Skip to main content

Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions

  • Conference paper
  • First Online:
Tissue Engineering and Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1084))

Abstract

In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD-MSC:

Adipose-derived mesenchymal stem cell

ADNC:

Adipose-derived nucleated cell

ASC:

Adipose stromal cell

ASO:

Antisense oligonucleotide

AT-MSC:

Adipose tissue-derived mesenchymal stem cell

BGN:

Biglycan

BM-MSC:

Bone marrow-derived mesenchymal stem cell

BMP:

Bone morphogenetic protein

cPLA2:

Cytosolic phospholipase A2

COL4A1:

Collagen type IV alpha 1

COMP:

Cartilage oligomeric matrix protein

COX:

Cyclooxygenase

CRISPR:

utilized clustered regularly interspaced short palindromic repeats

CTGF:

Connective tissue growth factor

DCN:

Decorin

ECM:

Extracellular matrix

EGR:

Early growth response protein

EGR-1:

Early growth response protein 1

EGF:

Epidermal growth factor

ESC:

Embryonic stem cell

FCER1g:

Fc fragment of IgE receptor Ig

FGF:

Fibroblast growth factor

FMOD:

Fibromodulin

FN:

Fibronectin

GDF:

Growth and differentiation factor

GF:

Growth factor

GFP:

Green fluorescent protein

GH:

Growth hormone

hASC:

Human adipose-derived stem cell

HP:

Hydroxylysylpyridinoline

ICAM-1:

Intercellular adhesion molecule-1

IFN-γ:

Interferon-γ

IGF:

Insulin-like growth factor

IL:

Interleukin

iPSC:

Induced pluripotent stem cell

IRAP:

Interleukin-1-receptor-antagonist protein processing system

LOXL4:

Lysyl oxidase like 4

MALDI:

Matrix-assisted laser desorption/ionization

MAPK:

Mitogen-activated protein kinase

MCP:

Mast cell protease

MKX:

Mohawk

MMP:

Matrix metalloproteinase

MPO:

Myeloperoxidase

MRI:

Magnetic resonance imaging

MRL:

Murphy Roths Large (mouse)

mRNA:

Messenger RNA

MSC:

Mesenchymal stem cell

PAI:

Plasminogen activator inhibitor

PDGF:

Platelet-derived growth factor

PGE2:

Prostaglandin E2

PRP:

Platelet-rich plasma

RUNX-2:

Runt-related transcription factor 2

SCX:

Scleraxis

SDFT:

Superficial digital flexor tendon

SMA:

Smooth muscle actin

SOX:

SRY-box gene

TDC:

Tendon-derived cell

TDGFß1:

Transforming growth factor ß1

TGF:

Transforming growth factor

THBS-2:

Thrombospondin-2

TN-C:

Tenascin-C

TNF𝛼:

Tumor necrosis factor-𝛼

TNMD:

Tenomodulin

TOF:

Time of flight

TPC:

Tendon precursor cell

TSC:

Tendon stem cell

TSPC:

Tendon stem/progenitor cell

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

References

  • Abrahamsson, S. O. (1991). Matrix metabolism and healing in the flexor tendon. Experimental Studies on Rabbit Tendon. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery Supplementum, 23, 1–51.

    CAS  PubMed  Google Scholar 

  • Abrahamsson, S. O., Lundborg, G., & Lohmander, L. S. (1991). Long-term explant culture of rabbit flexor tendon: Effects of recombinant human insulin-like growth factor-I and serum on matrix metabolism. Journal of Orthopaedic Research, 9, 503–515.

    CAS  PubMed  Google Scholar 

  • Adam, L., Le Grand, R., & Martinon, F. (2014). Electroporation-mediated intradermal delivery of DNA vaccines in nonhuman primates. Methods in Molecular Biology, 1121, 309–313.

    CAS  PubMed  Google Scholar 

  • Alberton, P., Popov, C., Pragert, M., Kohler, J., Shukunami, C., Schieker, M., & Docheva, D. (2012). Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells and Development, 21, 846–858.

    CAS  PubMed  Google Scholar 

  • Alves, A. G., Stewart, A. A., Dudhia, J., Kasashima, Y., Goodship, A. E., & Smith, R. K. (2011). Cell-based therapies for tendon and ligament injuries. The Veterinary Clinics of North America Equine Practice, 27, 315–333.

    CAS  PubMed  Google Scholar 

  • Anaguchi, Y., Yasuda, K., Majima, T., Tohyama, H., Minami, A., & Hayashi, K. (2005). The effect of transforming growth factor-beta on mechanical properties of the fibrous tissue regenerated in the patellar tendon after resecting the central portion. Clinical Biomechanics, 20, 959–965.

    PubMed  Google Scholar 

  • Anderson, D. M., Arredondo, J., Hahn, K., Valente, G., Martin, J. F., Wilson-Rawls, J., & Rawls, A. (2006). Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Developmental Dynamics, 235, 792–801.

    CAS  PubMed  Google Scholar 

  • Archambault, J., Tsuzaki, M., Herzog, W., & Banes, A. J. (2002). Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. Journal of Orthopaedic Research, 20, 36–39.

    CAS  PubMed  Google Scholar 

  • Asanuma, H., Vanderbrink, B. A., Campbell, M. T., Hile, K. L., Zhang, H., Meldrum, D. R., & Meldrum, K. K. (2011). Arterially delivered mesenchymal stem cells prevent obstruction-induced renal fibrosis. The Journal of Surgical Research, 168, e51–e59.

    CAS  PubMed  Google Scholar 

  • Aslan, H., Kimelman-Bleich, N., Pelled, G., & Gazit, D. (2008). Molecular targets for tendon neoformation. The Journal of Clinical Investigation, 118, 439–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badylak, S. F. (2007). The extracellular matrix as a biologic scaffold material. Biomaterials, 28, 3587–3593.

    CAS  PubMed  Google Scholar 

  • Bai, Z. M., Deng, X. D., Li, J. D., Li, D. H., Cao, H., Liu, Z. X., & Zhang, J. (2013). Arterially transplanted mesenchymal stem cells in a mouse reversible unilateral ureteral obstruction model: In vivo bioluminescence imaging and effects on renal fibrosis. Chinese Medical Journal, 126, 1890–1894.

    CAS  PubMed  Google Scholar 

  • Barber, F. A., Burns, J. P., Deutsch, A., Labbe, M. R., & Litchfield, R. B. (2012). A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy, 28, 8–15.

    PubMed  Google Scholar 

  • Basile, P., Dadali, T., Jacobson, J., Hasslund, S., Ulrich-Vinther, M., Soballe, K., Nishio, Y., Drissi, M. H., Langstein, H. N., Mitten, D. J., et al. (2008). Freeze-dried tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery. Molecular Therapy, 16, 466–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batten, M. L., Hansen, J. C., & Dahners, L. E. (1996). Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. Journal of Orthopaedic Research, 14, 736–741.

    CAS  PubMed  Google Scholar 

  • Behfar, M., Sarrafzadeh-Rezaei, F., Hobbenaghi, R., Delirezh, N., & Dalir-Naghadeh, B. (2012). Enhanced mechanical properties of rabbit flexor tendons in response to intratendinous injection of adipose derived stromal vascular fraction. Current Stem Cell Research & Therapy, 7, 173–178.

    CAS  Google Scholar 

  • Bell, R., Li, J., Gorski, D.J., Bartels, A.K., Shewman, E.F., Wysocki, R.W., Cole, B.J., Bach, B.R., Jr., Mikecz, K., Sandy, J.D., et al. (2013). Controlled treadmill exercise eliminates chondroid deposits and restores tensile properties in a new murine tendinopathy model. Journal of Biomechanics 46, 498-505.

    Google Scholar 

  • Bell, R., Taub, P., Cagle, P., Flatow, E. L., & Andarawis-Puri, N. (2015). Development of a mouse model of supraspinatus tendon insertion site healing. Journal of Orthopaedic Research, 33, 25–32.

    PubMed  Google Scholar 

  • Bergeson, A. G., Tashjian, R. Z., Greis, P. E., Crim, J., Stoddard, G. J., & Burks, R. T. (2012). Effects of platelet-rich fibrin matrix on repair integrity of at-risk rotator cuff tears. The American Journal of Sports Medicine, 40, 286–293.

    PubMed  Google Scholar 

  • Berthet, E., Chen, C., Butcher, K., Schneider, R. A., Alliston, T., & Amirtharajah, M. (2013). Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. Journal of Orthopaedic Research, 31, 1475–1483.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bi, Y., Ehirchiou, D., Kilts, T. M., Inkson, C. A., Embree, M. C., Sonoyama, W., Li, L., Leet, A. I., Seo, B. M., Zhang, L., et al. (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine, 13, 1219–1227.

    CAS  PubMed  Google Scholar 

  • Bifari, F., Lisi, V., Mimiola, E., Pasini, A., & Krampera, M. (2008). Immune modulation by mesenchymal stem cells. Transfusion Medicine and Hemotherapy, 35, 194–204.

    PubMed  PubMed Central  Google Scholar 

  • Birk, D. E., & Trelstad, R. L. (1986). Extracellular compartments in tendon morphogenesis: Collagen fibril, bundle, and macroaggregate formation. The Journal of Cell Biology, 103, 231–240.

