Advertisement

pp 1-27 | Cite as

Regenerative Medicine Applications of Mesenchymal Stem Cells

  • Samaneh Hosseini
  • Leila Taghiyar
  • Fatemeh Safari
  • Mohamadreza Baghaban Eslaminejad
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

A major research challenge is to develop therapeutics that assist with healing damaged tissues and organs because the human body has limited ability to restore the majority of these tissues and organs to their original state. Tissue engineering (TE) and regenerative medicine (RM) promises to offer efficient therapeutic biological strategies that use mesenchymal stem cells (MSCs). MSCs possess the capability for self-renewal, multilineage differentiation, and immunomodulatory properties that make them attractive for clinical applications. They have been extensively investigated in numerous preclinical and clinical settings in an attempt to overcome their challenges and promote tissue regeneration and repair. This review explores the exciting opportunities afforded by MSCs, their desirable properties as cellular therapeutics in RM, and implicates their potential use in clinical practice. Here, we attempt to identify challenges and issues that determine the clinical efficacy of MSCs as treatment for skeletal and non-skeletal tissues.

Keywords

Mesenchymal stem cells Regenerative medicine Clinical setting Skeletal tissues Non-skeletal tissues 

Abbreviations

AKI

Acute kidney injury

ALS

Amyotrophic lateral sclerosis

ABGs

Autologous bone grafts

ACI

Autologous chondrocyte implantation

BM

Bone marrow

BMMC

Bone marrow mononuclear cells

BMT

Bone marrow transplantation

CPCs

Cardiac progenitor cells

CCR

C-C chemokine receptor type

CKD

Chronic kidney disease

CXCR

C-X-C chemokine receptor type

DCM

Dilated cardiomyopathy

DMD

Duchenne muscular dystrophy

ESCs

Embryonic stem cells

EPCs

Endothelial progenitor cells

ECM

Extracellular matrix

FTSW

Full-thickness skin wounds

GVHD

Graft versus host disease

GFP

Green fluorescence protein

HF

Heart failure

HCELL

Hematopoietic cell E-/L-selectin ligand

HGF

Hepatocyte growth factor

hAD-MSCs

human adipose derived-MSCs

HA

Hydroxyapatite

iPSCs

induced pluripotent stem cells

IGF-1

Insulin-like growth factor 1

ISCT

International Society for Cellular Therapy

IA

Intra-arterial

IC

Intracoronary

IV

Intravenous

MHC

Major histocompatibility complex

MSCs

Mesenchymal stem cells

MMPs

Metalloproteinases

MSC-CM

MSCs-conditioned medium

MS

Multiple sclerosis

MI

Myocardial infarction

NIH

National Institute of Health

NYHA

New York Heart Association

NO

Nitric oxide

OA

Osteoarthritis

OI

Osteogenesis imperfecta

PDGF

Platelet-derived growth factor

PSCs

Pluripotent stem cells

PCL

Poly-ε-caprolactone

ciPTEC

Proximal tubule epithelial cells

RM

Regenerative medicine

SCs

Satellite cells

SECs

Sinusoidal endothelial cells

SDF-1

Stromal derived factor-1

TA

Tibialis anterior

TE

Tissue engineering

TGF-β

Transforming growth factor-beta

UC

Umbilical cord

VCAM-1

Vascular cell adhesion molecule 1

VEGF

Vascular endothelial growth factor

References

  1. Adachi N, Ochi M, Deie M, Ito Y (2005) Transplant of mesenchymal stem cells and hydroxyapatite ceramics to treat severe osteochondral damage after septic arthritis of the knee. J Rheumatol 32(8):1615–1618Google Scholar
  2. Agematsu K, Nakahori Y (1991) Recipient origin of bone marrow-derived fibroblastic stromal cells during all periods following bone marrow transplantation in humans. Br J Haematol 79(3):359–365Google Scholar
  3. Alizadeh E, Eslaminejad MB, Akbarzadeh A, Sadeghi Z, Abasi M, Herizchi R, Zarghami N (2016) Upregulation of MiR-122 via trichostatin a treatments in hepatocyte-like cells derived from mesenchymal stem cells. Chem Biol Drug Des 87(2):296–305.  https://doi.org/10.1111/cbdd.12664CrossRefGoogle Scholar
  4. Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S (2003) Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 85-A(10):1927–1935Google Scholar
  5. Atiyeh BS, Costagliola M (2007) Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns 33(4):405–413.  https://doi.org/10.1016/j.burns.2006.11.002CrossRefGoogle Scholar
  6. Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, Caplan AI (1999) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 5(3):267–277.  https://doi.org/10.1089/ten.1999.5.267CrossRefGoogle Scholar
  7. Baek SJ, Kang SK, Ra JC (2011) In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp Mol Med 43(10):596–603.  https://doi.org/10.3858/emm.2011.43.10.069CrossRefGoogle Scholar
  8. Baghaban Eslaminejad M, Jahangir S, Aghdami N (2011) Mesenchymal stem cells from murine amniotic fluid as a model for preclinical investigation. Arch Iran Med 14(2):96–103.  https://doi.org/10.11142/AIM.006CrossRefGoogle Scholar
  9. Bajada S, Harrison PE, Ashton BA, Cassar-Pullicino VN, Ashammakhi N, Richardson JB (2007) Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J Bone Joint Surg Br 89(10):1382–1386.  https://doi.org/10.1302/0301-620X.89B10.19103CrossRefGoogle Scholar
  10. Ballini A, Scacco S, Coletti D, Pluchino S, Tatullo M (2017) Mesenchymal stem cells as promoters, enhancers, and playmakers of the translational regenerative medicine. Stem Cells Int 2017:3292810.  https://doi.org/10.1155/2017/3292810CrossRefGoogle Scholar
  11. Barry F, Murphy M (2013) Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 9(10):584–594.  https://doi.org/10.1038/nrrheum.2013.109CrossRefGoogle Scholar
