Skip to main content

Challenges in Bio-fabrication of Organoid Cultures

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1107))

Abstract

Three-dimensional (3D) organoids have shown advantages in cell culture over traditional two-dimensional (2D) culture, and have great potential in various applications of tissue engineering. However, there are limitations in current organoid fabrication technologies, such as uncontrolled size, poor reproductively, and inadequate complexity of organoids. In this chapter, we present the existing techniques and discuss the major challenges for 3D organoid biofabrication. Future perspectives on organoid bioprinting are also discussed, where bioprinting technologies are expected to make a major contribution in organoid fabrication, such as realizing mass production and constructing complex heterotypic tissues, and thus further advance the translational application of organoids in tissue engineering and regenerative medicine as well drug testing and pharmaceutics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2D:

two-dimensional

3D:

three-dimensional

adMSCs:

Adipose-derived mesenchymal stem cells

ASCs:

adipose-derived stem cell

BioLP:

biological laser printing

CXCL:

CXC ligand

CXCR:

CXC receptor

DBB:

droplet-based bioprinting

DPCs:

dental pulp cells

EBB:

extrusion-based bioprinting

ES:

embryonic stem

HA:

hyaluronic acid

HER2:

human epidermal growth receptor

HGF:

hepatocyte growth factor

HIF:

hypoxia-inducible factor

HTC:

hydrogel tissue constructs

HUVECs:

human umbilical vein endothelial cells

LBB:

laser-based bioprinting

MAPK:

mitogen activate protein kinase

MAPLE-DW:

matrix assisted pulsed laser evaporation-direct write

MCS:

multicellular spheroids

MSCs:

mesenchymal stem cells

pHEMA:

poly (2-hydroxethyl methacrylate)

PI3K:

phosphoinositide 3-kinase

PNIPAAm:

poly (N-isopropylacrylamide)

PVA:

polyvinyl alcohol

REF-52:

Rat embryo fibroblasts

RGD:

arginylglycylaspartic acid

SDF:

stromal cell-derived factor

SPIONs:

superparamagnetic iron oxide nanoparticles

TCD:

tissue culture dish

TE:

tissue engineering

TNFα:

tumor necrosis factor

VEGF:

vascular endothelial growth factor

References

  • Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H (2012) Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods 18(11):831–851

    Article  CAS  PubMed  Google Scholar 

  • Achilli TM, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12(10):1347–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agastin S, Giang UB, Geng Y, Delouise LA, King MR (2011) Continuously perfused microbubble array for 3D tumor spheroid model. Biomicrofluidics 5(3):039901/1–039901/12

    Article  Google Scholar 

  • Astashkina A, Mann B, Grainger DW (2012) A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 134(1):82–106. https://doi.org/10.1016/j.pharmthera.2012.01.001 Elsevier Inc.

    Article  CAS  PubMed  Google Scholar 

  • Bartosh TJ, Ylöstalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci 107(31):13724–13729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhang SH, Cho S-W, La W-G, Lee T-J, Yang HS, Sun A-Y, Baek S-H, Rhie J-W, Kim B-S (2011) Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials 32(11):2734–2747

    Article  CAS  PubMed  Google Scholar 

  • Blakely AM, Manning KL, Tripathi A, Morgan JR (2015) Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Eng Part C Methods 21(7):737–746. https://doi.org/10.1089/ten.tec.2014.0439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bratt-Leal AM, Carpenedo RL, Ungrin MD, Zandstra PW, McDevitt TC (2011) Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials 32(1):48–56

    Article  CAS  PubMed  Google Scholar 

  • Chang TT, Hughes-Fulford M (2008) Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng A 15(3):559–567

    Article  Google Scholar 

  • Chen P, Güven S, Usta OB, Yarmush ML, Demirci U (2015) Biotunable acoustic node assembly of organoids. Adv Healthc Mater 4(13):1937–1943. https://doi.org/10.1002/adhm.201500279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. https://doi.org/10.1016/j.cell.2016.05.082

    Article  CAS  PubMed  Google Scholar 

  • Datta P, Ayan B, Ozbolat IT (2017) Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 51:1. https://doi.org/10.1016/j.actbio.2017.01.035

