Abstract
In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- AD-MSC:
-
Adipose-derived mesenchymal stem cell
- ADNC:
-
Adipose-derived nucleated cell
- ASC:
-
Adipose stromal cell
- ASO:
-
Antisense oligonucleotide
- AT-MSC:
-
Adipose tissue-derived mesenchymal stem cell
- BGN:
-
Biglycan
- BM-MSC:
-
Bone marrow-derived mesenchymal stem cell
- BMP:
-
Bone morphogenetic protein
- cPLA2:
-
Cytosolic phospholipase A2
- COL4A1:
-
Collagen type IV alpha 1
- COMP:
-
Cartilage oligomeric matrix protein
- COX:
-
Cyclooxygenase
- CRISPR:
-
utilized clustered regularly interspaced short palindromic repeats
- CTGF:
-
Connective tissue growth factor
- DCN:
-
Decorin
- ECM:
-
Extracellular matrix
- EGR:
-
Early growth response protein
- EGR-1:
-
Early growth response protein 1
- EGF:
-
Epidermal growth factor
- ESC:
-
Embryonic stem cell
- FCER1g:
-
Fc fragment of IgE receptor Ig
- FGF:
-
Fibroblast growth factor
- FMOD:
-
Fibromodulin
- FN:
-
Fibronectin
- GDF:
-
Growth and differentiation factor
- GF:
-
Growth factor
- GFP:
-
Green fluorescent protein
- GH:
-
Growth hormone
- hASC:
-
Human adipose-derived stem cell
- HP:
-
Hydroxylysylpyridinoline
- ICAM-1:
-
Intercellular adhesion molecule-1
- IFN-γ:
-
Interferon-γ
- IGF:
-
Insulin-like growth factor
- IL:
-
Interleukin
- iPSC:
-
Induced pluripotent stem cell
- IRAP:
-
Interleukin-1-receptor-antagonist protein processing system
- LOXL4:
-
Lysyl oxidase like 4
- MALDI:
-
Matrix-assisted laser desorption/ionization
- MAPK:
-
Mitogen-activated protein kinase
- MCP:
-
Mast cell protease
- MKX:
-
Mohawk
- MMP:
-
Matrix metalloproteinase
- MPO:
-
Myeloperoxidase
- MRI:
-
Magnetic resonance imaging
- MRL:
-
Murphy Roths Large (mouse)
- mRNA:
-
Messenger RNA
- MSC:
-
Mesenchymal stem cell
- PAI:
-
Plasminogen activator inhibitor
- PDGF:
-
Platelet-derived growth factor
- PGE2:
-
Prostaglandin E2
- PRP:
-
Platelet-rich plasma
- RUNX-2:
-
Runt-related transcription factor 2
- SCX:
-
Scleraxis
- SDFT:
-
Superficial digital flexor tendon
- SMA:
-
Smooth muscle actin
- SOX:
-
SRY-box gene
- TDC:
-
Tendon-derived cell
- TDGFß1:
-
Transforming growth factor ß1
- TGF:
-
Transforming growth factor
- THBS-2:
-
Thrombospondin-2
- TN-C:
-
Tenascin-C
- TNF𝛼:
-
Tumor necrosis factor-𝛼
- TNMD:
-
Tenomodulin
- TOF:
-
Time of flight
- TPC:
-
Tendon precursor cell
- TSC:
-
Tendon stem cell
- TSPC:
-
Tendon stem/progenitor cell
- VCAM-1:
-
Vascular cell adhesion molecule-1
- VEGF:
-
Vascular endothelial growth factor
References
Abrahamsson, S. O. (1991). Matrix metabolism and healing in the flexor tendon. Experimental Studies on Rabbit Tendon. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery Supplementum, 23, 1–51.
Abrahamsson, S. O., Lundborg, G., & Lohmander, L. S. (1991). Long-term explant culture of rabbit flexor tendon: Effects of recombinant human insulin-like growth factor-I and serum on matrix metabolism. Journal of Orthopaedic Research, 9, 503–515.
Adam, L., Le Grand, R., & Martinon, F. (2014). Electroporation-mediated intradermal delivery of DNA vaccines in nonhuman primates. Methods in Molecular Biology, 1121, 309–313.
Alberton, P., Popov, C., Pragert, M., Kohler, J., Shukunami, C., Schieker, M., & Docheva, D. (2012). Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells and Development, 21, 846–858.