  12. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42–48Google Scholar
  13. Bartolucci J, Verdugo FJ, Gonzalez PL, Larrea RE, Abarzua E, Goset C, Rojo P, Palma I, Lamich R, Pedreros PA, Valdivia G, Lopez VM, Nazzal C, Alcayaga-Miranda F, Cuenca J, Brobeck MJ, Patel AN, Figueroa FE, Khoury M (2017) Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled Trial (RIMECARD trial [Randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ Res 121(10):1192–1204.  https://doi.org/10.1161/CIRCRESAHA.117.310712CrossRefGoogle Scholar
  14. Berardis S, Dwisthi Sattwika P, Najimi M, Sokal EM (2015) Use of mesenchymal stem cells to treat liver fibrosis: current situation and future prospects. World J Gastroenterol 21(3):742–758.  https://doi.org/10.3748/wjg.v21.i3.742CrossRefGoogle Scholar
  15. Bhang SH, Lee S, Shin JY, Lee TJ, Jang HK, Kim BS (2014) Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol Ther 22(4):862–872.  https://doi.org/10.1038/mt.2013.301CrossRefGoogle Scholar
  16. Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Satish Kumar KV (2011) Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg 25(4):516–522.  https://doi.org/10.3109/02688697.2010.550658CrossRefGoogle Scholar
  17. Bhatia SN, Underhill GH, Zaret KS, Fox IJ (2014) Cell and tissue engineering for liver disease. Sci Transl Med 6(245):245sr2.  https://doi.org/10.1126/scitranslmed.3005975CrossRefGoogle Scholar
  18. Blank A, Riesgo A, Gitelis S, Rapp T (2017) Bone grafts, substitutes, and augments in benign orthopaedic conditions current concepts. Bull Hosp Jt Dis (2013) 75(2):119–127Google Scholar
  19. Boldrin L, Zammit PS, Morgan JE (2015) Satellite cells from dystrophic muscle retain regenerative capacity. Stem Cell Res 14(1):20–29.  https://doi.org/10.1016/j.scr.2014.10.007CrossRefGoogle Scholar
  20. Bossolasco P, Corti S, Strazzer S, Borsotti C, Del Bo R, Fortunato F, Salani S, Quirici N, Bertolini F, Gobbi A, Deliliers GL, Pietro Comi G, Soligo D (2004) Skeletal muscle differentiation potential of human adult bone marrow cells. Exp Cell Res 295(1):66–78.  https://doi.org/10.1016/j.yexcr.2003.12.015CrossRefGoogle Scholar
  21. Butler J, Epstein SE, Greene SJ, Quyyumi AA, Sikora S, Kim RJ, Anderson AS, Wilcox JE, Tankovich NI, Lipinski MJ, Ko YA, Margulies KB, Cole RT, Skopicki HA, Gheorghiade M (2017) Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: safety and efficacy results of a phase II-A randomized trial. Circ Res 120(2):332–340.  https://doi.org/10.1161/CIRCRESAHA.116.309717CrossRefGoogle Scholar
  22. Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C (2016) Articular cartilage: from formation to tissue engineering. Biomater Sci 4(5):734–767.  https://doi.org/10.1039/c6bm00068aCrossRefGoogle Scholar
  23. Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noel A, Brook G, Schoenen J, Franzen R (2013) Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One 8(8):e69515.  https://doi.org/10.1371/journal.pone.0069515CrossRefGoogle Scholar
  24. Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D (2008) Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 11(3):343–353Google Scholar
  25. Centeno CJ, Schultz JR, Cheever M, Freeman M, Robinson B, Faulkner SJ (2011) A case series of percutaneous treatment of non-union fractures with autologous, culture expanded, bone marrow derived, mesenchymal stem cells and platelet lysate. J Bioeng Biomed Sci 01:2–7Google Scholar
  26. Chan J, O'Donoghue K, Gavina M, Torrente Y, Kennea N, Mehmet H, Stewart H, Watt DJ, Morgan JE, Fisk NM (2006) Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells 24(8):1879–1891.  https://doi.org/10.1634/stemcells.2005-0564CrossRefGoogle Scholar
  27. Chawla LS, Kimmel PL (2012) Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 82(5):516–524.  https://doi.org/10.1038/ki.2012.208CrossRefGoogle Scholar
  28. Chen JL, Guo ZK, Xu C, Li YH, Hou CM, Mao N, Chen H (2002) Mesenchymal stem cells suppress allogeneic T cell responses by secretion of TGF-beta1. Zhongguo Shi Yan Xue Ye Xue Za Zhi 10(4):285–288Google Scholar
  29. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D (2008) Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321(5895):1493–1495.  https://doi.org/10.1126/science.1158554CrossRefGoogle Scholar
  30. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29(19):2899–2906.  https://doi.org/10.1016/j.biomaterials.2008.03.031CrossRefGoogle Scholar
  31. Christ B, Bruckner S, Winkler S (2015) The therapeutic promise of mesenchymal stem cells for liver restoration. Trends Mol Med 21(11):673–686.  https://doi.org/10.1016/j.molmed.2015.09.004CrossRefGoogle Scholar
  32. Cohnheim JF (1867) Ueber entzündung und eiterung. Virch Arch Path Anat 40:1–79Google Scholar
  33. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301.  https://doi.org/10.1016/j.cell.2005.05.010CrossRefGoogle Scholar
  34. Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11(2):150–156.  https://doi.org/10.1016/S1474-4422(11)70305-2CrossRefGoogle Scholar
  35. Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B (2011) Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis 14(2):211–215.  https://doi.org/10.1111/j.1756-185X.2011.01599.xCrossRefGoogle Scholar
  36. Davatchi F, Sadeghi Abdollahi B, Mohyeddin M, Nikbin B (2016) Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum Dis 19(3):219–225.  https://doi.org/10.1111/1756-185X.12670CrossRefGoogle Scholar