    Article  CAS  PubMed  Google Scholar 

  • de Ridder L, Cornelissen M, de Ridder D (2000) Autologous spheroid culture: a screening tool for human brain tumour invasion. Crit Rev Oncol Hematol 36(2–3):107–122

    Article  PubMed  Google Scholar 

  • Dean DM, Napolitano AP, Youssef J, Morgan JR (2007) Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J 21(14):4005–4012

    Article  CAS  PubMed  Google Scholar 

  • Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C (2015) In vitro analysis of scaffold-free prevascularized microtissue spheroids containing human dental pulp cells and endothelial cells. J Endod 41(5):663–670

    Article  PubMed  Google Scholar 

  • Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218. https://doi.org/10.1089/adt.2014.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eglen RM, Randle DH (2015) Drug discovery Goes three-dimensional: goodbye to flat high-throughput screening? Assay Drug Dev Technol 13(5):262–265. https://doi.org/10.1089/adt.2015.647

    Article  CAS  PubMed  Google Scholar 

  • Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18(3):246–254 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved

    Article  PubMed  CAS  Google Scholar 

  • Fonoudi H, Ansari H, Abbasalizadeh S, Larijani MR, Kiani S, Hashemizadeh S, Zarchi AS, Bosman A, Blue GM, Pahlavan S (2015) A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Transl Med 4(12):1482–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 5:1–11

    Google Scholar 

  • Fu CY, Tseng SY, Yang SM, Hsu L, Liu CH, Chang HY (2014) A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis. Biofabrication 6(1):015009/1–015009/9

    Article  CAS  Google Scholar 

  • Gudupati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012 Elsevier Ltd.

    Article  CAS  Google Scholar 

  • Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):32002

    Article  CAS  Google Scholar 

  • Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006 Elsevier Inc.

    Article  CAS  PubMed  Google Scholar 

  • Hospodiuk M, Dey M, Ayan B, Sosnoski D, Moncal KK, Wu Y, Ozbolat IT (2018) Sprouting angiogenesis in engineered pseudo islets. Biofabrication 10:035003

    Article  PubMed  CAS  Google Scholar 

  • Hsiao AY, Torisawa YS, Tung YC, Sud S, Taichman RS, Pienta KJ, Takayama S (2009) Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30(16):3020–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CP, Lu J, Seon H, Lee AP, Flanagan LA, Kim HY, Putnam AJ, Jeon NL (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9(12):1740–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram M, Techy GB, Saroufeem R, Yazan O, Narayan KS, Goodwin TJ, Spaulding GF (1997) Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell Dev Biol Anim 33(6):459–466

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K, Toda S, Oyama JI, Node K, Morita S (2015) Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One 10(9):1–15. https://doi.org/10.1371/journal.pone.0136681

    Article  CAS  Google Scholar 

  • Jakab K, Norotte C, Francoise M, Murphy K, Vunjak-Novakovic G, Forgacs F (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001/1–022001/14

    Article  CAS  Google Scholar 

  • Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, Church KH, Park H, Mironov V, Markwald R, Vunjak-Novakovic G, Forgacs G (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A 14(3):413–421

    Article  CAS  PubMed  Google Scholar 

  • Jin HJ, Cho YH, Gu JM, Kim J, Oh YS (2011) A multicellular spheroid formation and extraction chip using removable cell trapping barriers. Lab Chip 11(1):115–119

    Article  CAS  PubMed  Google Scholar 

  • John M, Albert P, Andrew O, Aaron J (1977) A simplified method for production and growth of multicellular tumor spheroids. Cancer Res 37(1):3639–3643

    Google Scholar 

  • Karlsson H, Fryknäs M, Larsson R, Nygren P (2012) Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system. Exp Cell Res 318(13):1577–1585

    Article  CAS  PubMed  Google Scholar 

  • Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7(6):862–869

    Article  CAS  PubMed  Google Scholar 

  • Kelm JM, Fussenegger M (2004) Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol 22(4):195–202