Alves, A. G., Stewart, A. A., Dudhia, J., Kasashima, Y., Goodship, A. E., & Smith, R. K. (2011). Cell-based therapies for tendon and ligament injuries. The Veterinary Clinics of North America Equine Practice, 27, 315–333.
Anaguchi, Y., Yasuda, K., Majima, T., Tohyama, H., Minami, A., & Hayashi, K. (2005). The effect of transforming growth factor-beta on mechanical properties of the fibrous tissue regenerated in the patellar tendon after resecting the central portion. Clinical Biomechanics, 20, 959–965.
Anderson, D. M., Arredondo, J., Hahn, K., Valente, G., Martin, J. F., Wilson-Rawls, J., & Rawls, A. (2006). Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Developmental Dynamics, 235, 792–801.
Archambault, J., Tsuzaki, M., Herzog, W., & Banes, A. J. (2002). Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. Journal of Orthopaedic Research, 20, 36–39.
Asanuma, H., Vanderbrink, B. A., Campbell, M. T., Hile, K. L., Zhang, H., Meldrum, D. R., & Meldrum, K. K. (2011). Arterially delivered mesenchymal stem cells prevent obstruction-induced renal fibrosis. The Journal of Surgical Research, 168, e51–e59.
Aslan, H., Kimelman-Bleich, N., Pelled, G., & Gazit, D. (2008). Molecular targets for tendon neoformation. The Journal of Clinical Investigation, 118, 439–444.
Badylak, S. F. (2007). The extracellular matrix as a biologic scaffold material. Biomaterials, 28, 3587–3593.
Bai, Z. M., Deng, X. D., Li, J. D., Li, D. H., Cao, H., Liu, Z. X., & Zhang, J. (2013). Arterially transplanted mesenchymal stem cells in a mouse reversible unilateral ureteral obstruction model: In vivo bioluminescence imaging and effects on renal fibrosis. Chinese Medical Journal, 126, 1890–1894.
Barber, F. A., Burns, J. P., Deutsch, A., Labbe, M. R., & Litchfield, R. B. (2012). A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy, 28, 8–15.
Basile, P., Dadali, T., Jacobson, J., Hasslund, S., Ulrich-Vinther, M., Soballe, K., Nishio, Y., Drissi, M. H., Langstein, H. N., Mitten, D. J., et al. (2008). Freeze-dried tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery. Molecular Therapy, 16, 466–473.
Batten, M. L., Hansen, J. C., & Dahners, L. E. (1996). Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. Journal of Orthopaedic Research, 14, 736–741.
Behfar, M., Sarrafzadeh-Rezaei, F., Hobbenaghi, R., Delirezh, N., & Dalir-Naghadeh, B. (2012). Enhanced mechanical properties of rabbit flexor tendons in response to intratendinous injection of adipose derived stromal vascular fraction. Current Stem Cell Research & Therapy, 7, 173–178.
Bell, R., Li, J., Gorski, D.J., Bartels, A.K., Shewman, E.F., Wysocki, R.W., Cole, B.J., Bach, B.R., Jr., Mikecz, K., Sandy, J.D., et al. (2013). Controlled treadmill exercise eliminates chondroid deposits and restores tensile properties in a new murine tendinopathy model. Journal of Biomechanics 46, 498-505.
Bell, R., Taub, P., Cagle, P., Flatow, E. L., & Andarawis-Puri, N. (2015). Development of a mouse model of supraspinatus tendon insertion site healing. Journal of Orthopaedic Research, 33, 25–32.
Bergeson, A. G., Tashjian, R. Z., Greis, P. E., Crim, J., Stoddard, G. J., & Burks, R. T. (2012). Effects of platelet-rich fibrin matrix on repair integrity of at-risk rotator cuff tears. The American Journal of Sports Medicine, 40, 286–293.
Berthet, E., Chen, C., Butcher, K., Schneider, R. A., Alliston, T., & Amirtharajah, M. (2013). Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. Journal of Orthopaedic Research, 31, 1475–1483.
Bi, Y., Ehirchiou, D., Kilts, T. M., Inkson, C. A., Embree, M. C., Sonoyama, W., Li, L., Leet, A. I., Seo, B. M., Zhang, L., et al. (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine, 13, 1219–1227.
Bifari, F., Lisi, V., Mimiola, E., Pasini, A., & Krampera, M. (2008). Immune modulation by mesenchymal stem cells. Transfusion Medicine and Hemotherapy, 35, 194–204.