  37. De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160(6):909–918.  https://doi.org/10.1083/jcb.200212064CrossRefGoogle Scholar
  38. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309(5732):314–317.  https://doi.org/10.1126/science.1110364CrossRefGoogle Scholar
  39. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843Google Scholar
  40. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317.  https://doi.org/10.1080/14653240600855905CrossRefGoogle Scholar
  41. Du Z, Wei C, Cheng K, Han B, Yan J, Zhang M, Peng C, Liu Y (2013) Mesenchymal stem cell-conditioned medium reduces liver injury and enhances regeneration in reduced-size rat liver transplantation. J Surg Res 183(2):907–915.  https://doi.org/10.1016/j.jss.2013.02.009CrossRefGoogle Scholar
  42. Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115(7):1743–1755.  https://doi.org/10.1172/JCI22593CrossRefGoogle Scholar
  43. Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, Farjad R, Baghaban Eslaminejad M (2012) Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med 15(7):422–428.  https://doi.org/10.12157/AIM.0010CrossRefGoogle Scholar
  44. Emadedin M, Ghorbani Liastani M, Fazeli R, Mohseni F, Moghadasali R, Mardpour S, Hosseini SE, Niknejadi M, Moeininia F, Aghahossein Fanni A, Baghban Eslaminejhad R, Vosough Dizaji A, Labibzadeh N, Mirazimi Bafghi A, Baharvand H, Aghdami N (2015) Long-Term Follow-up of Intra-articular Injection of Autologous Mesenchymal Stem Cells in Patients with Knee, Ankle, or Hip Osteoarthritis. Arch Iran Med 18(6):336–344.  https://doi.org/10.15186/AIM.003CrossRefGoogle Scholar
  45. Erisken C, Zhang X, Moffat KL, Levine WN, Lu HH (2013) Scaffold fiber diameter regulates human tendon fibroblast growth and differentiation. Tissue Eng Part A 19(3–4):519–528.  https://doi.org/10.1089/ten.tea.2012.0072CrossRefGoogle Scholar
  46. Eslaminejad MB, Vahabi S, Shariati M, Nazarian H (2010) In vitro growth and characterization of stem cells from human dental pulp of deciduous versus permanent teeth. J Dent (Tehran) 7(4):185–195Google Scholar
  47. Fang XQ, Zhang JF, Song HY, Chen ZL, Dong J, Chen X, Pan JJ, Liu B, Chen CX (2016) Effect of umbilical cord mesenchymal stem cell transplantation on immune function and prognosis of patients with decompensated hepatitis B cirrhosis. Zhonghua Gan Zang Bing Za Zhi 24(12):907–910.  https://doi.org/10.3760/cma.j.issn.1007-3418.2016.12.006CrossRefGoogle Scholar
  48. Florea V, Rieger AC, DiFede DL, El-Khorazaty J, Natsumeda M, Banerjee MN, Tompkins BA, Khan A, Schulman IH, Landin AM, Mushtaq M, Golpanian S, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Valasaki K, Pujol MV, Ghersin E, Miki R, Delgado C, Abuzeid F, Vidro-Casiano M, Saltzman RG, DaFonseca D, Caceres LV, Ramdas KN, Mendizabal A, Heldman AW, Mitrani RD, Hare JM (2017) Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (The TRIDENT study). Circ Res 121(11):1279–1290.  https://doi.org/10.1161/CIRCRESAHA.117.311827CrossRefGoogle Scholar
  49. Fouraschen SM, Pan Q, de Ruiter PE, Farid WR, Kazemier G, Kwekkeboom J, Ijzermans JN, Metselaar HJ, Tilanus HW, de Jonge J, van der Laan LJ (2012) Secreted factors of human liver-derived mesenchymal stem cells promote liver regeneration early after partial hepatectomy. Stem Cells Dev 21(13):2410–2419.  https://doi.org/10.1089/scd.2011.0560CrossRefGoogle Scholar
  50. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403Google Scholar
  51. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(5):267–274Google Scholar
  52. Fukada S, Miyagoe-Suzuki Y, Tsukihara H, Yuasa K, Higuchi S, Ono S, Tsujikawa K, Takeda S, Yamamoto H (2002) Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. J Cell Sci 115(Pt 6):1285–1293Google Scholar
  53. Galli D, Vitale M, Vaccarezza M (2014) Bone marrow-derived mesenchymal cell differentiation toward myogenic lineages: facts and perspectives. Biomed Res Int 2014:762695.  https://doi.org/10.1155/2014/762695CrossRefGoogle Scholar
  54. Gang EJ, Darabi R, Bosnakovski D, Xu Z, Kamm KE, Kyba M, Perlingeiro RC (2009) Engraftment of mesenchymal stem cells into dystrophin-deficient mice is not accompanied by functional recovery. Exp Cell Res 315(15):2624–2636.  https://doi.org/10.1016/j.yexcr.2009.05.009CrossRefGoogle Scholar
  55. Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont M (2004) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 86-A(6):1153–1160Google Scholar
  56. Gangji V, De Maertelaer V, Hauzeur JP (2011) Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone 49(5):1005–1009.  https://doi.org/10.1016/j.bone.2011.07.032CrossRefGoogle Scholar
  57. Giangrande PLF (2000) The history of blood transfusion. British Journal of Haematology 110(4):758–767Google Scholar
  58. Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C, Vannini F (2010) Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury 41(11):1196–1203.  https://doi.org/10.1016/j.injury.2010.09.028CrossRefGoogle Scholar
  59. Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F, De Rosa A, Laino L, d'Aquino R, Tirino V, Papaccio G (2013) Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med 2(4):316–324.  https://doi.org/10.5966/sctm.2012-0136CrossRefGoogle Scholar
  60. Glassberg MK, Minkiewicz J, Toonkel RL, Simonet ES, Rubio GA, DiFede D, Shafazand S, Khan A, Pujol MV, LaRussa VF, Lancaster LH, Rosen GD, Fishman J, Mageto YN, Mendizabal A, Hare JM (2017) Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): a phase i safety clinical trial. Chest 151(5):971–981.  https://doi.org/10.1016/j.chest.2016.10.061CrossRefGoogle Scholar