    CAS  PubMed  Google Scholar 

  • Bishay, V., & Gallo, R. A. (2013). The evaluation and treatment of rotator cuff pathology. Primary Care, 40, 889–910. viii.

    PubMed  Google Scholar 

  • Brandau, O., Meindl, A., Fassler, R., & Aszodi, A. (2001). A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin-I. Developmental Dynamics, 221, 72–80.

    CAS  PubMed  Google Scholar 

  • Brent, A. E., & Tabin, C. J. (2004). FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development, 131, 3885–3896.

    CAS  PubMed  Google Scholar 

  • Brent, A. E., Schweitzer, R., & Tabin, C. J. (2003). A somitic compartment of tendon progenitors. Cell, 113, 235–248.

    CAS  PubMed  Google Scholar 

  • Bucher, T. A., Ebert, J. R., Smith, A., Breidahl, W., Fallon, M., Wang, T., Zheng, M. H., & Janes, G. C. (2017). Autologous tenocyte injection for the treatment of chronic recalcitrant gluteal tendinopathy: A prospective pilot study. Orthopaedic Journal of Sports Medicine, 5, 2325967116688866.

    PubMed  PubMed Central  Google Scholar 

  • Burk, J., Gittel, C., Heller, S., Pfeiffer, B., Paebst, F., Ahrberg, A. B., & Brehm, W. (2014). Gene expression of tendon markers in mesenchymal stromal cells derived from different sources. BMC Research Notes, 7, 826.

    PubMed  PubMed Central  Google Scholar 

  • Butler, D. L., Grood, E. S., Noyes, F. R., & Zernicke, R. F. (1978). Biomechanics of ligaments and tendons. Exercise and Sport Sciences Reviews, 6, 125–181.

    CAS  PubMed  Google Scholar 

  • Cadby, J. A., Buehler, E., Godbout, C., van Weeren, P. R., & Snedeker, J. G. (2014). Differences between the cell populations from the peritenon and the tendon core with regard to their potential implication in tendon repair. PLoS One, 9, e92474.

    PubMed  PubMed Central  Google Scholar 

  • Caplan, A. I. (2009). Why are MSCs therapeutic? New data: New insight. The Journal of Pathology, 217, 318–324.

    CAS  PubMed  Google Scholar 

  • Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076–1084.

    CAS  PubMed  Google Scholar 

  • Carvalho, A. M, Badial, P. R., Álvarez, L. E., Yamada, A. L., Borges, A. S., Deffune, E., Hussni, C. A., & Garcia Alves, A. L. (2013). Equine tendonitis therapy using mesenchymal stem cells and platelet concentrates: A randomized controlled trial. Stem Cell Research and Therapy, 4(4), 85.

    Google Scholar 

  • Carvalho, A. M., Yamada, A. L., Golim, M. A., Alvarez, L. E., Hussni, C. A., & Alves, A. L. (2014). Evaluation of mesenchymal stem cell migration after equine tendonitis therapy. Equine Veterinary Journal, 46, 635–638.

    CAS  PubMed  Google Scholar 

  • Castricini, R., Longo, U. G., De Benedetto, M., Panfoli, N., Pirani, P., Zini, R., Maffulli, N., & Denaro, V. (2011). Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: A randomized controlled trial. The American Journal of Sports Medicine, 39, 258–265.

    PubMed  Google Scholar 

  • Chan, B. P., Chan, K. M., Maffulli, N., Webb, S., & Lee, K. K. (1997). Effect of basic fibroblast growth factor. An in vitro study of tendon healing. Clinical Orthopaedics and Related Research, 342, 239–247.

    Google Scholar 

  • Chan, B. P., Fu, S. C., Qin, L., Rolf, C., & Chan, K. M. (2006). Supplementation-time dependence of growth factors in promoting tendon healing. Clinical Orthopaedics and Related Research, 448, 240–247.

    CAS  PubMed  Google Scholar 

  • Chang, J., Most, D., Stelnicki, E., Siebert, J. W., Longaker, M. T., Hui, K., & Lineaweaver, W. C. (1997). Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: Evidence for dual mechanisms of repair. Plastic and Reconstructive Surgery, 100, 937–944.

    CAS  PubMed  Google Scholar 

  • Chang, J., Most, D., Thunder, R., Mehrara, B., Longaker, M. T., & Lineaweaver, W. C. (1998). Molecular studies in flexor tendon wound healing: The role of basic fibroblast growth factor gene expression. The Journal of Hand Surgery, 23, 1052–1058.

    CAS  PubMed  Google Scholar 

  • Chang, J., Thunder, R., Most, D., Longaker, M. T., & Lineaweaver, W. C. (2000). Studies in flexor tendon wound healing: Neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plastic and Reconstructive Surgery, 105, 148–155.

    CAS  PubMed  Google Scholar 

  • Chen, M., & Qi, L. S. (2017). Repurposing CRISPR system for transcriptional activation. Advances in Experimental Medicine and Biology, 983, 147–157.

    CAS  PubMed  Google Scholar 

  • Chen, L., Hamrah, P., Cursiefen, C., Zhang, Q., Pytowski, B., Streilein, J. W., & Dana, M. R. (2004). Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nature Medicine, 10, 813–815.

    CAS  PubMed  Google Scholar 

  • Chen, C. H., Cao, Y., Wu, Y. F., Bais, A. J., Gao, J. S., & Tang, J. B. (2008). Tendon healing in vivo: Gene expression and production of multiple growth factors in early tendon healing period. The Journal of Hand Surgery, 33, 1834–1842.

    PubMed  Google Scholar 

  • Chen, C. H., Chang, C. H., Wang, K. C., Su, C. I., Liu, H. T., Yu, C. M., Wong, C. B., Wang, I. C., Whu, S. W., & Liu, H. W. (2011). Enhancement of rotator cuff tendon-bone healing with injectable periosteum progenitor cells-BMP-2 hydrogel in vivo. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 1597–1607.

    PubMed  Google Scholar 

  • Chen, B., Ding, J., Zhang, W., Zhou, G., Cao, Y., Liu, W., & Wang, B. (2016). Tissue engineering of tendons: A comparison of muscle-derived cells, tenocytes, and dermal fibroblasts as cell sources. Plastic and Reconstructive Surgery, 137, 536e–544e.

    CAS  PubMed  Google Scholar 

  • Chhabra, A., Tsou, D., Clark, R. T., Gaschen, V., Hunziker, E. B., & Mikic, B. (2003). GDF-5 deficiency in mice delays Achilles tendon healing. Journal of Orthopaedic Research, 21, 826–835.

    CAS  PubMed  Google Scholar 

  • Choi, M., Ban, T., & Rhim, T. (2014). Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Molecules and Cells, 37, 133–139.

    PubMed  PubMed Central  Google Scholar 

  • Chuen, F. S., Chuk, C. Y., Ping, W. Y., Nar, W. W., Kim, H. L., & Ming, C. K. (2004). Immunohistochemical characterization of cells in adult human patellar tendons. The Journal of Histochemistry and Cytochemistry, 52, 1151–1157.

    CAS  PubMed  Google Scholar 

  • Clark, R. T., Johnson, T. L., Schalet, B. J., Davis, L., Gaschen, V., Hunziker, E. B., Oldberg, A., & Mikic, B. (2001). GDF-5 deficiency in mice leads to disruption of tail tendon form and function. Connective Tissue Research, 42, 175–186.

    CAS  PubMed  Google Scholar 

  • Claudio-Rizo, J. A., Rangel-Argote, M., Castellano, L. E., Delgado, J., Mata-Mata, J. L., & Mendoza-Novelo, B. (2017). Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Materials Science & Engineering C, Materials for Biological Applications, 79, 793–801.

    CAS  Google Scholar 

  • Connizzo, B. K., Yannascoli, S. M., & Soslowsky, L. J. (2013). Structure-function relationships of postnatal tendon development: A parallel to healing. Matrix Biology: Journal of the International Society for Matrix Biology, 32, 106–116.

    CAS  Google Scholar 

  • Connizzo, B. K., Yannascoli, S. M., Tucker, J. J., Caro, A. C., Riggin, C. N., Mauck, R. L., Soslowsky, L. J., Steinberg, D. R., & Bernstein, J. (2014). The detrimental effects of systemic Ibuprofen delivery on tendon healing are time-dependent. Clinical Orthopaedics and Related Research, 472, 2433–2439.

    PubMed  Google Scholar 

  • Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., Risso, M., Gualandi, F., Mancardi, G. L., Pistoia, V., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.

    CAS  Google Scholar 

  • Dahlgren, L. A., Mohammed, H. O., & Nixon, A. J. (2005). Temporal expression of growth factors and matrix molecules in healing tendon lesions. Journal of Orthopaedic Research, 23, 84–92.

    CAS  PubMed  Google Scholar 

  • Deng, D., Wang, W., Wang, B., Zhang, P., Zhou, G., Zhang, W. J., Cao, Y., & Liu, W. (2014). Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model. Biomaterials, 35, 8801–8809.

    CAS  PubMed  Google Scholar 

  • Derby, B. M., Reichensperger, J., Chambers, C., Bueno, R. A., Suchy, H., & Neumeister, M. W. (2012). Early growth response factor-1: Expression in a rabbit flexor tendon scar model. Plastic and Reconstructive Surgery, 129, 435e–442e.