Birk, D. E., & Trelstad, R. L. (1986). Extracellular compartments in tendon morphogenesis: Collagen fibril, bundle, and macroaggregate formation. The Journal of Cell Biology, 103, 231–240.
Bishay, V., & Gallo, R. A. (2013). The evaluation and treatment of rotator cuff pathology. Primary Care, 40, 889–910. viii.
Brandau, O., Meindl, A., Fassler, R., & Aszodi, A. (2001). A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin-I. Developmental Dynamics, 221, 72–80.
Brent, A. E., & Tabin, C. J. (2004). FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development, 131, 3885–3896.
Brent, A. E., Schweitzer, R., & Tabin, C. J. (2003). A somitic compartment of tendon progenitors. Cell, 113, 235–248.
Bucher, T. A., Ebert, J. R., Smith, A., Breidahl, W., Fallon, M., Wang, T., Zheng, M. H., & Janes, G. C. (2017). Autologous tenocyte injection for the treatment of chronic recalcitrant gluteal tendinopathy: A prospective pilot study. Orthopaedic Journal of Sports Medicine, 5, 2325967116688866.
Burk, J., Gittel, C., Heller, S., Pfeiffer, B., Paebst, F., Ahrberg, A. B., & Brehm, W. (2014). Gene expression of tendon markers in mesenchymal stromal cells derived from different sources. BMC Research Notes, 7, 826.
Butler, D. L., Grood, E. S., Noyes, F. R., & Zernicke, R. F. (1978). Biomechanics of ligaments and tendons. Exercise and Sport Sciences Reviews, 6, 125–181.
Cadby, J. A., Buehler, E., Godbout, C., van Weeren, P. R., & Snedeker, J. G. (2014). Differences between the cell populations from the peritenon and the tendon core with regard to their potential implication in tendon repair. PLoS One, 9, e92474.
Caplan, A. I. (2009). Why are MSCs therapeutic? New data: New insight. The Journal of Pathology, 217, 318–324.
Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076–1084.
Carvalho, A. M, Badial, P. R., Álvarez, L. E., Yamada, A. L., Borges, A. S., Deffune, E., Hussni, C. A., & Garcia Alves, A. L. (2013). Equine tendonitis therapy using mesenchymal stem cells and platelet concentrates: A randomized controlled trial. Stem Cell Research and Therapy, 4(4), 85.
Carvalho, A. M., Yamada, A. L., Golim, M. A., Alvarez, L. E., Hussni, C. A., & Alves, A. L. (2014). Evaluation of mesenchymal stem cell migration after equine tendonitis therapy. Equine Veterinary Journal, 46, 635–638.
Castricini, R., Longo, U. G., De Benedetto, M., Panfoli, N., Pirani, P., Zini, R., Maffulli, N., & Denaro, V. (2011). Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: A randomized controlled trial. The American Journal of Sports Medicine, 39, 258–265.
Chan, B. P., Chan, K. M., Maffulli, N., Webb, S., & Lee, K. K. (1997). Effect of basic fibroblast growth factor. An in vitro study of tendon healing. Clinical Orthopaedics and Related Research, 342, 239–247.
Chan, B. P., Fu, S. C., Qin, L., Rolf, C., & Chan, K. M. (2006). Supplementation-time dependence of growth factors in promoting tendon healing. Clinical Orthopaedics and Related Research, 448, 240–247.
Chang, J., Most, D., Stelnicki, E., Siebert, J. W., Longaker, M. T., Hui, K., & Lineaweaver, W. C. (1997). Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: Evidence for dual mechanisms of repair. Plastic and Reconstructive Surgery, 100, 937–944.
Chang, J., Most, D., Thunder, R., Mehrara, B., Longaker, M. T., & Lineaweaver, W. C. (1998). Molecular studies in flexor tendon wound healing: The role of basic fibroblast growth factor gene expression. The Journal of Hand Surgery, 23, 1052–1058.
Chang, J., Thunder, R., Most, D., Longaker, M. T., & Lineaweaver, W. C. (2000). Studies in flexor tendon wound healing: Neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plastic and Reconstructive Surgery, 105, 148–155.
Chen, M., & Qi, L. S. (2017). Repurposing CRISPR system for transcriptional activation. Advances in Experimental Medicine and Biology, 983, 147–157.
Chen, L., Hamrah, P., Cursiefen, C., Zhang, Q., Pytowski, B., Streilein, J. W., & Dana, M. R. (2004). Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nature Medicine, 10, 813–815.