  61. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics, Committee, & Stroke Statistics, Subcommittee (2014) Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292.  https://doi.org/10.1161/01.cir.0000441139.02102.80CrossRefGoogle Scholar
  62. Goel A, Sangwan SS, Siwach RC, Ali AM (2005) Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 36(1):203–206.  https://doi.org/10.1016/j.injury.2004.01.009CrossRefGoogle Scholar
  63. Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R (2017) The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 12(1):39.  https://doi.org/10.1186/s13018-017-0534-yCrossRefGoogle Scholar
  64. Goudenege S, Pisani DF, Wdziekonski B, Di Santo JP, Bagnis C, Dani C, Dechesne CA (2009) Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol Ther 17(6):1064–1072.  https://doi.org/10.1038/mt.2009.67CrossRefGoogle Scholar
  65. Gussoni E, Blau HM, Kunkel LM (1997) The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 3(9):970–977Google Scholar
  66. Hashemi SM, Hassan ZM, Pourfathollah AA, Soudi S, Shafiee A, Soleimani M (2013) Comparative immunomodulatory properties of adipose-derived mesenchymal stem cells conditioned media from BALB/c, C57BL/6, and DBA mouse strains. J Cell Biochem 114(4):955–965.  https://doi.org/10.1002/jcb.24437CrossRefGoogle Scholar
  67. Hatzistergos KE, Saur D, Seidler B, Balkan W, Breton M, Valasaki K, Takeuchi LM, Landin AM, Khan A, Hare JM (2016) Stimulatory effects of mesenchymal stem cells on cKit+ cardiac stem cells are mediated by SDF1/CXCR4 and SCF/cKit signaling pathways. Circ Res 119(8):921–930.  https://doi.org/10.1161/CIRCRESAHA.116.309281CrossRefGoogle Scholar
  68. Healey JH, Zimmerman PA, McDonnell JM, Lane JM (1990) Percutaneous bone marrow grafting of delayed union and nonunion in cancer patients. Clin Orthop Relat Res 256:280–285Google Scholar
  69. Helbig L, Simank HG, Kroeber M, Schmidmaier G, Grutzner PA, Guehring T (2012) Core decompression combined with implantation of a demineralised bone matrix for non-traumatic osteonecrosis of the femoral head. Arch Orthop Trauma Surg 132(8):1095–1103.  https://doi.org/10.1007/s00402-012-1526-3CrossRefGoogle Scholar
  70. Hernigou P, Bachir D, Galacteros F (2003) The natural history of symptomatic osteonecrosis in adults with sickle-cell disease. J Bone Joint Surg Am 85-A(3):500–504Google Scholar
  71. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437.  https://doi.org/10.2106/JBJS.D.02215CrossRefGoogle Scholar
  72. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–313.  https://doi.org/10.1038/6529CrossRefGoogle Scholar
  73. Hosseini S, Baghaban Eslaminejad M (2017) Mesenchymal Stem Cells: An Optimistic Cell Source in Tissue Engineering for Bone Regeneration. In: Pham PV (ed) Bone and cartilage regeneration. Springer, BerlinGoogle Scholar
  74. Hu C, Li L (2015) In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein Cell 6(8):562–574.  https://doi.org/10.1007/s13238-015-0180-2CrossRefGoogle Scholar
  75. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2(3):284–291.  https://doi.org/10.1016/j.stem.2008.01.014CrossRefGoogle Scholar
  76. Hur JW, Cho TH, Park DH, Lee JB, Park JY, Chung YG (2016) Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J Spinal Cord Med 39(6):655–664.  https://doi.org/10.1179/2045772315Y.0000000048CrossRefGoogle Scholar
  77. Introna M, Lucchini G, Dander E, Galimberti S, Rovelli A, Balduzzi A, Longoni D, Pavan F, Masciocchi F, Algarotti A, Mico C, Grassi A, Deola S, Cavattoni I, Gaipa G, Belotti D, Perseghin P, Parma M, Pogliani E, Golay J, Pedrini O, Capelli C, Cortelazzo S, D'Amico G, Biondi A, Rambaldi A, Biagi E (2014) Treatment of graft versus host disease with mesenchymal stromal cells: a phase I study on 40 adult and pediatric patients. Biol Blood Marrow Transplant 20(3):375–381.  https://doi.org/10.1016/j.bbmt.2013.11.033CrossRefGoogle Scholar
  78. Jeong H, Yim HW, Park HJ, Cho Y, Hong H, Kim NJ, Oh IH (2018) Mesenchymal stem cell therapy for ischemic heart disease: systematic review and meta-analysis. Int J Stem Cells.  https://doi.org/10.15283/ijsc17061
  79. Jiang PC, Xiong WP, Wang G, Ma C, Yao WQ, Kendell SF, Mehling BM, Yuan XH, Wu DC (2013) A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury. Exp Ther Med 6(1):140–146.  https://doi.org/10.3892/etm.2013.1083CrossRefGoogle Scholar
  80. Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32(5):1254–1266.  https://doi.org/10.1002/stem.1634CrossRefGoogle Scholar
  81. Jo CH, Chai JW, Jeong EC, Oh S, Shin JS, Shim H, Yoon KS (2017) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a 2-year follow-up study. Am J Sports Med 45(12):2774–2783.  https://doi.org/10.1177/0363546517716641CrossRefGoogle Scholar
  82. Kanemura H, Go MJ, Shikamura M, Nishishita N, Sakai N, Kamao H, Mandai M, Morinaga C, Takahashi M, Kawamata S (2014) Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One 9(1):e85336.  https://doi.org/10.1371/journal.pone.0085336CrossRefGoogle Scholar
  83. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O, Slavin S (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67(10):1187–1194.  https://doi.org/10.1001/archneurol.2010.248CrossRefGoogle Scholar