    PubMed  Google Scholar 

  • Docheva, D., Hunziker, E. B., Fassler, R., & Brandau, O. (2005). Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Molecular and Cellular Biology, 25, 699–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Docheva, D., Muller, S. A., Majewski, M., & Evans, C. H. (2015). Biologics for tendon repair. Advanced Drug Delivery Reviews, 84, 222–239.

    CAS  PubMed  Google Scholar 

  • Duffy, F. J., Jr., Seiler, J. G., Gelberman, R. H., & Hergrueter, C. A. (1995). Growth factors and canine flexor tendon healing: Initial studies in uninjured and repair models. The Journal of Hand Surgery, 20, 645–649.

    PubMed  Google Scholar 

  • Evans, C. H. (1999). Cytokines and the role they play in the healing of ligaments and tendons. Sports Medicine, 28, 71–76.

    CAS  PubMed  Google Scholar 

  • Fang, F., Huang, R. L., Zheng, Y., Liu, M., & Huo, R. (2016). Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling. Journal of Dermatological Science, 83, 95–105.

    CAS  PubMed  Google Scholar 

  • Farnebo, S., Farnebo, L., Kim, M., Woon, C., Pham, H., & Chang, J. (2017). Optimized repopulation of tendon hydrogel: Synergistic effects of growth factor combinations and adipose-derived stem cells. The Hand, 12, 68–77.

    Google Scholar 

  • Favata, M., Beredjiklian, P. K., Zgonis, M. H., Beason, D. P., Crombleholme, T. M., Jawad, A. F., & Soslowsky, L. J. (2006). Regenerative properties of fetal sheep tendon are not adversely affected by transplantation into an adult environment. Journal of Orthopaedic Research, 24, 2124–2132.

    PubMed  Google Scholar 

  • Fenwick, S. A., Hazleman, B. L., & Riley, G. P. (2002). The vasculature and its role in the damaged and healing tendon. Arthritis Research, 4, 252–260.

    PubMed  PubMed Central  Google Scholar 

  • Ferry, S. T., Dahners, L. E., Afshari, H. M., & Weinhold, P. S. (2007). The effects of common anti-inflammatory drugs on the healing rat patellar tendon. The American Journal of Sports Medicine, 35, 1326–1333.

    PubMed  Google Scholar 

  • Fong, C. Y., Biswas, A., Subramanian, A., Srinivasan, A., Choolani, M., & Bongso, A. (2014). Human keloid cell characterization and inhibition of growth with human Wharton’s jelly stem cell extracts. Journal of Cellular Biochemistry, 115, 826–838.

    CAS  PubMed  Google Scholar 

  • Foolen, J., Wunderli, S. L., Loerakker, S., & Snedeker, J. G. (2017). Tissue alignment enhances remodeling potential of tendon-derived cells – Lessons from a novel microtissue model of tendon scarring. Matrix Biology: Journal of the International Society for Matrix Biology, 65, 14–29.

    Google Scholar 

  • Foster, T. E., Puskas, B. L., Mandelbaum, B. R., Gerhardt, M. B., & Rodeo, S. A. (2009). Platelet-rich plasma: From basic science to clinical applications. The American Journal of Sports Medicine, 37, 2259–2272.

    PubMed  Google Scholar 

  • Frank, C., McDonald, D., Wilson, J., Eyre, D., & Shrive, N. (1995). Rabbit medial collateral ligament scar weakness is associated with decreased collagen pyridinoline crosslink density. Journal of Orthopaedic Research, 13, 157–165.

    CAS  PubMed  Google Scholar 

  • Franquesa, M., Herrero, E., Torras, J., Ripoll, E., Flaquer, M., Goma, M., Lloberas, N., Anegon, I., Cruzado, J. M., Grinyo, J. M., et al. (2012). Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model. Stem Cells and Development, 21, 3125–3135.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friel, N. A., & Chu, C. R. (2013). The role of ACL injury in the development of posttraumatic knee osteoarthritis. Clinics in Sports Medicine, 32, 1–12.

    PubMed  PubMed Central  Google Scholar 

  • Galatz, L. M., Sandell, L. J., Rothermich, S. Y., Das, R., Mastny, A., Havlioglu, N., Silva, M. J., & Thomopoulos, S. (2006). Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. Journal of Orthopaedic Research, 24, 541–550.

    CAS  PubMed  Google Scholar 

  • Galatz, L. M., Gerstenfeld, L., Heber-Katz, E., & Rodeo, S. A. (2015). Tendon regeneration and scar formation: The concept of scarless healing. Journal of Orthopaedic Research, 33, 823–831.

    PubMed  PubMed Central  Google Scholar 

  • Gaspar, D., Spanoudes, K., Holladay, C., Pandit, A., & Zeugolis, D. (2015). Progress in cell-based therapies for tendon repair. Advanced Drug Delivery Reviews, 84, 240–256.

    CAS  PubMed  Google Scholar 

  • Geburek, F., & Stadler, P. (2011). Regenerative therapy for tendon and ligament disorders in horses. Terminology, production, biologic potential and in vitro effects. Tierärztliche Praxis. Ausgabe G, Grosstiere/Nutztiere, 39, 373–383.

    CAS  PubMed  Google Scholar 

  • Geburek, F., Lietzau, M., Beineke, A., Rohn, K., & Stadler, P. M. (2015). Effect of a single injection of autologous conditioned serum (ACS) on tendon healing in equine naturally occurring tendinopathies. Stem Cell Research & Therapy, 6, 126.

    Google Scholar 

  • Geburek, F., Roggel, F., van Schie, H. T. M., Beineke, A., Estrada, R., Weber, K., Hellige, M., Rohn, K., Jagodzinski, M., Welke, B., et al. (2017). Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: A controlled experimental trial. Stem Cell Research & Therapy, 8, 129.

    Google Scholar 

  • Godwin, J. W., & Rosenthal, N. (2014). Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success. Differentiation Research in Biological Diversity, 87, 66–75.

    CAS  PubMed  Google Scholar 

  • Godwin, J. W., Pinto, A. R., & Rosenthal, N. A. (2013). Macrophages are required for adult salamander limb regeneration. Proceedings of the National Academy of Sciences of the United States of America, 110, 9415–9420.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godwin, J., Kuraitis, D., & Rosenthal, N. (2014). Extracellular matrix considerations for scar-free repair and regeneration: Insights from regenerative diversity among vertebrates. The International Journal of Biochemistry & Cell Biology, 56, 47–55.

    CAS  Google Scholar 

  • Goncalves, A. I., Rodrigues, M. T., Lee, S. J., Atala, A., Yoo, J. J., Reis, R. L., & Gomes, M. E. (2013). Understanding the role of growth factors in modulating stem cell tenogenesis. PLoS One, 8, e83734.

    PubMed  PubMed Central  Google Scholar 

  • Goodship, A. E., Birch, H. L., & Wilson, A. M. (1994). The pathobiology and repair of tendon and ligament injury. The Veterinary Clinics of North America Equine Practice, 10, 323–349.

    CAS  PubMed  Google Scholar 

  • Grognuz, A., Scaletta, C., Farron, A., Pioletti, D. P., Raffoul, W., & Applegate, L. A. (2016). Stability enhancement using hyaluronic acid gels for delivery of human fetal progenitor tenocytes. Cell Medicine, 8, 87–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groth, K., Berezhanskyy, T., Aneja, M. K., Geiger, J., Schweizer, M., Maucksch, L., Pasewald, T., Brill, T., Tigani, B., Weber, E., et al. (2017). Tendon healing induced by chemically modified mRNAs. European Cells & Materials, 33, 294–307.

    CAS  Google Scholar 

  • Guerquin, M. J., Charvet, B., Nourissat, G., Havis, E., Ronsin, O., Bonnin, M. A., Ruggiu, M., Olivera-Martinez, I., Robert, N., Lu, Y., et al. (2013). Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. The Journal of Clinical Investigation, 123, 3564–3576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guest, D. J., Smith, M. R., & Allen, W. R. (2010). Equine embryonic stem-like cells and mesenchymal stromal cells have different survival rates and migration patterns following their injection into damaged superficial digital flexor tendon. Equine Veterinary Journal, 42, 636–642.

    CAS  PubMed  Google Scholar 

  • Gumina, S., Campagna, V., Ferrazza, G., Giannicola, G., Fratalocchi, F., Milani, A., & Postacchini, F. (2012). Use of platelet-leukocyte membrane in arthroscopic repair of large rotator cuff tears: A prospective randomized study. The Journal of Bone and Joint Surgery American Volume, 94, 1345–1352.

    PubMed  Google Scholar 

  • Gupta, A. K., Hug, K., Berkoff, D. J., Boggess, B. R., Gavigan, M., Malley, P. C., & Toth, A. P. (2012). Dermal tissue allograft for the repair of massive irreparable rotator cuff tears. The American Journal of Sports Medicine, 40, 141–147.

    PubMed  Google Scholar 

  • Haasters, F., Polzer, H., Prall, W. C., Saller, M. M., Kohler, J., Grote, S., Mutschler, W., Docheva, D., & Schieker, M. (2011). Bupivacaine, ropivacaine, and morphine: Comparison of toxicity on human hamstring-derived stem/progenitor cells. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 2138–2144.

    PubMed  Google Scholar 

  • Haggmark, T., Liedberg, H., Eriksson, E., & Wredmark, T. (1986). Calf muscle atrophy and muscle function after non-operative vs operative treatment of Achilles tendon ruptures. Orthopedics, 9, 160–164.