Chen, C. H., Cao, Y., Wu, Y. F., Bais, A. J., Gao, J. S., & Tang, J. B. (2008). Tendon healing in vivo: Gene expression and production of multiple growth factors in early tendon healing period. The Journal of Hand Surgery, 33, 1834–1842.
Chen, C. H., Chang, C. H., Wang, K. C., Su, C. I., Liu, H. T., Yu, C. M., Wong, C. B., Wang, I. C., Whu, S. W., & Liu, H. W. (2011). Enhancement of rotator cuff tendon-bone healing with injectable periosteum progenitor cells-BMP-2 hydrogel in vivo. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 1597–1607.
Chen, B., Ding, J., Zhang, W., Zhou, G., Cao, Y., Liu, W., & Wang, B. (2016). Tissue engineering of tendons: A comparison of muscle-derived cells, tenocytes, and dermal fibroblasts as cell sources. Plastic and Reconstructive Surgery, 137, 536e–544e.
Chhabra, A., Tsou, D., Clark, R. T., Gaschen, V., Hunziker, E. B., & Mikic, B. (2003). GDF-5 deficiency in mice delays Achilles tendon healing. Journal of Orthopaedic Research, 21, 826–835.
Choi, M., Ban, T., & Rhim, T. (2014). Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Molecules and Cells, 37, 133–139.
Chuen, F. S., Chuk, C. Y., Ping, W. Y., Nar, W. W., Kim, H. L., & Ming, C. K. (2004). Immunohistochemical characterization of cells in adult human patellar tendons. The Journal of Histochemistry and Cytochemistry, 52, 1151–1157.
Clark, R. T., Johnson, T. L., Schalet, B. J., Davis, L., Gaschen, V., Hunziker, E. B., Oldberg, A., & Mikic, B. (2001). GDF-5 deficiency in mice leads to disruption of tail tendon form and function. Connective Tissue Research, 42, 175–186.
Claudio-Rizo, J. A., Rangel-Argote, M., Castellano, L. E., Delgado, J., Mata-Mata, J. L., & Mendoza-Novelo, B. (2017). Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Materials Science & Engineering C, Materials for Biological Applications, 79, 793–801.
Connizzo, B. K., Yannascoli, S. M., & Soslowsky, L. J. (2013). Structure-function relationships of postnatal tendon development: A parallel to healing. Matrix Biology: Journal of the International Society for Matrix Biology, 32, 106–116.
Connizzo, B. K., Yannascoli, S. M., Tucker, J. J., Caro, A. C., Riggin, C. N., Mauck, R. L., Soslowsky, L. J., Steinberg, D. R., & Bernstein, J. (2014). The detrimental effects of systemic Ibuprofen delivery on tendon healing are time-dependent. Clinical Orthopaedics and Related Research, 472, 2433–2439.
Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., Risso, M., Gualandi, F., Mancardi, G. L., Pistoia, V., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.
Dahlgren, L. A., Mohammed, H. O., & Nixon, A. J. (2005). Temporal expression of growth factors and matrix molecules in healing tendon lesions. Journal of Orthopaedic Research, 23, 84–92.
Deng, D., Wang, W., Wang, B., Zhang, P., Zhou, G., Zhang, W. J., Cao, Y., & Liu, W. (2014). Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model. Biomaterials, 35, 8801–8809.
Derby, B. M., Reichensperger, J., Chambers, C., Bueno, R. A., Suchy, H., & Neumeister, M. W. (2012). Early growth response factor-1: Expression in a rabbit flexor tendon scar model. Plastic and Reconstructive Surgery, 129, 435e–442e.
Docheva, D., Hunziker, E. B., Fassler, R., & Brandau, O. (2005). Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Molecular and Cellular Biology, 25, 699–705.
Docheva, D., Muller, S. A., Majewski, M., & Evans, C. H. (2015). Biologics for tendon repair. Advanced Drug Delivery Reviews, 84, 222–239.
Duffy, F. J., Jr., Seiler, J. G., Gelberman, R. H., & Hergrueter, C. A. (1995). Growth factors and canine flexor tendon healing: Initial studies in uninjured and repair models. The Journal of Hand Surgery, 20, 645–649.
Evans, C. H. (1999). Cytokines and the role they play in the healing of ligaments and tendons. Sports Medicine, 28, 71–76.
Fang, F., Huang, R. L., Zheng, Y., Liu, M., & Huo, R. (2016). Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling. Journal of Dermatological Science, 83, 95–105.
