Advertisement

pp 1-13 | Cite as

Therapeutic Applications of Mesenchymal Stem Cells for Systemic Lupus Erythematosus

  • Jianyong Xu
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Mesenchymal stem cells (MSCs) have been intensively studied and applied in regenerative medicine and tissue engineering. Recently, their immune modulation functions make them as attractive potential approaches for autoimmune disease treatment. Systemic lupus erythematosus (SLE) is one type of chronic autoimmune diseases with multi-organ damaged by the immune system. Although current available treatments are effective for some patients, others are refractory for these therapies. The immuno-modulatory and regenerative characteristics of MSCs make them as one promising candidate for treating SLE. Thus, we would discuss their immune modulation effects, pre-clinical and clinical applications, and the potentials for immune tolerance re-establishment in SLE here.

Keywords

Autoimmune diseases Mesenchymal stem cells MSCs SLE Systemic lupus erythematosus 

Abbreviations

BAFF

B cell activating factor

BM

bone marrow

Breg

regulatory B cell

CCL2

C-C motif chemokine ligand 2

HSCs

hematopoietic stem cells

IDO

indoleamine 2,3-dioxygenase

IFN-γ

interferon-gamma

IL

interleukin

iNOS

inducible nitric oxide synthase

MSCs

mesenchymal stem cells

OAZ

olfactory 1/early B cell factor-associated zinc-finger protein

PD

programmed death

PGE2

prostaglandin E2

SLE

systemic lupus erythematosus

Tfh

follicular helper cell

TGF-β

transforming growth factor beta

Th

T helper cells

TNF-α

tumor necrosis factor alpha

Treg

regulatory T cells

UC

umbilical cord

Notes

Acknowledgements

This work was supported by Natural Science Foundation of SZU (2017083), Natural Science Foundation of Shenzhen (JCYJ20170302152735071) and Medical Foundation of Guangdong (A2018308).

Conflict of Interest

The authors declare no commercial or financial conflict of interest.

Ethical Approval

The authors declare that this article does not contain any studies with human participants or animals.