    CAS  PubMed  Google Scholar 

  • Hamada, Y., Katoh, S., Hibino, N., Kosaka, H., Hamada, D., & Yasui, N. (2006). Effects of monofilament nylon coated with basic fibroblast growth factor on endogenous intrasynovial flexor tendon healing. The Journal of Hand Surgery, 31, 530–540.

    PubMed  Google Scholar 

  • Harwood, F. L., Goomer, R. S., Gelberman, R. H., Silva, M. J., & Amiel, D. (1999). Regulation of alpha(v)beta3 and alpha5beta1 integrin receptors by basic fibroblast growth factor and platelet-derived growth factor-BB in intrasynovial flexor tendon cells. Wound Repair and Regeneration, 7, 381–388.

    CAS  PubMed  Google Scholar 

  • Hashimoto, Y., Yoshida, G., Toyoda, H., & Takaoka, K. (2007). Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. Journal of Orthopaedic Research, 25, 1415–1424.

    PubMed  Google Scholar 

  • Hasslund, S., Jacobson, J. A., Dadali, T., Basile, P., Ulrich-Vinther, M., Soballe, K., Schwarz, E. M., O’Keefe, R. J., Mitten, D. J., & Awad, H. A. (2008). Adhesions in a murine flexor tendon graft model: Autograft versus allograft reconstruction. Journal of Orthopaedic Research, 26, 824–833.

    PubMed  PubMed Central  Google Scholar 

  • Havis, E., Bonnin, M. A., Esteves de Lima, J., Charvet, B., Milet, C., & Duprez, D. (2016). TGFbeta and FGF promote tendon progenitor fate and act downstream of muscle contraction to regulate tendon differentiation during chick limb development. Development, 143, 3839–3851.

    CAS  PubMed  Google Scholar 

  • Hebert, T. L., Wu, X., Yu, G., Goh, B. C., Halvorsen, Y. D., Wang, Z., Moro, C., & Gimble, J. M. (2009). Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. Journal of Tissue Engineering and Regenerative Medicine, 3, 553–561.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heisterbach, P. E., Todorov, A., Fluckiger, R., Evans, C. H., & Majewski, M. (2012). Effect of BMP-12, TGF-beta1 and autologous conditioned serum on growth factor expression in Achilles tendon healing. Knee Surgery, Sports Traumatology, Arthroscopy, 20, 1907–1914.

    PubMed  Google Scholar 

  • Herrero, C., & Perez-Simon, J. A. (2010). Immunomodulatory effect of mesenchymal stem cells. Brazilian journal of medical and biological research. Revista Brasileira de Pesquisas Medicas e Biologicas, 43, 425–430.

    CAS  PubMed  Google Scholar 

  • Hope, M., & Saxby, T. S. (2007). Tendon healing. Foot and Ankle Clinics, 12, 553–567.

    PubMed  Google Scholar 

  • Horton, J. A., Hudak, K. E., Chung, E. J., White, A. O., Scroggins, B. T., Burkeen, J. F., & Citrin, D. E. (2013). Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells, 31, 2231–2241.

    CAS  PubMed  Google Scholar 

  • Howell, K., Chien, C., Bell, R., Laudier, D., Tufa, S. F., Keene, D. R., Andarawis-Puri, N., & Huang, A. H. (2017). Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Scientific Reports, 7, 45238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C., Wong, G. W., Ghildyal, N., Gurish, M. F., Sali, A., Matsumoto, R., Qiu, W. T., & Stevens, R. L. (1997). The tryptase, mouse mast cell protease 7, exhibits anticoagulant activity in vivo and in vitro due to its ability to degrade fibrinogen in the presence of the diverse array of protease inhibitors in plasma. The Journal of Biological Chemistry, 272, 31885–31893.

    CAS  PubMed  Google Scholar 

  • Huang, A. H., Riordan, T. J., Wang, L., Eyal, S., Zelzer, E., Brigande, J. V., & Schweitzer, R. (2013). Repositioning forelimb superficialis muscles: Tendon attachment and muscle activity enable active relocation of functional myofibers. Developmental Cell, 26, 544–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, A. H., Riordan, T. J., Pryce, B., Weibel, J. L., Watson, S. S., Long, F., Lefebvre, V., Harfe, B. D., Stadler, H. S., Akiyama, H., et al. (2015). Musculoskeletal integration at the wrist underlies the modular development of limb tendons. Development, 142, 2431–2441.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikane, S., Hosoda, H., Yamahara, K., Akitake, Y., Kyoungsook, J., Mishima, K., Iwasaki, K., Fujiwara, M., Miyazato, M., Kangawa, K., et al. (2013). Allogeneic transplantation of fetal membrane-derived mesenchymal stem cell sheets increases neovascularization and improves cardiac function after myocardial infarction in rats. Transplantation, 96, 697–706.

    CAS  PubMed  Google Scholar 

  • Ito, Y., Toriuchi, N., Yoshitaka, T., Ueno-Kudoh, H., Sato, T., Yokoyama, S., Nishida, K., Akimoto, T., Takahashi, M., Miyaki, S., et al. (2010). The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proceedings of the National Academy of Sciences of the United States of America, 107, 10538–10542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jelinsky, S. A., Archambault, J., Li, L., & Seeherman, H. (2010). Tendon-selective genes identified from rat and human musculoskeletal tissues. Journal of Orthopaedic Research, 28, 289–297.

    CAS  PubMed  Google Scholar 

  • Jiang, Y., Shi, Y., He, J., Zhang, Z., Zhou, G., Zhang, W., Cao, Y., & Liu, W. (2016). Enhanced tenogenic differentiation and tendon-like tissue formation by tenomodulin overexpression in murine mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 11(9), 2525–2536.

    PubMed  Google Scholar 

  • Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M., & Yoo, J. U. (1998). In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental Cell Research, 238, 265–272.

    CAS  PubMed  Google Scholar 

  • Juneja, S. C., Schwarz, E. M., O’Keefe, R. J., & Awad, H. A. (2013). Cellular and molecular factors in flexor tendon repair and adhesions: A histological and gene expression analysis. Connective Tissue Research, 54, 218–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kannus, P. (2000). Structure of the tendon connective tissue. Scandinavian Journal of Medicine & Science in Sports, 10, 312–320.

    CAS  Google Scholar 

  • Kaplan, F. S., Lounev, V. Y., Wang, H., Pignolo, R. J., & Shore, E. M. (2011). Fibrodysplasia ossificans progressiva: A blueprint for metamorphosis. Annals of the New York Academy of Sciences, 1237, 5–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katzel, E. B., Koltz, P. F., Tierney, R., Williams, J. P., Awad, H. A., O’Keefe, R. J., & Langstein, H. N. (2011). The impact of Smad3 loss of function on TGF-beta signaling and radiation-induced capsular contracture. Plastic and Reconstructive Surgery, 127, 2263–2269.

    CAS  PubMed  Google Scholar 

  • Kaux, J. F., Janssen, L., Drion, P., Nusgens, B., Libertiaux, V., Pascon, F., Heyeres, A., Hoffmann, A., Lambert, C., Le Goff, C., et al. (2014). Vascular Endothelial Growth Factor-111 (VEGF-111) and tendon healing: Preliminary results in a rat model of tendon injury. Muscles, Ligaments and Tendons Journal, 4, 24–28.

    PubMed  PubMed Central  Google Scholar 

  • Kaux, J. F., Samson, A., & Crielaard, J. M. (2015). Hyaluronic acid and tendon lesions. Muscles, Ligaments and Tendons Journal, 5, 264–269.

    PubMed  Google Scholar 

  • Keating, A. (2008). How do mesenchymal stromal cells suppress T cells? Cell Stem Cell, 2, 106–108.

    CAS  PubMed  Google Scholar 

  • Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.

    CAS  PubMed  Google Scholar 

  • Kielty, C. M., Sherratt, M. J., & Shuttleworth, C. A. (2002). Elastic fibres. Journal of Cell Science, 115, 2817–2828.

    CAS  PubMed  Google Scholar 

  • Kimura, N., Shukunami, C., Hakuno, D., Yoshioka, M., Miura, S., Docheva, D., Kimura, T., Okada, Y., Matsumura, G., Shin’oka, T., et al. (2008). Local tenomodulin absence, angiogenesis, and matrix metalloproteinase activation are associated with the rupture of the chordae tendineae cordis. Circulation, 118, 1737–1747.

    CAS  PubMed  Google Scholar 

  • Klass, B. R., Rolfe, K. J., & Grobbelaar, A. O. (2009). In vitro flexor tendon cell response to TGF-beta1: A gene expression study. The Journal of Hand Surgery, 34, 495–503.

    CAS  PubMed  Google Scholar 

  • Klein, M. B., Yalamanchi, N., Pham, H., Longaker, M. T., & Chang, J. (2002). Flexor tendon healing in vitro: Effects of TGF-beta on tendon cell collagen production. The Journal of Hand Surgery, 27, 615–620.

    PubMed  Google Scholar 

  • Kobayashi, M., Itoi, E., Minagawa, H., Miyakoshi, N., Takahashi, S., Tuoheti, Y., Okada, K., & Shimada, Y. (2006). Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. Journal of Shoulder and Elbow Surgery, 15, 371–377.