  84. Khojasteh A, Eslaminejad MB, Nazarian H, Morad G, Dashti SG, Behnia H, Stevens M (2013) Vertical bone augmentation with simultaneous implant placement using particulate mineralized bone and mesenchymal stem cells: a preliminary study in rabbit. J Oral Implantol 39(1):3–13.  https://doi.org/10.1563/AAID-JOI-D-10-00206CrossRefGoogle Scholar
  85. Khojasteh A, Fahimipour F, Jafarian M, Sharifi D, Jahangir S, Khayyatan F, Baghaban Eslaminejad M (2017) Bone engineering in dog mandible: Coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor. J Biomed Mater Res B Appl Biomater 105(7):1767–1777.  https://doi.org/10.1002/jbm.b.33707CrossRefGoogle Scholar
  86. Kim YI, Ryu JS, Yeo JE, Choi YJ, Kim YS, Ko K, Koh YG (2014) Overexpression of TGF-beta1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells. Biochem Biophys Res Commun 450(4):1593–1599.  https://doi.org/10.1016/j.bbrc.2014.07.045CrossRefGoogle Scholar
  87. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89(10):2105–2112.  https://doi.org/10.2106/JBJS.G.00003CrossRefGoogle Scholar
  88. Koh YG, Choi YJ, Kwon SK, Kim YS, Yeo JE (2015) Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 23(5):1308–1316.  https://doi.org/10.1007/s00167-013-2807-2CrossRefGoogle Scholar
  89. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96(19):10711–10716Google Scholar
  90. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729.  https://doi.org/10.1182/blood-2002-07-2104CrossRefGoogle Scholar
  91. Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE 2nd, Parrott MB, Rosenfeld PJ, Flynn HW Jr, Goldberg JL (2017) Vision loss after intravitreal injection of autologous “Stem Cells” for AMD. N Engl J Med 376(11):1047–1053.  https://doi.org/10.1056/NEJMoa1609583CrossRefGoogle Scholar
  92. Labibzadeh N, Emadedin M, Fazeli R, Mohseni F, Hosseini SE, Moghadasali R, Mardpour S, Azimian V, Ghorbani Liastani M, Mirazimi Bafghi A, Baghaban Eslaminejad M, Aghdami N (2016) Mesenchymal stromal cells implantation in combination with platelet lysate product is safe for reconstruction of human long bone nonunion. Cell J 18(3):302–309Google Scholar
  93. Le Blanc K, Gotherstrom C, Ringden O, Hassan M, McMahon R, Horwitz E, Anneren G, Axelsson O, Nunn J, Ewald U, Norden-Lindeberg S, Jansson M, Dalton A, Astrom E, Westgren M (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79(11):1607–1614Google Scholar
  94. Lee HY, Hong IS (2017) Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer Sci 108(10):1939–1946.  https://doi.org/10.1111/cas.13334CrossRefGoogle Scholar
  95. Lee JY, Zhou Z, Taub PJ, Ramcharan M, Li Y, Akinbiyi T, Maharam ER, Leong DJ, Laudier DM, Ruike T, Torina PJ, Zaidi M, Majeska RJ, Schaffler MB, Flatow EL, Sun HB (2011) BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS One 6(3):e17531.  https://doi.org/10.1371/journal.pone.0017531CrossRefGoogle Scholar
  96. Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, Park JH, Lee SY, Kim SP, Kim YD, Chung SW, Bae YC, Shin YB, Kim JI, Jung JS (2012) Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J 76(7):1750–1760Google Scholar
  97. Lee SY, Kim HJ, Choi D (2015) Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells 8(1):36–47.  https://doi.org/10.15283/ijsc.2015.8.1.36CrossRefGoogle Scholar
  98. Li Q, Tang J, Wang R, Bei C, Xin L, Zeng Y, Tang X (2011) Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues. Artif Cells Blood Substit Immobil Biotechnol 39(1):31–38.  https://doi.org/10.3109/10731191003776769CrossRefGoogle Scholar
  99. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6(11):1282–1286.  https://doi.org/10.1038/81395CrossRefGoogle Scholar
  100. Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One 9(9):e107001.  https://doi.org/10.1371/journal.pone.0107001CrossRefGoogle Scholar
  101. Liu KD, Brakeman PR (2008) Renal repair and recovery. Crit Care Med 36(4 Suppl):S187–S192.  https://doi.org/10.1097/CCM.0b013e318168ca4aCrossRefGoogle Scholar
  102. Liu Y, Yan X, Sun Z, Chen B, Han Q, Li J, Zhao RC (2007) Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev 16(5):695–706.  https://doi.org/10.1089/scd.2006.0118CrossRefGoogle Scholar
  103. Liu G, Zhang Y, Liu B, Sun J, Li W, Cui L (2013) Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Biomaterials 34(11):2655–2664.  https://doi.org/10.1016/j.biomaterials.2013.01.004CrossRefGoogle Scholar
  104. Liu M, Zeng X, Wang J, Fu Z, Wang J, Liu M, Ren D, Yu B, Zheng L, Hu X, Shi W, Xu J (2016) Immunomodulation by mesenchymal stem cells in treating human autoimmune disease-associated lung fibrosis. Stem Cell Res Ther 7(1):63.  https://doi.org/10.1186/s13287-016-0319-yCrossRefGoogle Scholar
  105. Lombard T, Neirinckx V, Rogister B, Gilon Y, Wislet S (2016) Medication-related osteonecrosis of the jaw: new insights into molecular mechanisms and cellular therapeutic approaches. Stem Cells Int 2016:8768162.  https://doi.org/10.1155/2016/8768162CrossRefGoogle Scholar
  106. Ma K, Liao S, He L, Lu J, Ramakrishna S, Chan CK (2011) Effects of nanofiber/stem cell composite on wound healing in acute full-thickness skin wounds. Tissue Eng Part A 17(9-10):1413–1424.  https://doi.org/10.1089/ten.TEA.2010.0373CrossRefGoogle Scholar
  107. Makhlough A, Shekarchian S, Moghadasali R, Einollahi B, Hosseini SE, Jaroughi N, Bolurieh T, Baharvand H, Aghdami N (2017) Safety and tolerability of autologous bone marrow mesenchymal stromal cells in ADPKD patients. Stem Cell Res Ther 8(1):116.  https://doi.org/10.1186/s13287-017-0557-7CrossRefGoogle Scholar