    Article  CAS  PubMed  Google Scholar 

  • Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83(2):173–180

    Article  CAS  PubMed  Google Scholar 

  • Kelm JM, Ehler E, Nielsen LK, Schlatter S, Perriard JC, Fussenegger M (2004) Design of artificial myocardial microtissues. Tissue Eng 10(1–2):201–214

    Article  CAS  PubMed  Google Scholar 

  • Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377

    Article  PubMed  Google Scholar 

  • Kim JA, Choi JH, Kim M, Rhee WJ, Son B, Jung HK, Park TH (2013) High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture. Biomaterials 34(34):8555–8563. https://doi.org/10.1016/j.biomaterials.2013.07.056 Elsevier Ltd.

    Article  CAS  PubMed  Google Scholar 

  • Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52(3):167–182

    Article  PubMed  CAS  Google Scholar 

  • Kwon SH, Bhang SH, Jang H-K, Rhim T, Kim B-S (2015) Conditioned medium of adipose-derived stromal cell culture in three-dimensional bioreactors for enhanced wound healing. J Surg Res 194(1):8–17

    Article  CAS  PubMed  Google Scholar 

  • L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12(1):47–56

    Article  PubMed  Google Scholar 

  • Lam VY, Wakatsuki T (2011) Hydrogel tissue construct-based high-content compound screening. J Biomol Screen 16(1):120–128. https://doi.org/10.1177/1087057110388269

    Article  CAS  PubMed  Google Scholar 

  • Lam CRI, Wong HK, Nai S, Chua CK, Tan NS, Tan LP (2014) A 3D biomimetic model of tissue stiffness Interface for Cancer drug testing. Mol Pharm 11(7):2016–2021. https://doi.org/10.1021/mp500059q

    Article  CAS  PubMed  Google Scholar 

  • Landry J, Bernier D, Ouellet C, Goyette R, Marceau N (1985) Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J Cell Biol 101(3):914–923

    Article  CAS  PubMed  Google Scholar 

  • Laschke MW, Menger MD (2017) Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol 35(2):133–144

    Article  CAS  PubMed  Google Scholar 

  • Laschke MW, Giebels C, Menger MD (2011) Vasculogenesis: a new piece of the endometriosis puzzle. Hum Reprod Update 17(5):628–636

    Article  CAS  PubMed  Google Scholar 

  • Laschke MW, Schank TE, Scheuer C, Kleer S, Schuler S, Metzger W, Eglin D, Alini M, Menger MD (2013) Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Acta Biomater 9(6):6876–6884

    Article  CAS  PubMed  Google Scholar 

  • Lee K-W, Lee SK, Joh J-W, Kim S-J, Lee B-B, Kim K-W, Lee KU (2004) Influence of pancreatic islets on spheroid formation and functions of hepatocytes in hepatocyte—pancreatic islet spheroid culture. Tissue Eng 10(7–8):965–977

    CAS  PubMed  Google Scholar 

  • Lee BH, Kim MH, Lee JH, Seliktar D, Cho N-J, Tan LP (2015) Modulation of Huh7. 5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness. PLoS One 10(2):e0118123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leung BM, Lesher-Perez SC, Matsuoka T, Moraes C, Takayama S (2015) Media additives to promote spheroid circularity and compactness in hanging drop platform. Biomater Sci 3(2):336–344

    Article  CAS  PubMed  Google Scholar 

  • Lin RZ, Chou LF, Chien CC, Chang HY (2006) Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta1-integrin. Cell Tissue Res 324(3):411–422

    Article  CAS  PubMed  Google Scholar 

  • Lu H-F, Chua K-N, Zhang P-C, Lim W-S, Ramakrishna S, Leong KW, Mao H-Q (2005) Three-dimensional co-culture of rat hepatocyte spheroids and NIH/3T3 fibroblasts enhances hepatocyte functional maintenance. Acta Biomater 1(4):399–410

    Article  PubMed  Google Scholar 

  • Manley P, Lelkes P (2006) A novel real-time system to monitor cell aggregation and trajectories in rotating wall vessel bioreactors. J Biotechnol 125(3):416–424