Farnebo, S., Farnebo, L., Kim, M., Woon, C., Pham, H., & Chang, J. (2017). Optimized repopulation of tendon hydrogel: Synergistic effects of growth factor combinations and adipose-derived stem cells. The Hand, 12, 68–77.
Favata, M., Beredjiklian, P. K., Zgonis, M. H., Beason, D. P., Crombleholme, T. M., Jawad, A. F., & Soslowsky, L. J. (2006). Regenerative properties of fetal sheep tendon are not adversely affected by transplantation into an adult environment. Journal of Orthopaedic Research, 24, 2124–2132.
Fenwick, S. A., Hazleman, B. L., & Riley, G. P. (2002). The vasculature and its role in the damaged and healing tendon. Arthritis Research, 4, 252–260.
Ferry, S. T., Dahners, L. E., Afshari, H. M., & Weinhold, P. S. (2007). The effects of common anti-inflammatory drugs on the healing rat patellar tendon. The American Journal of Sports Medicine, 35, 1326–1333.
Fong, C. Y., Biswas, A., Subramanian, A., Srinivasan, A., Choolani, M., & Bongso, A. (2014). Human keloid cell characterization and inhibition of growth with human Wharton’s jelly stem cell extracts. Journal of Cellular Biochemistry, 115, 826–838.
Foolen, J., Wunderli, S. L., Loerakker, S., & Snedeker, J. G. (2017). Tissue alignment enhances remodeling potential of tendon-derived cells – Lessons from a novel microtissue model of tendon scarring. Matrix Biology: Journal of the International Society for Matrix Biology, 65, 14–29.
Foster, T. E., Puskas, B. L., Mandelbaum, B. R., Gerhardt, M. B., & Rodeo, S. A. (2009). Platelet-rich plasma: From basic science to clinical applications. The American Journal of Sports Medicine, 37, 2259–2272.
Frank, C., McDonald, D., Wilson, J., Eyre, D., & Shrive, N. (1995). Rabbit medial collateral ligament scar weakness is associated with decreased collagen pyridinoline crosslink density. Journal of Orthopaedic Research, 13, 157–165.
Franquesa, M., Herrero, E., Torras, J., Ripoll, E., Flaquer, M., Goma, M., Lloberas, N., Anegon, I., Cruzado, J. M., Grinyo, J. M., et al. (2012). Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model. Stem Cells and Development, 21, 3125–3135.
Friel, N. A., & Chu, C. R. (2013). The role of ACL injury in the development of posttraumatic knee osteoarthritis. Clinics in Sports Medicine, 32, 1–12.
Galatz, L. M., Sandell, L. J., Rothermich, S. Y., Das, R., Mastny, A., Havlioglu, N., Silva, M. J., & Thomopoulos, S. (2006). Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. Journal of Orthopaedic Research, 24, 541–550.
Galatz, L. M., Gerstenfeld, L., Heber-Katz, E., & Rodeo, S. A. (2015). Tendon regeneration and scar formation: The concept of scarless healing. Journal of Orthopaedic Research, 33, 823–831.
Gaspar, D., Spanoudes, K., Holladay, C., Pandit, A., & Zeugolis, D. (2015). Progress in cell-based therapies for tendon repair. Advanced Drug Delivery Reviews, 84, 240–256.
Geburek, F., & Stadler, P. (2011). Regenerative therapy for tendon and ligament disorders in horses. Terminology, production, biologic potential and in vitro effects. Tierärztliche Praxis. Ausgabe G, Grosstiere/Nutztiere, 39, 373–383.
Geburek, F., Lietzau, M., Beineke, A., Rohn, K., & Stadler, P. M. (2015). Effect of a single injection of autologous conditioned serum (ACS) on tendon healing in equine naturally occurring tendinopathies. Stem Cell Research & Therapy, 6, 126.
Geburek, F., Roggel, F., van Schie, H. T. M., Beineke, A., Estrada, R., Weber, K., Hellige, M., Rohn, K., Jagodzinski, M., Welke, B., et al. (2017). Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: A controlled experimental trial. Stem Cell Research & Therapy, 8, 129.
Godwin, J. W., & Rosenthal, N. (2014). Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success. Differentiation Research in Biological Diversity, 87, 66–75.
Godwin, J. W., Pinto, A. R., & Rosenthal, N. A. (2013). Macrophages are required for adult salamander limb regeneration. Proceedings of the National Academy of Sciences of the United States of America, 110, 9415–9420.