    PubMed  Google Scholar 

  • Koch, T. G., Berg, L. C., & Betts, D. H. (2009). Current and future regenerative medicine – principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. The Canadian Veterinary Journal = La Revue Veterinaire Canadienne 50, 155–165.

    Google Scholar 

  • Kohler, J., Popov, C., Klotz, B., Alberton, P., Prall, W. C., Haasters, F., Muller-Deubert, S., Ebert, R., Klein-Hitpass, L., Jakob, F., et al. (2013). Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration. Aging Cell, 12, 988–999.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kryger, G. S., Chong, A. K., Costa, M., Pham, H., Bates, S. J., & Chang, J. (2007). A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering. The Journal of Hand Surgery, 32, 597–605.

    PubMed  Google Scholar 

  • Leadbetter, W. B. (1992). Cell-matrix response in tendon injury. Clinics in Sports Medicine, 11, 533–578.

    CAS  PubMed  Google Scholar 

  • Lee, S. H., Jang, A. S., Kim, Y. E., Cha, J. Y., Kim, T. H., Jung, S., Park, S. K., Lee, Y. K., Won, J. H., Kim, Y. H., et al. (2010). Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respiratory Research, 11, 16.

    PubMed  PubMed Central  Google Scholar 

  • Lee, J. Y., Zhou, Z., Taub, P. J., Ramcharan, M., Li, Y., Akinbiyi, T., Maharam, E. R., Leong, D. J., Laudier, D. M., Ruike, T., et al. (2011). BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS One, 6, e17531.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, C. H., Lee, F. Y., Tarafder, S., Kao, K., Jun, Y., Yang, G., & Mao, J. J. (2015). Harnessing endogenous stem/progenitor cells for tendon regeneration. The Journal of Clinical Investigation, 125, 2690–2701.

    PubMed  PubMed Central  Google Scholar 

  • Li, Y., Ramcharan, M., Zhou, Z., Leong, D. J., Akinbiyi, T., Majeska, R. J., & Sun, H. B. (2015). The role of scleraxis in fate determination of mesenchymal stem cells for tenocyte differentiation. Scientific Reports, 5, 13149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, C. J., Yen, Y. H., Hung, L. Y., Wang, S. H., Pu, C. M., Chien, H. F., Tsai, J. S., Lee, C. W., Yen, F. L., & Chen, Y. L. (2013). Thalidomide inhibits fibronectin production in TGF-beta1-treated normal and keloid fibroblasts via inhibition of the p38/Smad3 pathway. Biochemical Pharmacology, 85, 1594–1602.

    CAS  PubMed  Google Scholar 

  • Lin, T. W., Cardenas, L., & Soslowsky, L. J. (2004). Biomechanics of tendon injury and repair. Journal of Biomechanics, 37, 865–877.

    PubMed  Google Scholar 

  • Linard, C., Busson, E., Holler, V., Strup-Perrot, C., Lacave-Lapalun, J. V., Lhomme, B., Prat, M., Devauchelle, P., Sabourin, J. C., Simon, J. M., et al. (2013). Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Translational Medicine, 2, 916–927.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H., Lee, E. H., & Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells, 25, 750–760.

    PubMed  Google Scholar 

  • Liu, W., Watson, S. S., Lan, Y., Keene, D. R., Ovitt, C. E., Liu, H., Schweitzer, R., & Jiang, R. (2010). The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Molecular and Cellular Biology, 30, 4797–4807.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Zhu, S., Zhang, C., Lu, P., Hu, J., Yin, Z., Ma, Y., Chen, X., & OuYang, H. (2014). Crucial transcription factors in tendon development and differentiation: Their potential for tendon regeneration. Cell and Tissue Research, 356, 287–298.

    PubMed  Google Scholar 

  • Liu, J., Tao, X., Chen, L., Han, W., Zhou, Y., & Tang, K. (2015). CTGF positively regulates BMP12 induced tenogenic differentiation of tendon stem cells and signaling. Cellular Physiology and Biochemistry, 35, 1831–1845.

    CAS  PubMed  Google Scholar 

  • Loiselle, A. E., Yukata, K., Geary, M. B., Kondabolu, S., Shi, S., Jonason, J. H., Awad, H. A., & O’Keefe, R. J. (2015). Development of antisense oligonucleotide (ASO) technology against Tgf-beta signaling to prevent scarring during flexor tendon repair. Journal of Orthopaedic Research, 33, 859–866.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loiselle, A. E., Kelly, M., & Hammert, W. C. (2016). Biological augmentation of flexor tendon repair: A challenging cellular landscape. The Journal of Hand Surgery, 41, 144–149. quiz 149.

    PubMed  Google Scholar 

  • Lou, J., Tu, Y., Burns, M., Silva, M. J., & Manske, P. (2001). BMP-12 gene transfer augmentation of lacerated tendon repair. Journal of Orthopaedic Research, 19, 1199–1202.

    CAS  PubMed  Google Scholar 

  • Lovati, A. B., Corradetti, B., Cremonesi, F., Bizzaro, D., & Consiglio, A. L. (2012). Tenogenic differentiation of equine mesenchymal progenitor cells under indirect co-culture. The International Journal of Artificial Organs, 35, 996–1005.

    CAS  PubMed  Google Scholar 

  • Maffulli, N., Khan, K. M., & Puddu, G. (1998). Overuse tendon conditions: Time to change a confusing terminology. Arthroscopy, 14, 840–843.

    CAS  PubMed  Google Scholar 

  • Majewski, M., Betz, O., Ochsner, P. E., Liu, F., Porter, R. M., & Evans, C. H. (2008). Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Therapy, 15, 1139–1146.

    CAS  PubMed  Google Scholar 

  • Majewski, M., Ochsner, P. E., Liu, F., Fluckiger, R., & Evans, C. H. (2009). Accelerated healing of the rat Achilles tendon in response to autologous conditioned serum. The American Journal of Sports Medicine, 37, 2117–2125.

    PubMed  Google Scholar 

  • Mao, W. F., Wu, Y. F., Yang, Q. Q., Zhou, Y. L., Wang, X. T., Liu, P. Y., & Tang, J. B. (2017). Modulation of digital flexor tendon healing by vascular endothelial growth factor gene transfection in a chicken model. Gene Therapy, 24, 234–240.

    CAS  PubMed  Google Scholar 

  • Martin, P., D’Souza, D., Martin, J., Grose, R., Cooper, L., Maki, R., & McKercher, S. R. (2003a). Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Current Biology: CB, 13, 1122–1128.

    CAS  PubMed  Google Scholar 

  • Martin, S. D., Patel, N. A., Adams, S. B., Jr., Roberts, M. J., Plummer, S., Stamper, D. L., Brezinski, M. E., & Fujimoto, J. G. (2003b). New technology for assessing microstructural components of tendons and ligaments. International Orthopaedics, 27, 184–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massimino, M. L., Rapizzi, E., Cantini, M., Libera, L. D., Mazzoleni, F., Arslan, P., & Carraro, U. (1997). ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochemical and Biophysical Research Communications, 235, 754–759.

    CAS  PubMed  Google Scholar 

  • Mienaltowski, M. J., Adams, S. M., & Birk, D. E. (2013). Regional differences in stem cell/progenitor cell populations from the mouse Achilles tendon. Tissue Engineering Part A, 19, 199–210.

    CAS  PubMed  Google Scholar 

  • Mikic, B., Entwistle, R., Rossmeier, K., & Bierwert, L. (2008). Effect of GDF-7 deficiency on tail tendon phenotype in mice. Journal of Orthopaedic Research, 26, 834–839.

    CAS  PubMed  Google Scholar 

  • Mikic, B., Rossmeier, K., & Bierwert, L. (2009). Identification of a tendon phenotype in GDF6 deficient mice. Anatomical Record, 292, 396–400.

    Google Scholar 

  • Mohammadi Gorji, S., Karimpor Malekshah, A. A., Hashemi-Soteh, M. B., Rafiei, A., Parivar, K., & Aghdami, N. (2012). Effect of mesenchymal stem cells on Doxorubicin-induced fibrosis. Cell Journal, 14, 142–151.

    PubMed  PubMed Central  Google Scholar 

  • Mok, P. L., Leong, C. F., & Cheong, S. K. (2013). Cellular mechanisms of emerging applications of mesenchymal stem cells. The Malaysian Journal of Pathology, 35, 17–32.

    CAS  PubMed  Google Scholar 

  • Molloy, T., Wang, Y., & Murrell, G. (2003). The roles of growth factors in tendon and ligament healing. Sports Medicine, 33, 381–394.

    PubMed  Google Scholar 

  • Moodley, Y., Atienza, D., Manuelpillai, U., Samuel, C. S., Tchongue, J., Ilancheran, S., Boyd, R., & Trounson, A. (2009). Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. The American Journal of Pathology, 175, 303–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, S. A., Todorov, A., Heisterbach, P. E., Martin, I., & Majewski, M. (2015). Tendon healing: An overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 2097–2105.

    PubMed  Google Scholar 

  • Murchison, N. D., Price, B. A., Conner, D. A., Keene, D. R., Olson, E. N., Tabin, C. J., & Schweitzer, R. (2007). Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development, 134, 2697–2708.

    CAS  PubMed  Google Scholar 

  • Natsu-ume, T., Nakamura, N., Shino, K., Toritsuka, Y., Horibe, S., & Ochi, T. (1997). Temporal and spatial expression of transforming growth factor-beta in the healing patellar ligament of the rat. Journal of Orthopaedic Research, 15, 837–843.

