in myelin injury response. Experimental Neurology, 288, 114–121. https://doi.org/10.1016/j.expneurol.2016.11.012.
Nishiyama, Y., et al. (2016). Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field. Neuroscience Research, 107, 20–29. https://doi.org/10.1016/j.neures.2015.11.011.
Odinak, M. M., et al. (2011). Transplantation of mesenchymal stem cells in multiple sclerosis. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, 111, 72–76.
Olsson, T., Barcellos, L. F., & Alfredsson, L. (2017). Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nature Reviews Neurology, 13, 25–36. https://doi.org/10.1038/nrneurol.2016.187.
Pachler, K., et al. (2017). A Good manufacturing practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy, 19, 458–472. https://doi.org/10.1016/j.jcyt.2017.01.001.
Parnell, G. P., & Booth, D. R. (2017). The Multiple Sclerosis (MS) genetic risk factors indicate both acquired and innate immune cell subsets contribute to MS pathogenesis and identify novel therapeutic opportunities. Frontiers in Immunology, 8, 425. https://doi.org/10.3389/fimmu.2017.00425.
Phanthong, P., Raveh-Amit, H., Li, T., Kitiyanant, Y., & Dinnyes, A. (2013). Is aging a barrier to reprogramming? Lessons from induced pluripotent stem cells. Biogerontology, 14, 591–602. https://doi.org/10.1007/s10522-013-9455-2.
Phillips, M. I., & Tang, Y. L. (2008). Genetic modification of stem cells for transplantation. Advanced Drug Delivery Reviews, 60, 160–172. https://doi.org/10.1016/j.addr.2007.08.035.
Plaisted, W. C., Zavala, A., Hingco, E., Tran, H., Coleman, R., Lane, T. E., Loring, J. F., & Walsh, C. M. (2016 Jun 16). Remyelination is correlated with regulatory T cell induction following human Embryoid body-derived neural precursor cell transplantation in a viral model of multiple sclerosis. PLoS One, 11(6), e0157620. https://doi.org/10.1371/journal.pone.0157620 eCollection 2016. Pub Med PMID: 27310015; Pub Med Central PMCID: PMC4911106.
Plemel, J. R., Liu, W. Q., & Yong, V. W. (2017). Remyelination therapies: A new direction and challenge in multiple sclerosis. Nature Reviews Drug Discovery, 16, 617. https://doi.org/10.1038/nrd.2017.115.
Pluchino, S., Quattrini, A., Brambilla, E., Gritti, A., Salani, G., Dina, G., Galli, R., Del Carro, U., Amadio, S., Bergami, A., Furlan, R., Comi, G., Vescovi, A. L., & Martino, G. (2003 Apr 17). Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 422(6933), 688–694 Pub Med PMID: 12700753.
Pluchino, S., et al. (2009). Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Annals of Neurology, 66, 343–354. https://doi.org/10.1002/ana.21745.
Pluchino, S., et al. (2005). Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 436, 266–271. https://doi.org/10.1038/nature03889.
Polman, C. H., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology, 69, 292–302. https://doi.org/10.1002/ana.22366.
Popescu, B. F., Pirko, I., & Lucchinetti, C. F. (2013). Pathology of multiple sclerosis: Where do we stand? Continuum (Minneapolis, Minn), 19, 901–921. https://doi.org/10.1212/01.CON.0000433291.23091.65.
Pouya, A., Satarian, L., Kiani, S., Javan, M., & Baharvand, H. (2011). Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination. PLoS One, 6(11), e27925. https://doi.org/10.1371/journal.pone.0027925 Epub 2011 Nov 18. Pub Med PMID: 22125639; Pub Med Central PMCID: PMC3220701.
Ransohoff, R. M., Hafler, D. A., & Lucchinetti, C. F. (2015). Multiple sclerosis-a quiet revolution. Nature Reviews Neurology, 11, 134–142. https://doi.org/10.1038/nrneurol.2015.14.
Rush, C. A., MacLean, H. J., & Freedman, M. S. (2015). Aggressive multiple sclerosis: Proposed definition and treatment algorithm. Nature Reviews Neurology, 11, 379–389. https://doi.org/10.1038/nrneurol.2015.85.
Sakata, H., et al. (2012). Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. The Journal of Neuroscience, 32, 3462–3473. https://doi.org/10.1523/JNEUROSCI.5686-11.2012.