Godwin, J., Kuraitis, D., & Rosenthal, N. (2014). Extracellular matrix considerations for scar-free repair and regeneration: Insights from regenerative diversity among vertebrates. The International Journal of Biochemistry & Cell Biology, 56, 47–55.
Goncalves, A. I., Rodrigues, M. T., Lee, S. J., Atala, A., Yoo, J. J., Reis, R. L., & Gomes, M. E. (2013). Understanding the role of growth factors in modulating stem cell tenogenesis. PLoS One, 8, e83734.
Goodship, A. E., Birch, H. L., & Wilson, A. M. (1994). The pathobiology and repair of tendon and ligament injury. The Veterinary Clinics of North America Equine Practice, 10, 323–349.
Grognuz, A., Scaletta, C., Farron, A., Pioletti, D. P., Raffoul, W., & Applegate, L. A. (2016). Stability enhancement using hyaluronic acid gels for delivery of human fetal progenitor tenocytes. Cell Medicine, 8, 87–97.
Groth, K., Berezhanskyy, T., Aneja, M. K., Geiger, J., Schweizer, M., Maucksch, L., Pasewald, T., Brill, T., Tigani, B., Weber, E., et al. (2017). Tendon healing induced by chemically modified mRNAs. European Cells & Materials, 33, 294–307.
Guerquin, M. J., Charvet, B., Nourissat, G., Havis, E., Ronsin, O., Bonnin, M. A., Ruggiu, M., Olivera-Martinez, I., Robert, N., Lu, Y., et al. (2013). Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. The Journal of Clinical Investigation, 123, 3564–3576.
Guest, D. J., Smith, M. R., & Allen, W. R. (2010). Equine embryonic stem-like cells and mesenchymal stromal cells have different survival rates and migration patterns following their injection into damaged superficial digital flexor tendon. Equine Veterinary Journal, 42, 636–642.
Gumina, S., Campagna, V., Ferrazza, G., Giannicola, G., Fratalocchi, F., Milani, A., & Postacchini, F. (2012). Use of platelet-leukocyte membrane in arthroscopic repair of large rotator cuff tears: A prospective randomized study. The Journal of Bone and Joint Surgery American Volume, 94, 1345–1352.
Gupta, A. K., Hug, K., Berkoff, D. J., Boggess, B. R., Gavigan, M., Malley, P. C., & Toth, A. P. (2012). Dermal tissue allograft for the repair of massive irreparable rotator cuff tears. The American Journal of Sports Medicine, 40, 141–147.
Haasters, F., Polzer, H., Prall, W. C., Saller, M. M., Kohler, J., Grote, S., Mutschler, W., Docheva, D., & Schieker, M. (2011). Bupivacaine, ropivacaine, and morphine: Comparison of toxicity on human hamstring-derived stem/progenitor cells. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 2138–2144.
Haggmark, T., Liedberg, H., Eriksson, E., & Wredmark, T. (1986). Calf muscle atrophy and muscle function after non-operative vs operative treatment of Achilles tendon ruptures. Orthopedics, 9, 160–164.
Hamada, Y., Katoh, S., Hibino, N., Kosaka, H., Hamada, D., & Yasui, N. (2006). Effects of monofilament nylon coated with basic fibroblast growth factor on endogenous intrasynovial flexor tendon healing. The Journal of Hand Surgery, 31, 530–540.
Harwood, F. L., Goomer, R. S., Gelberman, R. H., Silva, M. J., & Amiel, D. (1999). Regulation of alpha(v)beta3 and alpha5beta1 integrin receptors by basic fibroblast growth factor and platelet-derived growth factor-BB in intrasynovial flexor tendon cells. Wound Repair and Regeneration, 7, 381–388.
Hashimoto, Y., Yoshida, G., Toyoda, H., & Takaoka, K. (2007). Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. Journal of Orthopaedic Research, 25, 1415–1424.
Hasslund, S., Jacobson, J. A., Dadali, T., Basile, P., Ulrich-Vinther, M., Soballe, K., Schwarz, E. M., O’Keefe, R. J., Mitten, D. J., & Awad, H. A. (2008). Adhesions in a murine flexor tendon graft model: Autograft versus allograft reconstruction. Journal of Orthopaedic Research, 26, 824–833.