    CAS  PubMed  Google Scholar 

  • Ngo, M., Pham, H., Longaker, M. T., & Chang, J. (2001). Differential expression of transforming growth factor-beta receptors in a rabbit zone II flexor tendon wound healing model. Plastic and Reconstructive Surgery, 108, 1260–1267.

    CAS  PubMed  Google Scholar 

  • Nixon, A. J., Dahlgren, L. A., Haupt, J. L., Yeager, A. E., & Ward, D. L. (2008). Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. American Journal of Veterinary Research, 69, 928–937.

    CAS  PubMed  Google Scholar 

  • Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., et al. (2011). A more efficient method to generate integration-free human iPS cells. Nature Methods, 8, 409–412.

    CAS  PubMed  Google Scholar 

  • Onizuka, N., Ito, Y., Inagawa, M., Nakahara, H., Takada, S., Lotz, M., Toyama, Y., & Asahara, H. (2014). The Mohawk homeobox transcription factor regulates the differentiation of tendons and volar plates. Journal of Orthopaedic Science, 19, 172–180.

    CAS  PubMed  Google Scholar 

  • Oshima, Y., Shukunami, C., Honda, J., Nishida, K., Tashiro, F., Miyazaki, J., Hiraki, Y., & Tano, Y. (2003). Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes. Investigative Ophthalmology & Visual Science, 44, 1814–1823.

    Google Scholar 

  • Otabe, K., Nakahara, H., Hasegawa, A., Matsukawa, T., Ayabe, F., Onizuka, N., Inui, M., Takada, S., Ito, Y., Sekiya, I., et al. (2015). Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. Journal of Orthopaedic Research, 33, 1–8.

    CAS  PubMed  Google Scholar 

  • Park, A., Hogan, M. V., Kesturu, G. S., James, R., Balian, G., & Chhabra, A. B. (2010). Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Engineering Part A, 16, 2941–2951.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson-Kane, J. C., & Firth, E. C. (2009). The pathobiology of exercise-induced superficial digital flexor tendon injury in Thoroughbred racehorses. Veterinary Journal, 181, 79–89.

    Google Scholar 

  • Pennisi, E. (2002). Tending tender tendons. Science, 295, 1011.

    CAS  PubMed  Google Scholar 

  • Peroni, J. F., & Borjesson, D. L. (2011). Anti-inflammatory and immunomodulatory activities of stem cells. The Veterinary Clinics of North America Equine Practice, 27, 351–362.

    PubMed  Google Scholar 

  • Petersen, W., Unterhauser, F., Pufe, T., Zantop, T., Sudkamp, N. P., & Weiler, A. (2003). The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Archives of Orthopaedic and Trauma Surgery, 123, 168–174.

    PubMed  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    CAS  Google Scholar 

  • Potter, B. K., Burns, T. C., Lacap, A. P., Granville, R. R., & Gajewski, D. A. (2007). Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. The Journal of Bone and Joint Surgery American, 89, 476–486.

    Google Scholar 

  • Provenzano, P.P., Alejandro-Osorio, A.L., Grorud, K.W., Martinez, D.A., Vailas, A.C., Grindeland, R.E., and Vanderby, R., Jr. (2007). Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: Evaluation of loaded and unloaded ligaments. BMC Physiology 7, 2.

    PubMed  PubMed Central  Google Scholar 

  • Pryce, B. A., Brent, A. E., Murchison, N. D., Tabin, C. J., & Schweitzer, R. (2007). Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Developmental Dynamics, 236, 1677–1682.

    CAS  PubMed  Google Scholar 

  • Qi, Y., Jiang, D., Sindrilaru, A., Stegemann, A., Schatz, S., Treiber, N., Rojewski, M., Schrezenmeier, H., Vander Beken, S., Wlaschek, M., et al. (2014). TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. The Journal of Investigative Dermatology, 134, 526–537.

    CAS  PubMed  Google Scholar 

  • Qiao, H., Tong, Y., Han, H., Xu, W., Ren, Z., Ouyang, J., & Chen, Y. (2011). A novel therapeutic regimen for hepatic fibrosis using the combination of mesenchymal stem cells and baicalin. Die Pharmazie, 66, 37–43.

    CAS  PubMed  Google Scholar 

  • Raabe, O., Shell, K., Fietz, D., Freitag, C., Ohrndorf, A., Christ, H. J., Wenisch, S., & Arnhold, S. (2013). Tenogenic differentiation of equine adipose-tissue-derived stem cells under the influence of tensile strain, growth differentiation factors and various oxygen tensions. Cell and Tissue Research, 352, 509–521.

    CAS  PubMed  Google Scholar 

  • Rahr-Wagner, L., Thillemann, T. M., Pedersen, A. B., & Lind, M. (2014). Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: Results from the Danish registry of knee ligament reconstruction. The American Journal of Sports Medicine, 42, 278–284.

    PubMed  Google Scholar 

  • Randelli, P., Arrigoni, P., Ragone, V., Aliprandi, A., & Cabitza, P. (2011). Platelet rich plasma in arthroscopic rotator cuff repair: A prospective RCT study, 2-year follow-up. Journal of Shoulder and Elbow Surgery, 20, 518–528.

    PubMed  Google Scholar 

  • Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V., & March, K. L. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.

    Google Scholar 

  • Ricco, S., Renzi, S., Del Bue, M., Conti, V., Merli, E., Ramoni, R., Lucarelli, E., Gnudi, G., Ferrari, M., & Grolli, S. (2013). Allogeneic adipose tissue-derived mesenchymal stem cells in combination with platelet rich plasma are safe and effective in the therapy of superficial digital flexor tendonitis in the horse. International Journal of Immunopathology and Pharmacology, 26, 61–68.

    CAS  PubMed  Google Scholar 

  • Richardson, L. E., Dudhia, J., Clegg, P. D., & Smith, R. (2007). Stem cells in veterinary medicine--attempts at regenerating equine tendon after injury. Trends in Biotechnology, 25, 409–416.

    CAS  PubMed  Google Scholar 

  • Rickert, M., Jung, M., Adiyaman, M., Richter, W., & Simank, H. G. (2001). A growth and differentiation factor-5 (GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats. Growth Factors, 19, 115–126.

    CAS  PubMed  Google Scholar 

  • Rinkevich, Y., Lindau, P., Ueno, H., Longaker, M. T., & Weissman, I. L. (2011). Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature, 476, 409–413.

    CAS  PubMed  Google Scholar 

  • Rodeo, S. A., Suzuki, K., Deng, X. H., Wozney, J., & Warren, R. F. (1999). Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. The American Journal of Sports Medicine, 27, 476–488.

    CAS  PubMed  Google Scholar 

  • Roensch, K., Tazaki, A., Chara, O., & Tanaka, E. M. (2013). Progressive specification rather than intercalation of segments during limb regeneration. Science, 342, 1375–1379.

    CAS  PubMed  Google Scholar 

  • Rosso, C., Buckland, D. M., Polzer, C., Sadoghi, P., Schuh, R., Weisskopf, L., Vavken, P., & Valderrabano, V. (2015). Long-term biomechanical outcomes after Achilles tendon ruptures. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 890–898.

    PubMed  Google Scholar 

  • Rui, Y. F., Lui, P. P., Li, G., Fu, S. C., Lee, Y. W., & Chan, K. M. (2010). Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Engineering Part A, 16, 1549–1558.

    CAS  PubMed  Google Scholar 

  • Rux, D. R., Song, J. Y., Swinehart, I. T., Pineault, K. M., Schlientz, A. J., Trulik, K. G., Goldstein, S. A., Kozloff, K. M., Lucas, D., & Wellik, D. M. (2016). Regionally restricted hox function in adult bone marrow multipotent mesenchymal stem/stromal cells. Developmental Cell, 39, 653–666.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saether, E. E., Chamberlain, C. S., Aktas, E., Leiferman, E. M., Brickson, S. L., & Vanderby, R. (2016). Primed mesenchymal stem cells alter and improve rat medial collateral ligament healing. Stem Cell Reviews, 12, 42–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saiki, A., Olsson, M., Jernas, M., Gummesson, A., McTernan, P. G., Andersson, J., Jacobson, P., Sjoholm, K., Olsson, B., Yamamura, S., et al. (2009). Tenomodulin is highly expressed in adipose tissue, increased in obesity, and down-regulated during diet-induced weight loss. The Journal of Clinical Endocrinology and Metabolism, 94, 3987–3994.

    CAS  PubMed  Google Scholar 

  • Sato, N., Taniguchi, T., Goda, Y., Kosaka, H., Higashino, K., Sakai, T., Katoh, S., Yasui, N., Sairyo, K., & Taniguchi, H. (2016). Proteomic analysis of human tendon and ligament: Solubilization and analysis of insoluble extracellular matrix in connective tissues. Journal of Proteome Research, 15, 4709–4721.

    CAS  PubMed  Google Scholar 

  • Schneider, P. R., Buhrmann, C., Mobasheri, A., Matis, U., & Shakibaei, M. (2011). Three-dimensional high-density co-culture with primary tenocytes induces tenogenic differentiation in mesenchymal stem cells. Journal of Orthopaedic Research, 29, 1351–1360.

    CAS  PubMed  Google Scholar 

  • Schweitzer, R., Chyung, J. H., Murtaugh, L. C., Brent, A. E., Rosen, V., Olson, E. N., Lassar, A., & Tabin, C. J. (2001). Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 128, 3855–3866.