    Article  CAS  PubMed  Google Scholar 

  • Marga F, Neagu A, Kosztin I, Forgacs G (2007) Developmental biology and tissue engineering. Birth Defects Res C Embryo Today 81(4):320–328

    Article  CAS  PubMed  Google Scholar 

  • McAllister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A, Zagalski K, Fiorillo A, Avila H, Manglano X, Antonelli J, Kocher A, Zembala M, Cierpka L, de la Fuente LM, L’Heureux N (2009) Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373(9673):1440–1446. https://doi.org/10.1016/S0140-6736(09)60248-8

    Article  PubMed  Google Scholar 

  • Metzger W, Sossong D, Bächle A, Pütz N, Wennemuth G, Pohlemann T, Oberringer M (2011) The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13(8):1000–1012

    Article  CAS  PubMed  Google Scholar 

  • Mineda K, Feng J, Ishimine H, Takada H, Kuno S, Kinoshita K, Kanayama K, Kato H, Mashiko T, Hashimoto I (2015) Therapeutic potential of human adipose-derived stem/stromal cell microspheroids prepared by three-dimensional culture in non-cross-linked hyaluronic acid gel. Stem Cells Transl Med 4(12):1511–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mironov V, Visconti P, Kasyanov V, Forgacs G, Drake J, Markwald R (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mironov V, Khesuani YD, Bulanova EA, Koudan EV, Parfenov VA, Knyazeva AD, Mitryashkin AN, Replyanski N, Kasyanov VA, Pereira DASF (2016) Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3D bioprinter. Int J Bioprint 2(1):45–52. https://doi.org/10.18063/IJB.2016.01.007

    Article  Google Scholar 

  • Murakami S, Ijima H, Ono T, Kawakami K (2004) Development of co-culture system of hepatocytes with bone marrow cells for expression and maintenance of hepatic functions. Int J Artif Organs 27(2):118–126

    Article  CAS  PubMed  Google Scholar 

  • Napolitano AP, Chai P, Dean DM, Morgan JR (2007) Dynamics of the self-assembly of complex cellular aggregates on micro-molded nonadhesive hydrogels. Tissue Eng 13(8):2087–2094

    Article  CAS  PubMed  Google Scholar 

  • Norotte C, Marga F, Niklason L, Forgacs G (2010) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917. https://doi.org/10.1016/j.biomaterials.2009.06.034.Scaffold-Free

    Article  Google Scholar 

  • Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076 Elsevier Ltd.

    Article  CAS  PubMed  Google Scholar 

  • Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60(691–699):691–699. https://doi.org/10.1109/TBME.2013.2243912

    Article  PubMed  Google Scholar 

  • Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21:1257. https://doi.org/10.1016/j.drudis.2016.04.006 Elsevier Ltd.

    Article  CAS  PubMed  Google Scholar 

  • Ozbolat IT, Moncal KK, Gudapati H (2017) Evaluation of bioprinter technologies. Addit Manuf 13:179–200. https://doi.org/10.1016/j.addma.2016.10.003

    Article  CAS  Google Scholar 

  • Park KH, Na K, Sung WK, Sung YJ, Kyu HP, Chung HM (2005) Phenotype of hepatocyte spheroids behavior within thermo-sensitive poly(NiPAAm-co-PEG-g-GRGDS) hydrogel as a cell delivery vehicle. Biotechnol Lett 27(15):1081–1086. https://doi.org/10.1007/s10529-005-8453-0

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Unutmaz D, Ozbolat IT (2016) Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol 34(9):722–732. https://doi.org/10.1016/j.tibtech.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Datta P, Ayan B, Ozbolat V, Sosnoski D (2017) Acta Biomaterialia 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomater 57:26–46. https://doi.org/10.1016/j.actbio.2017.05.025 Acta Materialia Inc.