References

  1. Acar M et al (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526(7571):126–130.  https://doi.org/10.1038/nature15250CrossRefGoogle Scholar
  2. Akiyama K et al (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10(5):544–555.  https://doi.org/10.1016/j.stem.2012.03.007CrossRefGoogle Scholar
  3. Ankrum JA et al (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32(3):252–260.  https://doi.org/10.1038/nbt.2816CrossRefGoogle Scholar
  4. Banchereau R et al (2017) Understanding human autoimmunity and autoinflammation through transcriptomics. Annu Rev Immunol 35:337–370.  https://doi.org/10.1146/annurev-immunol-051116-052225CrossRefGoogle Scholar
  5. Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13(4):392–402.  https://doi.org/10.1016/j.stem.2013.09.006CrossRefGoogle Scholar
  6. Bernatsky S et al (2006) Mortality in systemic lupus erythematosus. Arthritis Rheum 54(8):2550–2557.  https://doi.org/10.1002/art.21955CrossRefGoogle Scholar
  7. Bianco P et al (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319.  https://doi.org/10.1016/j.stem.2008.03.002CrossRefGoogle Scholar
  8. Carrion F et al (2010) Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 19(3):317–322.  https://doi.org/10.1177/0961203309348983CrossRefGoogle Scholar
  9. Chan MC et al (2016) Human mesenchymal stromal cells reduce influenza a H5N1-associated acute lung injury in vitro and in vivo. Proc Natl Acad Sci U S A 113(13):3621–3626.  https://doi.org/10.1073/pnas.1601911113CrossRefGoogle Scholar
  10. Chang JW et al (2011) Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant 20(2):245–257.  https://doi.org/10.3727/096368910X520056CrossRefGoogle Scholar
  11. Che N et al (2014) Impaired B cell inhibition by lupus bone marrow mesenchymal stem cells is caused by reduced CCL2 expression. J Immunol 193(10):5306–5314.  https://doi.org/10.4049/jimmunol.1400036CrossRefGoogle Scholar
  12. Choi EW et al (2012) Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation. Arthritis Rheum 64(1):243–253.  https://doi.org/10.1002/art.33313CrossRefGoogle Scholar
  13. Choi EW et al (2015) Transplantation of adipose tissue-derived mesenchymal stem cells prevents the development of lupus dermatitis. Stem Cells Dev 24(17):2041–2051.  https://doi.org/10.1089/scd.2015.0021CrossRefGoogle Scholar
  14. Contreras-Kallens P et al (2017) Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance. Ann N Y Acad Sci.  https://doi.org/10.1111/nyas.13364
  15. Deng W et al (2015) Mesenchymal stem cells promote CD206 expression and phagocytic activity of macrophages through IL-6 in systemic lupus erythematosus. Clin Immunol 161(2):209–216.  https://doi.org/10.1016/j.clim.2015.07.011CrossRefGoogle Scholar
  16. Deng D et al (2017) A randomised double-blind, placebo-controlled trial of allogeneic umbilical cord-derived mesenchymal stem cell for lupus nephritis. Ann Rheum Dis 76(8):1436–1439.  https://doi.org/10.1136/annrheumdis-2017-211073CrossRefGoogle Scholar
  17. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317.  https://doi.org/10.1080/14653240600855905CrossRefGoogle Scholar
  18. El Agha E et al (2017) Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 21(2):166–177.  https://doi.org/10.1016/j.stem.2017.07.011CrossRefGoogle Scholar
  19. Feng X et al (2014) Restored immunosuppressive effect of mesenchymal stem cells on B cells after olfactory 1/early B cell factor-associated zinc-finger protein down-regulation in patients with systemic lupus erythematosus. Arthritis Rheumatol 66(12):3413–3423.  https://doi.org/10.1002/art.38879CrossRefGoogle Scholar
  20. Gao L et al (2016) Phase II multicenter, randomized, double-blind controlled study of efficacy and safety of umbilical cord-derived mesenchymal stromal cells in the prophylaxis of chronic graft-versus-host disease after HLA-Haploidentical stem-cell transplantation. J Clin Oncol 34(24):2843–2850.  https://doi.org/10.1200/JCO.2015.65.3642CrossRefGoogle Scholar
  21. Gao L et al (2017) Bone marrow-derived mesenchymal stem cells from patients with systemic lupus erythematosus have a senescence-associated secretory phenotype mediated by a mitochondrial antiviral signaling protein-interferon-beta feedback loop. Arthritis Rheumatol 69(8):1623–1635.  https://doi.org/10.1002/art.40142CrossRefGoogle Scholar
  22. Gu Z et al (2010) Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice. Lupus 19(13):1502–1514.  https://doi.org/10.1177/0961203310373782CrossRefGoogle Scholar
  23. Gu F et al (2014a) Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol 33(11):1611–1619.  https://doi.org/10.1007/s10067-014-2754-4CrossRefGoogle Scholar
  24. Gu Z et al (2014b) Wnt/beta-catenin signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients through the p53/p21 pathway. Mol Cell Biochem 387(1–2):27–37.  https://doi.org/10.1007/s11010-013-1866-5CrossRefGoogle Scholar
  25. Hahn BH (2013) Belimumab for systemic lupus erythematosus. N Engl J Med 368(16):1528–1535.  https://doi.org/10.1056/NEJMct1207259CrossRefGoogle Scholar
  26. He X et al (2016) Suppression of interleukin 17 contributes to the immunomodulatory effects of adipose-derived stem cells in a murine model of systemic lupus erythematosus. Immunol Res 64(5–6):1157–1167.  https://doi.org/10.1007/s12026-016-8866-yCrossRefGoogle Scholar