    CAS  PubMed  Google Scholar 

  • Sciore, P., Boykiw, R., & Hart, D. A. (1998). Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue. Journal of Orthopaedic Research, 16, 429–437.

    CAS  PubMed  Google Scholar 

  • Semedo, P., Correa-Costa, M., Antonio Cenedeze, M., Maria Avancini Costa Malheiros, D., Antonia dos Reis, M., Shimizu, M. H., Seguro, A. C., Pacheco-Silva, A., & Saraiva Camara, N. O. (2009). Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells, 27, 3063–3073.

    CAS  PubMed  Google Scholar 

  • Senol-Cosar, O., Flach, R. J., DiStefano, M., Chawla, A., Nicoloro, S., Straubhaar, J., Hardy, O. T., Noh, H. L., Kim, J. K., Wabitsch, M., et al. (2016). Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nature Communications, 7, 10686.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, P., & Maffulli, N. (2005a). Basic biology of tendon injury and healing. The surgeon, 3, 309–316.

    CAS  PubMed  Google Scholar 

  • Sharma, P., & Maffulli, N. (2005b). Tendon injury and tendinopathy: Healing and repair. The Journal of Bone and Joint Surgery American Volume, 87, 187–202.

    PubMed  Google Scholar 

  • Sharma, P., and Maffulli, N. (2006). Biology of tendon injury: Healing, modeling and remodeling. Journal of Musculoskeletal & Neuronal Interactions 6, 181-190.

    Google Scholar 

  • Shen, H., Gelberman, R. H., Silva, M. J., Sakiyama-Elbert, S. E., & Thomopoulos, S. (2013). BMP12 induces tenogenic differentiation of adipose-derived stromal cells. PLoS One, 8, e77613.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y., Xiong, Y., Jiang, Y., Zhang, Z., Zhou, G., Zhang, W., Cao, Y., He, J., & Liu, W. (2017). Conditional tenomodulin overexpression favors tenogenic lineage differentiation of transgenic mouse derived cells. Gene, 598, 9–19.

    CAS  PubMed  Google Scholar 

  • Shukunami, C., Takimoto, A., Oro, M., & Hiraki, Y. (2006). Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Developmental Biology, 298, 234–247.

    CAS  PubMed  Google Scholar 

  • Singer, N. G., & Caplan, A. I. (2011). Mesenchymal stem cells: Mechanisms of inflammation. Annual Review of Pathology, 6, 457–478.

    CAS  PubMed  Google Scholar 

  • Smith, R. K., Werling, N. J., Dakin, S. G., Alam, R., Goodship, A. E., & Dudhia, J. (2013). Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy. PLoS One, 8, e75697.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song, L., Yang, Y. J., Dong, Q. T., Qian, H. Y., Gao, R. L., Qiao, S. B., Shen, R., He, Z. X., Lu, M. J., Zhao, S. H., et al. (2013). Atorvastatin enhance efficacy of mesenchymal stem cells treatment for swine myocardial infarction via activation of nitric oxide synthase. PLoS One, 8, e65702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrell, J. M., Baber, M. A., & Caplan, A. I. (2009). Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Engineering Part A, 15, 1751–1761.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24, 74–85.

    PubMed  Google Scholar 

  • Steinert, A. F., Kunz, M., Prager, P., Barthel, T., Jakob, F., Noth, U., Murray, M. M., Evans, C. H., & Porter, R. M. (2011). Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Engineering Part A, 17, 1375–1388.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, M. C., & Stewart, A. A. (2011). Cell-based therapies in orthopedics. The Veterinary Clinics of North America Equine Practice, 27, xiii–xxiv.

    PubMed  Google Scholar 

  • Sun, Y., Berger, E. J., Zhao, C., An, K. N., Amadio, P. C., & Jay, G. (2006). Mapping lubricin in canine musculoskeletal tissues. Connective Tissue Research, 47, 215–221.

    PubMed  Google Scholar 

  • Sun, H. B., Li, Y., Fung, D. T., Majeska, R. J., Schaffler, M. B., & Flatow, E. L. (2008). Coordinate regulation of IL-1beta and MMP-13 in rat tendons following subrupture fatigue damage. Clinical Orthopaedics and Related Research, 466, 1555–1561.

    PubMed  PubMed Central  Google Scholar 

  • Suwalski, A., Dabboue, H., Delalande, A., Bensamoun, S. F., Canon, F., Midoux, P., Saillant, G., Klatzmann, D., Salvetat, J. P., & Pichon, C. (2010). Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials, 31, 5237–5245.

    CAS  PubMed  Google Scholar 

  • Suzuki, H., Ito, Y., Shinohara, M., Yamashita, S., Ichinose, S., Kishida, A., Oyaizu, T., Kayama, T., Nakamichi, R., Koda, N., et al. (2016). Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis. Proceedings of the National Academy of Sciences of the United States of America, 113, 7840–7845.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takaya, N., Katoh, Y., Iwabuchi, K., Hayashi, I., Konishi, H., Itoh, S., Okumura, K., Ra, C., Nagaoka, I., & Daida, H. (2005). Platelets activated by collagen through the immunoreceptor tyrosine-based activation motif in the Fc receptor gamma-chain play a pivotal role in the development of myocardial ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 39, 856–864.

    CAS  PubMed  Google Scholar 

  • Tan, S. L., Ahmad, R. E., Ahmad, T. S., Merican, A. M., Abbas, A. A., Ng, W. M., & Kamarul, T. (2012). Effect of growth differentiation factor 5 on the proliferation and tenogenic differentiation potential of human mesenchymal stem cells in vitro. Cells, Tissues, Organs, 196, 325–338.

    CAS  PubMed  Google Scholar 

  • Tarafder, S., Chen, E., Jun, Y., Kao, K., Sim, K. H., Back, J., Lee, F. Y., & Lee, C. H. (2017). Tendon stem/progenitor cells regulate inflammation in tendon healing via JNK and STAT3 signaling. FASEB Journal.

    Google Scholar 

  • Taylor, S. E., & Clegg, P. D. (2011). Collection and propagation methods for mesenchymal stromal cells. The Veterinary Clinics of North America Equine Practice, 27, 263–274.

    PubMed  Google Scholar 

  • Taylor, D. W., Petrera, M., Hendry, M., & Theodoropoulos, J. S. (2011a). A systematic review of the use of platelet-rich plasma in sports medicine as a new treatment for tendon and ligament injuries. Clinical Journal of Sport Medicine, 21, 344–352.

    PubMed  Google Scholar 

  • Taylor, S. H., Al-Youha, S., Van Agtmael, T., Lu, Y., Wong, J., McGrouther, D. A., & Kadler, K. E. (2011b). Tendon is covered by a basement membrane epithelium that is required for cell retention and the prevention of adhesion formation. PLoS One, 6, e16337.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tempfer, H., Wagner, A., Gehwolf, R., Lehner, C., Tauber, M., Resch, H., & Bauer, H. C. (2009). Perivascular cells of the supraspinatus tendon express both tendon- and stem cell-related markers. Histochemistry and Cell Biology, 131, 733–741.

    CAS  PubMed  Google Scholar 

  • Thampatty, B. P., Li, H., Im, H. J., & Wang, J. H. (2007). EP4 receptor regulates collagen type-I, MMP-1, and MMP-3 gene expression in human tendon fibroblasts in response to IL-1 beta treatment. Gene, 386, 154–161.

    CAS  PubMed  Google Scholar 

  • Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27.

    CAS  PubMed  Google Scholar 

  • Theodoropoulos, J. (2011). Platelet-rich fibrin matrix augmentation did not improve recovery and healing more than nonaugmented rotator cuff repair. The Journal of Bone and Joint Surgery American Volume, 93, 2125.

    PubMed  Google Scholar 

  • Thomopoulos, S., Hattersley, G., Rosen, V., Mertens, M., Galatz, L., Williams, G. R., & Soslowsky, L. J. (2002). The localized expression of extracellular matrix components in healing tendon insertion sites: An in situ hybridization study. Journal of Orthopaedic Research, 20, 454–463.

    CAS  PubMed  Google Scholar 

  • Thomopoulos, S., Harwood, F. L., Silva, M. J., Amiel, D., & Gelberman, R. H. (2005). Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. The Journal of Hand Surgery, 30, 441–447.

    PubMed  Google Scholar 

  • Thomopoulos, S., Das, R., Silva, M. J., Sakiyama-Elbert, S., Harwood, F. L., Zampiakis, E., Kim, H. M., Amiel, D., & Gelberman, R. H. (2009). Enhanced flexor tendon healing through controlled delivery of PDGF-BB. Journal of Orthopaedic Research, 27, 1209–1215.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tolppanen, A. M., Pulkkinen, L., Kuulasmaa, T., Kolehmainen, M., Schwab, U., Lindstrom, J., Tuomilehto, J., Uusitupa, M., & Kuusisto, J. (2008). The genetic variation in the tenomodulin gene is associated with serum total and LDL cholesterol in a body size-dependent manner. International Journal of Obesity, 32, 1868–1872.

    CAS  PubMed  Google Scholar 

  • Trippel, S. B., Wroblewski, J., Makower, A. M., Whelan, M. C., Schoenfeld, D., & Doctrow, S. R. (1993). Regulation of growth-plate chondrocytes by insulin-like growth-factor I and basic fibroblast growth factor. The Journal of Bone and Joint Surgery American, 75, 177–189.