Havis, E., Bonnin, M. A., Esteves de Lima, J., Charvet, B., Milet, C., & Duprez, D. (2016). TGFbeta and FGF promote tendon progenitor fate and act downstream of muscle contraction to regulate tendon differentiation during chick limb development. Development, 143, 3839–3851.
Hebert, T. L., Wu, X., Yu, G., Goh, B. C., Halvorsen, Y. D., Wang, Z., Moro, C., & Gimble, J. M. (2009). Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. Journal of Tissue Engineering and Regenerative Medicine, 3, 553–561.
Heisterbach, P. E., Todorov, A., Fluckiger, R., Evans, C. H., & Majewski, M. (2012). Effect of BMP-12, TGF-beta1 and autologous conditioned serum on growth factor expression in Achilles tendon healing. Knee Surgery, Sports Traumatology, Arthroscopy, 20, 1907–1914.
Herrero, C., & Perez-Simon, J. A. (2010). Immunomodulatory effect of mesenchymal stem cells. Brazilian journal of medical and biological research. Revista Brasileira de Pesquisas Medicas e Biologicas, 43, 425–430.
Hope, M., & Saxby, T. S. (2007). Tendon healing. Foot and Ankle Clinics, 12, 553–567.
Horton, J. A., Hudak, K. E., Chung, E. J., White, A. O., Scroggins, B. T., Burkeen, J. F., & Citrin, D. E. (2013). Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells, 31, 2231–2241.
Howell, K., Chien, C., Bell, R., Laudier, D., Tufa, S. F., Keene, D. R., Andarawis-Puri, N., & Huang, A. H. (2017). Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Scientific Reports, 7, 45238.
Huang, C., Wong, G. W., Ghildyal, N., Gurish, M. F., Sali, A., Matsumoto, R., Qiu, W. T., & Stevens, R. L. (1997). The tryptase, mouse mast cell protease 7, exhibits anticoagulant activity in vivo and in vitro due to its ability to degrade fibrinogen in the presence of the diverse array of protease inhibitors in plasma. The Journal of Biological Chemistry, 272, 31885–31893.
Huang, A. H., Riordan, T. J., Wang, L., Eyal, S., Zelzer, E., Brigande, J. V., & Schweitzer, R. (2013). Repositioning forelimb superficialis muscles: Tendon attachment and muscle activity enable active relocation of functional myofibers. Developmental Cell, 26, 544–551.
Huang, A. H., Riordan, T. J., Pryce, B., Weibel, J. L., Watson, S. S., Long, F., Lefebvre, V., Harfe, B. D., Stadler, H. S., Akiyama, H., et al. (2015). Musculoskeletal integration at the wrist underlies the modular development of limb tendons. Development, 142, 2431–2441.
Ishikane, S., Hosoda, H., Yamahara, K., Akitake, Y., Kyoungsook, J., Mishima, K., Iwasaki, K., Fujiwara, M., Miyazato, M., Kangawa, K., et al. (2013). Allogeneic transplantation of fetal membrane-derived mesenchymal stem cell sheets increases neovascularization and improves cardiac function after myocardial infarction in rats. Transplantation, 96, 697–706.
Ito, Y., Toriuchi, N., Yoshitaka, T., Ueno-Kudoh, H., Sato, T., Yokoyama, S., Nishida, K., Akimoto, T., Takahashi, M., Miyaki, S., et al. (2010). The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proceedings of the National Academy of Sciences of the United States of America, 107, 10538–10542.
Jelinsky, S. A., Archambault, J., Li, L., & Seeherman, H. (2010). Tendon-selective genes identified from rat and human musculoskeletal tissues. Journal of Orthopaedic Research, 28, 289–297.
Jiang, Y., Shi, Y., He, J., Zhang, Z., Zhou, G., Zhang, W., Cao, Y., & Liu, W. (2016). Enhanced tenogenic differentiation and tendon-like tissue formation by tenomodulin overexpression in murine mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 11(9), 2525–2536.
Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M., & Yoo, J. U. (1998). In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental Cell Research, 238, 265–272.
Juneja, S. C., Schwarz, E. M., O’Keefe, R. J., & Awad, H. A. (2013). Cellular and molecular factors in flexor tendon repair and adhesions: A histological and gene expression analysis. Connective Tissue Research, 54, 218–226.
Kannus, P. (2000). Structure of the tendon connective tissue. Scandinavian Journal of Medicine & Science in Sports, 10, 312–320.