  108. Makihara T, Yoshioka T, Sugaya H, Yamazaki M, Mishima H (2017) Autologous concentrated bone marrow grafting for the treatment of osteonecrosis of the humeral head: a report of five shoulders in four cases. Case Rep Orthop 2017:4898057.  https://doi.org/10.1155/2017/4898057CrossRefGoogle Scholar
  109. Mao Q, Jin H, Liao F, Xiao L, Chen D, Tong P (2013) The efficacy of targeted intraarterial delivery of concentrated autologous bone marrow containing mononuclear cells in the treatment of osteonecrosis of the femoral head: a five year follow-up study. Bone 57(2):509–516.  https://doi.org/10.1016/j.bone.2013.08.022CrossRefGoogle Scholar
  110. Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C, Pastore I, Marasso R, Madon E (2003) Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord 4(3):158–161Google Scholar
  111. Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R et al (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 333(13):832–838.  https://doi.org/10.1056/NEJM199509283331303CrossRefGoogle Scholar
  112. Mendez JJ, Ghaedi M, Steinbacher D, Niklason LE (2014) Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Eng Part A 20(11-12):1735–1746.  https://doi.org/10.1089/ten.TEA.2013.0647CrossRefGoogle Scholar
  113. Moghadasali R, Mutsaers HA, Azarnia M, Aghdami N, Baharvand H, Torensma R, Wilmer MJ, Masereeuw R (2013) Mesenchymal stem cell-conditioned medium accelerates regeneration of human renal proximal tubule epithelial cells after gentamicin toxicity. Exp Toxicol Pathol 65(5):595–600.  https://doi.org/10.1016/j.etp.2012.06.002CrossRefGoogle Scholar
  114. Mohamadnejad M, Namiri M, Bagheri M, Hashemi SM, Ghanaati H, Zare Mehrjardi N, Kazemi Ashtiani S, Malekzadeh R, Baharvand H (2007) Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World J Gastroenterol 13(24):3359–3363Google Scholar
  115. Moon KH, Ko IK, Yoo JJ, Atala A (2016) Kidney diseases and tissue engineering. Methods 99:112–119.  https://doi.org/10.1016/j.ymeth.2015.06.020CrossRefGoogle Scholar
  116. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15(7):1794–1804Google Scholar
  117. Nadri S, Kazemi B, Eslaminejad MB, Yazdani S, Soleimani M (2013a) High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Mol Biol Rep 40(6):3883–3890.  https://doi.org/10.1007/s11033-012-2360-yCrossRefGoogle Scholar
  118. Nadri S, Yazdani S, Arefian E, Gohari Z, Eslaminejad MB, Kazemi B, Soleimani M (2013b) Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci Lett 541:43–48.  https://doi.org/10.1016/j.neulet.2012.12.055CrossRefGoogle Scholar
  119. Nakanishi C, Yamagishi M, Yamahara K, Hagino I, Mori H, Sawa Y, Yagihara T, Kitamura S, Nagaya N (2008) Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun 374(1):11–16.  https://doi.org/10.1016/j.bbrc.2008.06.074CrossRefGoogle Scholar
  120. Negroni E, Riederer I, Chaouch S, Belicchi M, Razini P, Di Santo J, Torrente Y, Butler-Browne GS, Mouly V (2009) In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 17(10):1771–1778.  https://doi.org/10.1038/mt.2009.167CrossRefGoogle Scholar
  121. Ohkoshi S, Hara H, Hirono H, Watanabe K, Hasegawa K (2017) Regenerative medicine using dental pulp stem cells for liver diseases. World J Gastrointest Pharmacol Ther 8(1):1–6.  https://doi.org/10.4292/wjgpt.v8.i1.1CrossRefGoogle Scholar
  122. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 100(14):8407–8411.  https://doi.org/10.1073/pnas.1432929100CrossRefGoogle Scholar
  123. Pak J (2012) Autologous adipose tissue-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads. Pain Physician 15(1):75–85Google Scholar
  124. Park CW, Kim KS, Bae S, Son HK, Myung PK, Hong HJ, Kim H (2009) Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int J Stem Cells 2(1):59–68Google Scholar
  125. Pers YM, Rackwitz L, Ferreira R, Pullig O, Delfour C, Barry F, Sensebe L, Casteilla L, Fleury S, Bourin P, Noel D, Canovas F, Cyteval C, Lisignoli G, Schrauth J, Haddad D, Domergue S, Noeth U, Jorgensen C, Consortium, Adipoa (2016) Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med 5(7):847–856.  https://doi.org/10.5966/sctm.2015-0245CrossRefGoogle Scholar
  126. Piscaglia AC, Campanale M, Gasbarrini A, Gasbarrini G (2010) Stem cell-based therapies for liver diseases: state of the art and new perspectives. Stem Cells Int 2010:259461.  https://doi.org/10.4061/2010/259461CrossRefGoogle Scholar
  127. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P, Domenech J (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25(7):1737–1745.  https://doi.org/10.1634/stemcells.2007-0054CrossRefGoogle Scholar
  128. Prodromidi EI, Poulsom R, Jeffery R, Roufosse CA, Pollard PJ, Pusey CD, Cook HT (2006) Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells 24(11):2448–2455.  https://doi.org/10.1634/stemcells.2006-0201CrossRefGoogle Scholar
  129. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344(5):385–386.  https://doi.org/10.1056/NEJM200102013440516CrossRefGoogle Scholar
  130. Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, Mobasheri R, Poletti FL, Hoyland JA, Mobasheri A (2016) Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 99:69–80.  https://doi.org/10.1016/j.ymeth.2015.09.015CrossRefGoogle Scholar
  131. Roberts TT, Rosenbaum AJ (2012) Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 8(4):114–124.  https://doi.org/10.4161/org.23306CrossRefGoogle Scholar