  27. Heldring N et al (2015) Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther 26(8):506–517.  https://doi.org/10.1089/hum.2015.072CrossRefGoogle Scholar
  28. Jang E et al (2016) Infusion of human bone marrow-derived mesenchymal stem cells alleviates autoimmune nephritis in a lupus model by suppressing follicular helper T-cell development. Cell Transplant 25(1):1–15.  https://doi.org/10.3727/096368915X688173CrossRefGoogle Scholar
  29. Ji S et al (2012) Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3beta signaling pathway in T cells from systemic lupus erythematosus mice. Cell Physiol Biochem 29(5–6):705–712.  https://doi.org/10.1159/000178590CrossRefGoogle Scholar
  30. Joseph CG et al (2014) Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343(6167):152–157.  https://doi.org/10.1126/science.1246886CrossRefGoogle Scholar
  31. Kamal A, Khamashta M (2014) The efficacy of novel B cell biologics as the future of SLE treatment: a review. Autoimmun Rev 13(11):1094–1101.  https://doi.org/10.1016/j.autrev.2014.08.020CrossRefGoogle Scholar
  32. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–216.  https://doi.org/10.1016/j.stem.2009.02.001CrossRefGoogle Scholar
  33. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6):709–716.  https://doi.org/10.1016/j.stem.2012.05.015CrossRefGoogle Scholar
  34. Ko JH et al (2016) Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against Allo- and autoimmunity in the eye. Proc Natl Acad Sci U S A 113(1):158–163.  https://doi.org/10.1073/pnas.1522905113CrossRefGoogle Scholar
  35. Le Blanc K et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441.  https://doi.org/10.1016/S0140-6736(04)16104-7CrossRefGoogle Scholar
  36. Le Blanc K et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586.  https://doi.org/10.1016/S0140-6736(08)60690-XCrossRefGoogle Scholar
  37. Lee YH et al (2016) Overall and cause-specific mortality in systemic lupus erythematosus: an updated meta-analysis. Lupus 25(7):727–734.  https://doi.org/10.1177/0961203315627202CrossRefGoogle Scholar
  38. Li X et al (2012) Enhanced apoptosis and senescence of bone-marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Stem Cells Dev 21(13):2387–2394.  https://doi.org/10.1089/scd.2011.0447CrossRefGoogle Scholar
  39. Li X et al (2013) Mesenchymal SCT ameliorates refractory cytopenia in patients with systemic lupus erythematosus. Bone Marrow Transplant 48(4):544–550.  https://doi.org/10.1038/bmt.2012.184CrossRefGoogle Scholar
  40. Liang J et al (2010) Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nat Rev Rheumatol 6(8):486–489.  https://doi.org/10.1038/nrrheum.2010.80CrossRefGoogle Scholar
  41. Liao J et al (2015) Cell-based therapies for systemic lupus erythematosus. Autoimmun Rev 14(1):43–48.  https://doi.org/10.1016/j.autrev.2014.10.001CrossRefGoogle Scholar
  42. Lisnevskaia L et al (2014) Systemic lupus erythematosus. Lancet 384(9957):1878–1888.  https://doi.org/10.1016/S0140-6736(14)60128-8CrossRefGoogle Scholar
  43. Lv FJ et al (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6):1408–1419.  https://doi.org/10.1002/stem.1681CrossRefGoogle Scholar
  44. Ma X et al (2013) Allogenic mesenchymal stem cell transplantation ameliorates nephritis in lupus mice via inhibition of B-cell activation. Cell Transplant 22(12):2279–2290.  https://doi.org/10.3727/096368912X658692CrossRefGoogle Scholar
  45. Mo M et al (2016) Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol Life Sci 73(17):3311–3321.  https://doi.org/10.1007/s00018-016-2229-7CrossRefGoogle Scholar
  46. Murphy G et al (2013) Systemic lupus erythematosus and other autoimmune rheumatic diseases: challenges to treatment. Lancet 382(9894):809–818.  https://doi.org/10.1016/S0140-6736(13)60889-2CrossRefGoogle Scholar
  47. Nie Y et al (2010) Defective phenotype of mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 19(7):850–859.  https://doi.org/10.1177/0961203309361482CrossRefGoogle Scholar
  48. Park MJ et al (2015) Adipose tissue-derived mesenchymal stem cells induce expansion of interleukin-10-producing regulatory B cells and ameliorate autoimmunity in a murine model of systemic lupus erythematosus. Cell Transplant 24(11):2367–2377.  https://doi.org/10.3727/096368914X685645CrossRefGoogle Scholar
  49. Phillips CD et al (2017) Purified umbilical cord derived mesenchymal stem cell treatment in a case of systemic lupus erythematosus. Clin Transl Med 6(1):31.  https://doi.org/10.1186/s40169-017-0161-6CrossRefGoogle Scholar
  50. Phinney DG et al (2015) Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 6:8472.  https://doi.org/10.1038/ncomms9472CrossRefGoogle Scholar
  51. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147Google Scholar
  52. Polchert D et al (2008) IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 38(6):1745–1755.  https://doi.org/10.1002/eji.200738129CrossRefGoogle Scholar
  53. Rasmusson I et al (2007) Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol 65(4):336–343.  https://doi.org/10.1111/j.1365-3083.2007.01905.xCrossRefGoogle Scholar
  54. Reinisch A et al (2015) Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood 125(2):249–260.  https://doi.org/10.1182/blood-2014-04-572255CrossRefGoogle Scholar
  55. Rosado MM et al (2015) Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev 24(1):93–103.  https://doi.org/10.1089/scd.2014.0155CrossRefGoogle Scholar