    Article  CAS  PubMed  Google Scholar 

  • Pickl M, Ries CH (2009) Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28(3):461–468

    Article  CAS  PubMed  Google Scholar 

  • Qihao Z, Xigu C, Guanghui C, Weiwei Z (2007) Spheroid formation and differentiation into hepatocyte-like cells of rat mesenchymal stem cell induced by co-culture with liver cells. DNA Cell Biol 26(7):497–503

    Article  PubMed  CAS  Google Scholar 

  • Rezende RA, Pereira FDAS, Kasyanov V, Kemmoku DT, Maia I, da Silva JVL, Mironov V (2013) Scalable biofabrication of tissue spheroids for organ printing. Procedia CIRP 5(1):276–281

    Article  Google Scholar 

  • Richard M, Kim C, Daniel J, Daniel K, Robert S (2001) Dynamics of spheroid self-assembly in liquid-overlay culture of DU 145 human prostate Cancer cells. Biotechnol Bioeng 72(6):579–591

    Article  Google Scholar 

  • Robert L (2007) Editorial: tissue engineering: perspectives, challenges, and future directions. Tissue Eng 13(1):1–2

    Article  Google Scholar 

  • Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 30(5):29–39

    Article  Google Scholar 

  • Santini MT, Rainaldi G, Indovina PL (1998) Multicellular tumour spheroids in radiation biology. Int J Radiat Bio 75(7):787–799

    Article  Google Scholar 

  • Sebastian A, Buckle AM, Markx GH (2007) Tissue engineering with electric fields: immobilization of mammalian cells in multilayer aggregates using dielectrophoresis. Biotechnol Bioeng 98(3):694–700. https://doi.org/10.1002/bit.21416

    Article  CAS  PubMed  Google Scholar 

  • Shearier E, Xing Q, Qian Z, Zhao F (2016) Physiologically low oxygen enhances biomolecule production and stemness of mesenchymal stem cell spheroids. Tissue Eng Part C Methods 22(4):360–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Ma J, Zhang X, Li H, Jiang L, Qin J (2015) Hypoxia combined with spheroid culture improves cartilage specific function in chondrocytes. Integr Biol 7(3):289–297

    Article  CAS  Google Scholar 

  • Skardal A, Smith L, Bharadwaj S, Atala A, Soker S, Zhang Y (2012) Tissue specific synthetic ECM hydrogels for 3D in vitro maintenance of hepatocyte function. Biomaterials 33:4565. https://doi.org/10.1016/j.biomaterials.2012.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skiles ML, Sahai S, Rucker L, Blanchette JO (2013) Use of culture geometry to control hypoxia-induced vascular endothelial growth factor secretion from adipose-derived stem cells: optimizing a cell-based approach to drive vascular growth. Tissue Eng A 19(21–22):2330–2338

    Article  CAS  Google Scholar 

  • Stampella A, Papi A, Rizzitelli G, Costantini M, Colosi C, Barbetta A, Massimi M, Devirgiliis LC, Dentini M (2013) Synthesis and characterization of a novel poly(vinyl alcohol) 3D platform for the evaluation of hepatocytes’ response to drug administration. J Mater Chem B 1(24):3083–3098. https://doi.org/10.1039/c3tb20432d

    Article  CAS  PubMed  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240(4849):177–184

    Article  CAS  PubMed  Google Scholar 

  • Takezawa T, Yamazaki M, Mori Y, Yonaha T, Yoshizato K (1992) Morphological and immuno-cytochemical characterization of a hetero-spheroid composed of fibroblasts and hepatocytes. J Cell Sci 101(3):495–501

    CAS  PubMed  Google Scholar 

  • Tan PHS, Chia SS, Toh SL, Goh JCH, Nathan SS (2014) The dominant role of IL-8 as an Angiogenic driver in a three-dimensional physiological tumor construct for drug testing. Tissue Eng A 20(11–12):1758–1766. https://doi.org/10.1089/ten.tea.2013.0245

    Article  CAS  Google Scholar 

  • Thomas RJ, Bhandari R, Barrett DA, Bennett AJ, Fry JR, Powe D, Thomson BJ, Shakesheff KM (2005) The effect of three-dimensional co-culture of hepatocytes and hepatic stellate cells on key hepatocyte functions in vitro. Cells Tissues Organs 181(2):67–79

    Article  PubMed  Google Scholar 

  • Timmins NE, Nielsen LK (2007) Generation of multicellular tumor spheroids by the hanging-drop method. Methods Mol Med 140(1):141–151