Salou, M., Nicol, B., Garcia, A., & Laplaud, D. A. (2015). Involvement of CD8(+) T cells in multiple sclerosis. Frontiers in Immunology, 6, 604. https://doi.org/10.3389/fimmu.2015.00604.
Sarkar, P., Rice, C. M., & Scolding, N. J. (2017). Cell therapy for multiple sclerosis. CNS Drugs, 31, 453–469. https://doi.org/10.1007/s40263-017-0429-9.
Scruggs, B. A., et al. (2013). Age of the donor reduces the ability of human adipose-derived stem cells to alleviate symptoms in the experimental autoimmune encephalomyelitis mouse model. Stem Cells Translational Medicine, 2, 797–807. https://doi.org/10.5966/sctm.2013-0026.
Semon, J. A., et al. (2014). Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Research & Therapy, 5, 2. https://doi.org/10.1186/scrt391.
Sher, F., Amor, S., Gerritsen, W., Baker, D., Jackson, S. L., Boddeke, E., & Copray, S. (2012). Intraventricularly injected Olig2-NSCs attenuate established relapsing-remitting EAE in mice. Cell Transplantation, 21, 1883–1897. https://doi.org/10.3727/096368911X637443.
Simon, M. J., & Iliff, J. J. (2016). Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochimica et Biophysica Acta, 1862, 442–451. https://doi.org/10.1016/j.bbadis.2015.10.014.
Sisakhtnezhad, S., Alimoradi, E., & Akrami, H. (2017). External factors influencing mesenchymal stem cell fate in vitro. European Journal of Cell Biology, 96, 13–33. https://doi.org/10.1016/j.ejcb.2016.11.003.
Song, B., et al. (2012). Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis. Stem Cell Research, 8, 259–273. https://doi.org/10.1016/j.scr.2011.12.001.
Sormani, M. P., Muraro, P. A., Schiavetti, I., Signori, A., Laroni, A., Saccardi, R., & Mancardi, G. L. (2017). Autologous hematopoietic stem cell transplantation in multiple sclerosis: A meta-analysis. Neurology, 88, 2115–2122. https://doi.org/10.1212/WNL.0000000000003987.
Strong, A. L., Bowles, A. C., Wise, R. M., Morand, J. P., Dutreil, M. F., Gimble, J. M., & Bunnell, B. A. (2016). Human adipose stromal/stem cells from obese donors show reduced efficacy in halting disease progression in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Stem Cells, 34, 614–626. https://doi.org/10.1002/stem.2272.
Swart, J. F., Delemarre, E. M., van Wijk, F., Boelens, J. J., Kuball, J., van Laar, J. M., & Wulffraat, N. M. (2017). Haematopoietic stem cell transplantation for autoimmune diseases. Nature Reviews Rheumatology, 13, 244–256. https://doi.org/10.1038/nrrheum.2017.7.
Tabansky, I., & Stern, J. N. H. (2016). Basics of stem cell biology as applied to the brain. In D. Pfaff & Y. Christen (Eds.), Stem cells in neuroendocrinology. Cham: Springer. https://doi.org/10.1007/978-3-319-41603-8_2.
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676. https://doi.org/10.1016/j.cell.2006.07.024.
Terzic, D., et al. (2016). Directed differentiation of oligodendrocyte progenitor cells from mouse induced pluripotent stem cells. Cell Transplantation, 25, 411–424. https://doi.org/10.3727/096368915X688137.
Thiruvalluvan, A., et al. (2016). Survival and functionality of human induced pluripotent stem cell-derived oligodendrocytes in a nonhuman primate model for multiple sclerosis. Stem Cells Translational Medicine, 5, 1550–1561. https://doi.org/10.5966/sctm.2016-0024.
Tsang, B. K., & Macdonell, R. (2011). Multiple sclerosis- diagnosis, management and prognosis. Australian Family Physician, 40, 948–955.
Uccelli, A., Benvenuto, F., Laroni, A., & Giunti, D. (2011). Neuroprotective features of mesenchymal stem cells. Best Practice & Research Clinical Haematology, 24, 59–64. https://doi.org/10.1016/j.beha.2011.01.004.
van Bekkum, D. W., & Mikkers, H. M. (2012). Prospects and challenges of induced pluripotent stem cells as a source of hematopoietic stem cells. Annals of the New York Academy of Sciences, 1266, 179–188. https://doi.org/10.1111/j.1749-6632.2012.06629.x.