  56. Schena F et al (2010) Interferon-gamma-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum 62(9):2776–2786.  https://doi.org/10.1002/art.27560CrossRefGoogle Scholar
  57. Shi D et al (2012) Allogeneic transplantation of umbilical cord-derived mesenchymal stem cells for diffuse alveolar hemorrhage in systemic lupus erythematosus. Clin Rheumatol 31(5):841–846.  https://doi.org/10.1007/s10067-012-1943-2CrossRefGoogle Scholar
  58. Shi D et al (2014) High level of reactive oxygen species impaired mesenchymal stem cell migration via overpolymerization of F-actin cytoskeleton in systemic lupus erythematosus. Pathol Biol (Paris) 62(6):382–390.  https://doi.org/10.1016/j.patbio.2014.07.009CrossRefGoogle Scholar
  59. Sun LY et al (2007) Abnormality of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 16(2):121–128.  https://doi.org/10.1177/0961203306075793CrossRefGoogle Scholar
  60. Sun L et al (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27(6):1421–1432.  https://doi.org/10.1002/stem.68CrossRefGoogle Scholar
  61. Sun L et al (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62(8):2467–2475.  https://doi.org/10.1002/art.27548CrossRefGoogle Scholar
  62. Thiel A et al (2015) Human embryonic stem cell-derived mesenchymal cells preserve kidney function and extend lifespan in NZB/W F1 mouse model of lupus nephritis. Sci Rep 5:17685.  https://doi.org/10.1038/srep17685CrossRefGoogle Scholar
  63. Trial J et al (2016) Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart. J Mol Cell Cardiol 91:28–34.  https://doi.org/10.1016/j.yjmcc.2015.12.017CrossRefGoogle Scholar
  64. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365(22):2110–2121.  https://doi.org/10.1056/NEJMra1100359CrossRefGoogle Scholar
  65. Tsokos GC et al (2016) New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 12(12):716–730.  https://doi.org/10.1038/nrrheum.2016.186CrossRefGoogle Scholar
  66. Tyndall A (2009) Cellular therapy of systemic lupus erythematosus. Lupus 18(5):387–393.  https://doi.org/10.1177/0961203308100385CrossRefGoogle Scholar
  67. Tyndall A (2014) Mesenchymal stem cell treatments in rheumatology: a glass half full? Nat Rev Rheumatol 10(2):117–124.  https://doi.org/10.1038/nrrheum.2013.166CrossRefGoogle Scholar
  68. Uccelli A et al (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736.  https://doi.org/10.1038/nri2395CrossRefGoogle Scholar
  69. van Kempen TS et al (2015) Perception of self: distinguishing autoimmunity from autoinflammation. Nat Rev Rheumatol 11(8):483–492.  https://doi.org/10.1038/nrrheum.2015.60CrossRefGoogle Scholar
  70. Wang D et al (2013) Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transplant 22(12):2267–2277.  https://doi.org/10.3727/096368911X582769CrossRefGoogle Scholar
  71. Wang D et al (2014a) A CD8 T cell/indoleamine 2,3-dioxygenase axis is required for mesenchymal stem cell suppression of human systemic lupus erythematosus. Arthritis Rheumatol 66(8):2234–2245.  https://doi.org/10.1002/art.38674CrossRefGoogle Scholar
  72. Wang D et al (2014b) Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther 16(2):R79.  https://doi.org/10.1186/ar4520CrossRefGoogle Scholar
  73. Wang Y et al (2014c) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15(11):1009–1016.  https://doi.org/10.1038/ni.3002CrossRefGoogle Scholar
  74. Wang Q et al (2015) Combined transplantation of autologous hematopoietic stem cells and allogenic mesenchymal stem cells increases T regulatory cells in systemic lupus erythematosus with refractory lupus nephritis and leukopenia. Lupus 24(11):1221–1226.  https://doi.org/10.1177/0961203315583541CrossRefGoogle Scholar
  75. Wang D et al (2017a) The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell Mol Immunol 14(5):423–431.  https://doi.org/10.1038/cmi.2015.89CrossRefGoogle Scholar
  76. Wang D et al (2017b) Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study. Clin Exp Med 17(3):333–340.  https://doi.org/10.1007/s10238-016-0427-0CrossRefGoogle Scholar
  77. Wang D et al (2017c) Serum IFN-gamma predicts the therapeutic effect of mesenchymal stem cells transplantation in systemic lupus erythematosus patients. Stem Cells Transl Med.  https://doi.org/10.1002/sctm.17-0002
  78. Xiong W, Lahita RG (2014) Pragmatic approaches to therapy for systemic lupus erythematosus. Nat Rev Rheumatol 10(2):97–107.  https://doi.org/10.1038/nrrheum.2013.157CrossRefGoogle Scholar
  79. Zhang Y et al (2014) Transplantation of umbilical cord mesenchymal stem cells alleviates pneumonitis of MRL/lpr mice. J Thorac Dis 6(2):109–117.  https://doi.org/10.3978/j.issn.2072-1439.2013.12.48CrossRefGoogle Scholar
  80. Zhang Z et al (2017) Human umbilical cord mesenchymal stem cells inhibit T follicular helper cell expansion through the activation of iNOS in lupus-prone B6.MRL-Faslpr mice. Cell Transplant 26(6):1031–1042.  https://doi.org/10.3727/096368917X694660CrossRefGoogle Scholar
  81. Zhou K et al (2008) Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice. Cell Mol Immunol 5(6):417–424.  https://doi.org/10.1038/cmi.2008.52CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ImmunologyShenzhen University School of Medicine, Shenzhen UniversityShenzhenPeople’s Republic of China

Personalised recommendations