  132. Rosines E, Schmidt HJ, Nigam SK (2007) The effect of hyaluronic acid size and concentration on branching morphogenesis and tubule differentiation in developing kidney culture systems: potential applications to engineering of renal tissues. Biomaterials 28(32):4806–4817.  https://doi.org/10.1016/j.biomaterials.2007.07.034CrossRefGoogle Scholar
  133. Ruban P, Yeo SJ, Seow KH, Tan SK, Ng SC (2000) Deep vein thrombosis after total knee replacement. Ann Acad Med Singapore 29(4):428–433Google Scholar
  134. Ruiz M, Cosenza S, Maumus M, Jorgensen C, Noel D (2016) Therapeutic application of mesenchymal stem cells in osteoarthritis. Expert Opin Biol Ther 16(1):33–42.  https://doi.org/10.1517/14712598.2016.1093108CrossRefGoogle Scholar
  135. Rushkevich YN, Kosmacheva SM, Zabrodets GV, Ignatenko SI, Goncharova NV, Severin IN, Likhachev SA, Potapnev MP (2015) The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in belarus. Bull Exp Biol Med 159(4):576–581.  https://doi.org/10.1007/s10517-015-3017-3CrossRefGoogle Scholar
  136. Sackstein R (2011) The biology of CD44 and HCELL in hematopoiesis: the ‘step 2-bypass pathway’ and other emerging perspectives. Curr Opin Hematol 18(4):239–248.  https://doi.org/10.1097/MOH.0b013e3283476140CrossRefGoogle Scholar
  137. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 99(7):4397–4402.  https://doi.org/10.1073/pnas.052716199CrossRefGoogle Scholar
  138. Sen RK, Tripathy SK, Aggarwal S, Marwaha N, Sharma RR, Khandelwal N (2012) Early results of core decompression and autologous bone marrow mononuclear cells instillation in femoral head osteonecrosis: a randomized control study. J Arthroplasty 27(5):679–686.  https://doi.org/10.1016/j.arth.2011.08.008CrossRefGoogle Scholar
  139. Shi M, Zhang Z, Xu R, Lin H, Fu J, Zou Z, Zhang A, Shi J, Chen L, Lv S, He W, Geng H, Jin L, Liu Z, Wang FS (2012) Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med 1(10):725–731.  https://doi.org/10.5966/sctm.2012-0034CrossRefGoogle Scholar
  140. Singaravelu K, Padanilam BJ (2009) In vitro differentiation of MSC into cells with a renal tubular epithelial-like phenotype. Ren Fail 31(6):492–502Google Scholar
  141. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19(5):646–651.  https://doi.org/10.1038/nm.3154CrossRefGoogle Scholar
  142. Souied E, Pulido J, Staurenghi G (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 377(8):792.  https://doi.org/10.1056/NEJMc1706274CrossRefGoogle Scholar
  143. Spanoudes K, Gaspar D, Pandit A, Zeugolis DI (2014) The biophysical, biochemical, and biological toolbox for tenogenic phenotype maintenance in vitro. Trends Biotechnol 32(9):474–482.  https://doi.org/10.1016/j.tibtech.2014.06.009CrossRefGoogle Scholar
  144. Spasovski D, Spasovski V, Bascarevic Z, Stojiljkovic M, Vreca M, Andelkovic M, Pavlovic S (2018) Intra-articular injection of autologous adipose-derived mesenchymal stem cells in the treatment of knee osteoarthritis. J Gene Med 20(1).  https://doi.org/10.1002/jgm.3002Google Scholar
  145. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25(5):829–848.  https://doi.org/10.3727/096368915X689622CrossRefGoogle Scholar
  146. Stockmann P, Park J, von Wilmowsky C, Nkenke E, Felszeghy E, Dehner JF, Schmitt C, Tudor C, Schlegel KA (2012) Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells – a comparison of different tissue sources. J Craniomaxillofac Surg 40(4):310–320.  https://doi.org/10.1016/j.jcms.2011.05.004CrossRefGoogle Scholar
  147. Stolk J, Broekman W, Mauad T, Zwaginga JJ, Roelofs H, Fibbe WE, Oostendorp J, Bajema I, Versteegh MI, Taube C, Hiemstra PS (2016) A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema. QJM 109(5):331–336.  https://doi.org/10.1093/qjmed/hcw001CrossRefGoogle Scholar
  148. Taghiyar L, Hesaraki M, Sayahpour FA, Satarian L, Hosseini S, Aghdami N, Baghaban Eslaminejad M (2017) Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice. J Biol Chem 292(25):10520–10533.  https://doi.org/10.1074/jbc.M116.774265CrossRefGoogle Scholar
  149. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676.  https://doi.org/10.1016/j.cell.2006.07.024CrossRefGoogle Scholar
  150. Tawonsawatruk T, West CC, Murray IR, Soo C, Peault B, Simpson AH (2016) Adipose derived pericytes rescue fractures from a failure of healing–non-union. Sci Rep 6:22779.  https://doi.org/10.1038/srep22779CrossRefGoogle Scholar
  151. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147Google Scholar
  152. Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, Strijder C, Sze SK, Choo A, Piek JJ, Doevendans PA, Pasterkamp G, de Kleijn DP (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6(3):206–214.  https://doi.org/10.1016/j.scr.2011.01.001CrossRefGoogle Scholar
  153. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98Google Scholar
  154. Torrente Y, Belicchi M, Marchesi C, D'Antona G, Cogiamanian F, Pisati F, Gavina M, Giordano R, Tonlorenzi R, Fagiolari G, Lamperti C, Porretti L, Lopa R, Sampaolesi M, Vicentini L, Grimoldi N, Tiberio F, Songa V, Baratta P, Prelle A, Forzenigo L, Guglieri M, Pansarasa O, Rinaldi C, Mouly V, Butler-Browne GS, Comi GP, Biondetti P, Moggio M, Gaini SM, Stocchetti N, Priori A, D'Angelo MG, Turconi A, Bottinelli R, Cossu G, Rebulla P, Bresolin N (2007) Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 16(6):563–577Google Scholar
  155. Ulivi V, Tasso R, Cancedda R, Descalzi F (2014) Mesenchymal stem cell paracrine activity is modulated by platelet lysate: induction of an inflammatory response and secretion of factors maintaining macrophages in a proinflammatory phenotype. Stem Cells Dev 23(16):1858–1869.  https://doi.org/10.1089/scd.2013.0567CrossRefGoogle Scholar