Volkman, R., & Offen, D. (2017). Concise review: Mesenchymal stem cells in neurodegenerative diseases. Stem Cells, 35(8), 1867–1880. https://doi.org/10.1002/stem.2651.
Volpe, G., Bernstock, J. D., Peruzzotti-Jametti, L., & Pluchino, S. (2016). Modulation of host immune responses following non-hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis. Journal of Neuroimmunology. https://doi.org/10.1016/j.jneuroim.2016.12.005.
Wang, S., et al. (2013). Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell, 12, 252–264. https://doi.org/10.1016/j.stem.2012.12.002.
Wu, J., Yamauchi, T., & Izpisua Belmonte, J. C. (2016). An overview of mammalian pluripotency. Development, 143, 1644–1648. https://doi.org/10.1242/dev.132928.
Wu, S., et al. (2013). Intranasal delivery of neural stem cells: A CNS-specific, non-invasive cell-based therapy for experimental autoimmune encephalomyelitis. Journal of Clinical & Cellular Immunology, 4. https://doi.org/10.4172/2155-9899.1000142.
Xiao, J., et al. (2017). Neural stem cell-based regenerative approaches for the treatment of multiple sclerosis. Molecular Neurobiology, 55, 3152. https://doi.org/10.1007/s12035-017-0566-7.
Xie, C., Liu, Y. Q., Guan, Y. T., & Zhang, G. X. (2016). Induced stem cells as a novel multiple sclerosis therapy. Current Stem Cell Research & Therapy, 11, 313–320.
Yadav, S. K., Mindur, J. E., Ito, K., & Dhib-Jalbut, S. (2015). Advances in the immunopathogenesis of multiple sclerosis. Current Opinion in Neurology, 28, 206–219. https://doi.org/10.1097/WCO.0000000000000205.
Yamout, B., et al. (2010). Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: A pilot study. Journal of Neuroimmunology, 227, 185–189. https://doi.org/10.1016/j.jneuroim.2010.07.013.
Yang, J., et al. (2009). Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. The Journal of Clinical Investigation, 119, 3678–3691. https://doi.org/10.1172/JCI37914.
Yang, J., et al. (2012). Accelerated and enhanced effect of CCR5-transduced bone marrow neural stem cells on autoimmune encephalomyelitis. Acta Neuropathologica, 124, 491–503. https://doi.org/10.1007/s00401-012-0989-1.
Yang, N., et al. (2013). Generation of oligodendroglial cells by direct lineage conversion. Nature Biotechnology, 31, 434–439. https://doi.org/10.1038/nbt.2564.
Yousefi, F., Ebtekar, M., Soleimani, M., Soudi, S., & Hashemi, S. M. (2013). Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose-tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). International Immunopharmacology, 17, 608–616. https://doi.org/10.1016/j.intimp.2013.07.016.
Zand, M. S., et al. (2005). Polyclonal rabbit antithymocyte globulin triggers B-cell and plasma cell apoptosis by multiple pathways. Transplantation, 79, 1507–1515.
Zappia, E., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761. https://doi.org/10.1182/blood-2005-04-1496.
Zeher, M., Papp, G., Nakken, B., & Szodoray, P. (2017). Hematopoietic stem cell transplantation in autoimmune disorders: From immune-regulatory processes to clinical implications. Autoimmunity Reviews, 16, 817. https://doi.org/10.1016/j.autrev.2017.05.020.
Zhang, C., et al. (2016). Treatment of multiple sclerosis by transplantation of neural stem cells derived from induced pluripotent stem cells. Science China Life Sciences, 59, 950–957. https://doi.org/10.1007/s11427-016-0114-9.
Acknowledgment
Author thanks Assistant Prof. Dr. Yavuz Oktay for critical reading and editing of this chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Genc, B., Bozan, H.R., Genc, S., Genc, K. (2018). Stem Cell Therapy for Multiple Sclerosis. In: Pham, P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology(), vol 1084. Springer, Cham. https://doi.org/10.1007/5584_2018_247
Download citation
DOI: https://doi.org/10.1007/5584_2018_247
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19856-5
Online ISBN: 978-3-030-19857-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)