    CAS  Google Scholar 

  • Tsubone, T., Moran, S. L., Amadio, P. C., Zhao, C., & An, K. N. (2004). Expression of growth factors in canine flexor tendon after laceration in vivo. Annals of Plastic Surgery, 53, 393–397.

    PubMed  Google Scholar 

  • Tsuzaki, M., Guyton, G., Garrett, W., Archambault, J. M., Herzog, W., Almekinders, L., Bynum, D., Yang, X., & Banes, A. J. (2003). IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. Journal of Orthopaedic Research, 21, 256–264.

    CAS  PubMed  Google Scholar 

  • Ueno, T., Nakashima, A., Doi, S., Kawamoto, T., Honda, K., Yokoyama, Y., Doi, T., Higashi, Y., Yorioka, N., Kato, Y., et al. (2013). Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-beta1 signaling. Kidney International, 84, 297–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uggen, C., Dines, J., McGarry, M., Grande, D., Lee, T., & Limpisvasti, O. (2010). The effect of recombinant human platelet-derived growth factor BB-coated sutures on rotator cuff healing in a sheep model. Arthroscopy, 26, 1456–1462.

    PubMed  Google Scholar 

  • Usunier, B., Benderitter, M., Tamarat, R., & Chapel, A. (2014). Management of fibrosis: The mesenchymal stromal cells breakthrough. Stem Cells International, 2014, 340257.

    PubMed  PubMed Central  Google Scholar 

  • Vidal, M. A., Kilroy, G. E., Lopez, M. J., Johnson, J. R., Moore, R. M., & Gimble, J. M. (2007). Characterization of equine adipose tissue-derived stromal cells: Adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary Surgery: VS, 36, 613–622.

    Google Scholar 

  • Violini, S., Ramelli, P., Pisani, L. F., Gorni, C., & Mariani, P. (2009). Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biology, 10, 29.

    PubMed  PubMed Central  Google Scholar 

  • Voleti, P. B., Buckley, M. R., & Soslowsky, L. J. (2012). Tendon healing: Repair and regeneration. Annual Review of Biomedical Engineering, 14, 47–71.

    CAS  PubMed  Google Scholar 

  • Wagner, D. O., Sieber, C., Bhushan, R., Borgermann, J. H., Graf, D., & Knaus, P. (2010). BMPs: From bone to body morphogenetic proteins. Science Signaling, 3, mr1.

    PubMed  Google Scholar 

  • Wang, A., Breidahl, W., Mackie, K. E., Lin, Z., Qin, A., Chen, J., & Zheng, M. H. (2013). Autologous tenocyte injection for the treatment of severe, chronic resistant lateral epicondylitis: A pilot study. The American Journal of Sports Medicine, 41, 2925–2932.

    PubMed  Google Scholar 

  • Wang, A., Mackie, K., Breidahl, W., Wang, T., & Zheng, M. H. (2015). Evidence for the durability of autologous tenocyte injection for treatment of chronic resistant lateral epicondylitis: Mean 4.5-year clinical follow-up. The American Journal of Sports Medicine, 43, 1775–1783.

    PubMed  Google Scholar 

  • Wang, W., Li, J., Wang, K., Zhang, Z., Zhang, W., Zhou, G., Cao, Y., Ye, M., Zou, H., & Liu, W. (2016). Induction of predominant tenogenic phenotype in human dermal fibroblasts via synergistic effect of TGF-beta and elongated cell shape. American Journal of Physiology. Cell Physiology, 310, C357–C372.

    PubMed  Google Scholar 

  • Watts, A.E., Yeager, A.E., Kopyov, O.V., and Nixon, A.J. (2011). Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis modelStem Cell Research & Therapy 2, 4.

    Google Scholar 

  • Weber, S. C., Kauffman, J. I., Parise, C., Weber, S. J., & Katz, S. D. (2013). Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: A prospective, randomized, double-blinded study. The American Journal of Sports Medicine, 41, 263–270.

    PubMed  Google Scholar 

  • Wilkins, R., & Bisson, L. J. (2012). Operative versus nonoperative management of acute Achilles tendon ruptures: A quantitative systematic review of randomized controlled trials. The American Journal of Sports Medicine, 40, 2154–2160.

    PubMed  Google Scholar 

  • Wolfman, N. M., Hattersley, G., Cox, K., Celeste, A. J., Nelson, R., Yamaji, N., Dube, J. L., DiBlasio-Smith, E., Nove, J., Song, J. J., et al. (1997). Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. The Journal of Clinical Investigation, 100, 321–330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woo, Y. K., Kwon, S. Y., Lee, H. S., & Park, Y. S. (2007). Proliferation of anterior cruciate ligament cells in vitro by photo-immobilized epidermal growth factor. Journal of Orthopaedic Research, 25, 73–80.

    CAS  PubMed  Google Scholar 

  • Wu, P. T., Kuo, L. C., Su, F. C., Chen, S. Y., Hsu, T. I., Li, C. Y., Tsai, K. J., & Jou, I. M. (2017). High-molecular-weight hyaluronic acid attenuated matrix metalloproteinase-1 and -3 expression via CD44 in tendinopathy. Scientific Reports, 7, 40840.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wurgler-Hauri, C. C., Dourte, L. M., Baradet, T. C., Williams, G. R., & Soslowsky, L. J. (2007). Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. Journal of Shoulder and Elbow Surgery, 16, S198–S203.

    PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Guo, S., Wei, C., Li, H., Chen, L., Yin, C., & Zhang, C. (2016). The comparison of adipose stem cell and placental stem cell in secretion characteristics and in facial antiaging. Stem Cells International, 2016, 7315830.

    PubMed  PubMed Central  Google Scholar 

  • Yang, G., Rothrauff, B. B., & Tuan, R. S. (2013). Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm. Birth Defects Research Part C, Embryo Today: Reviews, 99, 203–222.

    CAS  Google Scholar 

  • Yin, Z., Chen, X., Zhu, T., Hu, J. J., Song, H. X., Shen, W. L., Jiang, L. Y., Heng, B. C., Ji, J. F., & Ouyang, H. W. (2013). The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomaterialia, 9, 9317–9329.

    CAS  PubMed  Google Scholar 

  • Yin, Z., Guo, J., Wu, T. Y., Chen, X., Xu, L. L., Lin, S. E., Sun, Y. X., Chan, K. M., Ouyang, H., & Li, G. (2016). Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem Cells Translational Medicine, 5, 1106–1116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa, Y., & Abrahamsson, S. O. (2001). Dose-related cellular effects of platelet-derived growth factor-BB differ in various types of rabbit tendons in vitro. Acta Orthopaedica Scandinavica, 72, 287–292.

    CAS  PubMed  Google Scholar 

  • Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell and Tissue Research, 327, 449–462.

    CAS  PubMed  Google Scholar 

  • Yu, Y., Bliss, J. P., Bruce, W. J., & Walsh, W. R. (2007). Bone morphogenetic proteins and Smad expression in ovine tendon-bone healing. Arthroscopy, 23, 205–210.

    PubMed  Google Scholar 

  • Zhang, J., & Wang, J. H. (2010). Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskeletal Disorders, 11, 10.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Lei, M. P., Oswald, T. M., Pang, Y., Blain, B., Cai, Z. W., & Lineaweaver, W. C. (2003). The effect of vascular endothelial growth factor on the healing of ischaemic skin wounds. British Journal of Plastic Surgery, 56, 334–341.

    CAS  PubMed  Google Scholar 

  • Zhang, A. Y., Pham, H., Ho, F., Teng, K., Longaker, M. T., & Chang, J. (2004). Inhibition of TGF-beta-induced collagen production in rabbit flexor tendons. The Journal of Hand Surgery, 29, 230–235.

    PubMed  Google Scholar 

  • Zhang, D., Jiang, M., & Miao, D. (2011). Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One, 6, e16789.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, K., Asai, S., Yu, B., & Enomoto-Iwamoto, M. (2015). IL-1beta irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro. Biochemical and Biophysical Research Communications, 463, 667–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, C., Ozasa, Y., Reisdorf, R. L., Thoreson, A. R., Jay, G. D., An, K. N., & Amadio, P. C. (2014). CORR(R) ORS Richard A. Brand award for outstanding orthopaedic research: Engineering flexor tendon repair with lubricant, cells, and cytokines in a canine model. Clinical Orthopaedics and Related Research, 472, 2569–2578.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, C. H., Li, M. L., Qin, A. L., Lv, S. X., Wen, T., Zhu, X. Y., Li, L. Y., Dong, Y., Hu, C. Y., Hu, D. M., et al. (2013a). Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly. Pancreas, 42, 1291–1302.

    CAS  PubMed  Google Scholar 

  • Zhou, Y., Zhang, L., Zhao, W., Wu, Y., Zhu, C., & Yang, Y. (2013b). Nanoparticle-mediated delivery of TGF-beta1 miRNA plasmid for preventing flexor tendon adhesion formation. Biomaterials, 34, 8269–8278.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Skutella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conrad, S., Weber, K., Walliser, U., Geburek, F., Skutella, T. (2018). Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. In: Pham, P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology(), vol 1084. Springer, Cham. https://doi.org/10.1007/5584_2018_194

Download citation

Publish with us

Policies and ethics