  156. van Gelder T, van Schaik RH, Hesselink DA (2014) Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nat Rev Nephrol 10(12):725–731.  https://doi.org/10.1038/nrneph.2014.172CrossRefGoogle Scholar
  157. Vandenburgh HH, Karlisch P, Farr L (1988) Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. Vitro Cell Dev Biol 24(3):166–174Google Scholar
  158. Veronesi F, Salamanna F, Tschon M, Maglio M, Nicoli Aldini N, Fini M (2017) Mesenchymal stem cells for tendon healing: what is on the horizon? J Tissue Eng Regen Med 11(11):3202–3219.  https://doi.org/10.1002/term.2209CrossRefGoogle Scholar
  159. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S (2004) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 13(5):595–600Google Scholar
  160. Wang C, Li Y, Yang M, Zou Y, Liu H, Liang Z, Yin Y, Niu G, Yan Z, Zhang B (2018) Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro. Eur J Vasc Endovasc Surg 55(2):257–265.  https://doi.org/10.1016/j.ejvs.2017.10.012CrossRefGoogle Scholar
  161. Weng JY, Du X, Geng SX, Peng YW, Wang Z, Lu ZS, Wu SJ, Luo CW, Guo R, Ling W, Deng CX, Liao PJ, Xiang AP (2010) Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transplant 45(12):1732–1740.  https://doi.org/10.1038/bmt.2010.195CrossRefGoogle Scholar
  162. Wiley LA, Burnight ER, Songstad AE, Drack AV, Mullins RF, Stone EM, Tucker BA (2015) Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res 44:15–35.  https://doi.org/10.1016/j.preteyeres.2014.10.002CrossRefGoogle Scholar
  163. Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, Cosgrove K, Vojnik R, Calfee CS, Lee JW, Rogers AJ, Levitt J, Wiener-Kronish J, Bajwa EK, Leavitt A, McKenna D, Thompson BT, Matthay MA (2015) Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med 3(1):24–32.  https://doi.org/10.1016/S2213-2600(14)70291-7CrossRefGoogle Scholar
  164. Witt R, Weigand A, Boos AM, Cai A, Dippold D, Boccaccini AR, Schubert DW, Hardt M, Lange C, Arkudas A, Horch RE, Beier JP (2017) Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol 18(1):15.  https://doi.org/10.1186/s12860-017-0131-2CrossRefGoogle Scholar
  165. Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH (2013) Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy 29(12):2020–2028.  https://doi.org/10.1016/j.arthro.2013.09.074CrossRefGoogle Scholar
  166. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659.  https://doi.org/10.1634/stemcells.2007-0226CrossRefGoogle Scholar
  167. Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104(9):2643–2645.  https://doi.org/10.1182/blood-2004-02-0526CrossRefGoogle Scholar
  168. Xiao W, Guo S, Gao C, Dai G, Gao Y, Li M, Wang X, Hu D (2017) A randomized comparative study on the efficacy of intracoronary infusion of autologous bone marrow mononuclear cells and mesenchymal stem cells in patients with dilated cardiomyopathy. Int Heart J 58(2):238–244.  https://doi.org/10.1536/ihj.16-328CrossRefGoogle Scholar
  169. Xu G, Zhang L, Ren G, Yuan Z, Zhang Y, Zhao RC, Shi Y (2007) Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res 17(3):240–248.  https://doi.org/10.1038/cr.2007.4CrossRefGoogle Scholar
  170. Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, Zhao RC (2007) Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 35(9):1466–1475.  https://doi.org/10.1016/j.exphem.2007.05.012CrossRefGoogle Scholar
  171. Yao L, Bestwick CS, Bestwick LA, Maffulli N, Aspden RM (2006) Phenotypic drift in human tenocyte culture. Tissue Eng 12(7):1843–1849.  https://doi.org/10.1089/ten.2006.12.1843CrossRefGoogle Scholar
  172. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67.  https://doi.org/10.1152/physrev.00043.2011CrossRefGoogle Scholar
  173. Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109(25):3154–3157.  https://doi.org/10.1161/01.CIR.0000134696.08436.65CrossRefGoogle Scholar
  174. Yun SP, Ryu JM, Jang MW, Han HJ (2011) Interaction of profilin-1 and F-actin via a beta-arrestin-1/JNK signaling pathway involved in prostaglandin E(2)-induced human mesenchymal stem cells migration and proliferation. J Cell Physiol 226(2):559–571.  https://doi.org/10.1002/jcp.22366CrossRefGoogle Scholar
  175. Zamiri B, Shahidi S, Eslaminejad MB, Khoshzaban A, Gholami M, Bahramnejad E, Moghadasali R, Mardpour S, Aghdami N (2013) Reconstruction of human mandibular continuity defects with allogenic scaffold and autologous marrow mesenchymal stem cells. J Craniofac Surg 24(4):1292–1297.  https://doi.org/10.1097/SCS.0b013e318294288aCrossRefGoogle Scholar
  176. Zhao D, Cui D, Wang B, Tian F, Guo L, Yang L, Liu B, Yu X (2012) Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone 50(1):325–330.  https://doi.org/10.1016/j.bone.2011.11.002CrossRefGoogle Scholar
  177. Zhao L, Liu X, Zhang Y, Liang X, Ding Y, Xu Y, Fang Z, Zhang F (2016) Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction. Exp Cell Res 344(1):30–39.  https://doi.org/10.1016/j.yexcr.2016.03.024CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Samaneh Hosseini
    • 1
  • Leila Taghiyar
    • 1
  • Fatemeh Safari
    • 2
  • Mohamadreza Baghaban Eslaminejad
    • 1
  1. 1.Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
  2. 2.Bone Biology & Orthopaedic Research, Department for BioMedical ResearchUniversity of BernBernSwitzerland

Personalised recommendations