    Article  CAS  PubMed  Google Scholar 

  • Timmins NE, Dietmair S, Nielsen LK (2004) Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 7(2):97–103

    Article  PubMed  Google Scholar 

  • Timothy R, Frank A (2014) Bioprocessing of tissues using cellular spheroids. J Bioprocess Biotechniques 4(2):1000e112/1–1000e112/4

    Google Scholar 

  • Toh YC, Zhang C, Zhang J, KY M, Chang S, Samper VD, Noort D, Hutmacher DW, Yu H (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7(3):302

    Article  CAS  PubMed  Google Scholar 

  • Tseng T-C, Hsu S (2014) Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 35(9):2630–2641

    Article  CAS  PubMed  Google Scholar 

  • Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478. https://doi.org/10.1039/c0an00609b

    Article  CAS  PubMed  Google Scholar 

  • Vosough M, Omidinia E, Kadivar M, Shokrgozar M-A, Pournasr B, Aghdami N, Baharvand H (2013) Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable suspension culture. Stem Cells Dev 22(20):2693–2705

    Article  CAS  PubMed  Google Scholar 

  • Walser R, Metzger W, Görg A, Pohlemann T, Menger MD, Laschke MW (2013) Generation of co-culture spheroids as vascularisation units for bone tissue engineering. Eur Cell Mater 26:222–233

    Article  CAS  PubMed  Google Scholar 

  • Wartenberg M, Dönmez F, Ling FC, Acker H, Hescheler J, Sauer H (2001) Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J 15(6):995–1005

    Article  CAS  PubMed  Google Scholar 

  • Whatley BR, Li X, Zhang N, Wen X (2014) Magnetic-directed patterning of cell spheroids. J Biomed Mater Res A 102(5):1537–1547. https://doi.org/10.1002/jbm.a.34797

    Article  CAS  PubMed  Google Scholar 

  • Wittig C, Laschke MW, Scheuer C, Menger MD (2013) Incorporation of bone marrow cells in pancreatic pseudoislets improves posttransplant vascularization and endocrine function. PLoS One 8(7):e69975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LY, Di Carlo D, Lee LP (2008) Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices 10(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Xinaris C, Brizi V, Remuzzi G (2015) Organoid models and applications in biomedical research. Nephron 130(3):191–199. https://doi.org/10.1159/000433566

    Article  PubMed  Google Scholar 

  • Xu Y, Shi T, Xu A and Zhang L (2015) 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney. J Cell Mol Med

    Google Scholar 

  • Yang S, Leong KF, Du Z, Chua CK (2001) The design of Scaffolds for use in tissue engineering. Tissue Eng 7(6):679–689

    Article  CAS  PubMed  Google Scholar 

  • Yeh H-Y, Liu B-H, Sieber M, Hsu S (2014) Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics 15(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O (2016) Stem cell organoid engineering. Cell Stem Cell 18(1):25–38. https://doi.org/10.1016/j.stem.2015.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Moncal KK, Li J, Peng W, Rivero I, Martin JA, Ozbolat IT (2016) Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep. Nature Publishing Group 6(1):28714. https://doi.org/10.1038/srep28714

Download references

Acknowledgements

This work has been supported by National Science Foundation Awards # 1624515, National Institutes of Health Grant #R21 CA224422-01A1, an ENGINE grant from Penn State, Diabetes in Action Research and Education Foundation grant # 426, a Wells Fargo grant, the China Scholarship Council 201308360128 and the Oversea Sailing Project from Jiangxi Association for Science and Technology. The authors also acknowledge Indian Council of Medical Research, Government of India, for financial assistance to P.D. The authors are grateful to the support from the Turkish Ministry of National Education for providing graduate scholarship to B.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim T. Ozbolat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, W. et al. (2018). Challenges in Bio-fabrication of Organoid Cultures. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 3. Advances in Experimental Medicine and Biology(), vol 1107. Springer, Cham. https://doi.org/10.1007/5584_2018_216

Download citation

Publish with us

Policies and ethics