Kaplan, F. S., Lounev, V. Y., Wang, H., Pignolo, R. J., & Shore, E. M. (2011). Fibrodysplasia ossificans progressiva: A blueprint for metamorphosis. Annals of the New York Academy of Sciences, 1237, 5–10.
Katzel, E. B., Koltz, P. F., Tierney, R., Williams, J. P., Awad, H. A., O’Keefe, R. J., & Langstein, H. N. (2011). The impact of Smad3 loss of function on TGF-beta signaling and radiation-induced capsular contracture. Plastic and Reconstructive Surgery, 127, 2263–2269.
Kaux, J. F., Janssen, L., Drion, P., Nusgens, B., Libertiaux, V., Pascon, F., Heyeres, A., Hoffmann, A., Lambert, C., Le Goff, C., et al. (2014). Vascular Endothelial Growth Factor-111 (VEGF-111) and tendon healing: Preliminary results in a rat model of tendon injury. Muscles, Ligaments and Tendons Journal, 4, 24–28.
Kaux, J. F., Samson, A., & Crielaard, J. M. (2015). Hyaluronic acid and tendon lesions. Muscles, Ligaments and Tendons Journal, 5, 264–269.
Keating, A. (2008). How do mesenchymal stromal cells suppress T cells? Cell Stem Cell, 2, 106–108.
Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.
Kielty, C. M., Sherratt, M. J., & Shuttleworth, C. A. (2002). Elastic fibres. Journal of Cell Science, 115, 2817–2828.
Kimura, N., Shukunami, C., Hakuno, D., Yoshioka, M., Miura, S., Docheva, D., Kimura, T., Okada, Y., Matsumura, G., Shin’oka, T., et al. (2008). Local tenomodulin absence, angiogenesis, and matrix metalloproteinase activation are associated with the rupture of the chordae tendineae cordis. Circulation, 118, 1737–1747.
Klass, B. R., Rolfe, K. J., & Grobbelaar, A. O. (2009). In vitro flexor tendon cell response to TGF-beta1: A gene expression study. The Journal of Hand Surgery, 34, 495–503.
Klein, M. B., Yalamanchi, N., Pham, H., Longaker, M. T., & Chang, J. (2002). Flexor tendon healing in vitro: Effects of TGF-beta on tendon cell collagen production. The Journal of Hand Surgery, 27, 615–620.
Kobayashi, M., Itoi, E., Minagawa, H., Miyakoshi, N., Takahashi, S., Tuoheti, Y., Okada, K., & Shimada, Y. (2006). Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. Journal of Shoulder and Elbow Surgery, 15, 371–377.
Koch, T. G., Berg, L. C., & Betts, D. H. (2009). Current and future regenerative medicine – principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. The Canadian Veterinary Journal = La Revue Veterinaire Canadienne 50, 155–165.
Kohler, J., Popov, C., Klotz, B., Alberton, P., Prall, W. C., Haasters, F., Muller-Deubert, S., Ebert, R., Klein-Hitpass, L., Jakob, F., et al. (2013). Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration. Aging Cell, 12, 988–999.
Kryger, G. S., Chong, A. K., Costa, M., Pham, H., Bates, S. J., & Chang, J. (2007). A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering. The Journal of Hand Surgery, 32, 597–605.
Leadbetter, W. B. (1992). Cell-matrix response in tendon injury. Clinics in Sports Medicine, 11, 533–578.
Lee, S. H., Jang, A. S., Kim, Y. E., Cha, J. Y., Kim, T. H., Jung, S., Park, S. K., Lee, Y. K., Won, J. H., Kim, Y. H., et al. (2010). Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respiratory Research, 11, 16.
Lee, J. Y., Zhou, Z., Taub, P. J., Ramcharan, M., Li, Y., Akinbiyi, T., Maharam, E. R., Leong, D. J., Laudier, D. M., Ruike, T., et al. (2011). BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS One, 6, e17531.
Lee, C. H., Lee, F. Y., Tarafder, S., Kao, K., Jun, Y., Yang, G., & Mao, J. J. (2015). Harnessing endogenous stem/progenitor cells for tendon regeneration. The Journal of Clinical Investigation, 125, 2690–2701.
Li, Y., Ramcharan, M., Zhou, Z., Leong, D. J., Akinbiyi, T., Majeska, R. J., & Sun, H. B. (2015). The role of scleraxis in fate determination of mesenchymal stem cells for tenocyte differentiation. Scientific Reports, 5, 13149.
Liang, C. J., Yen, Y. H., Hung, L. Y., Wang, S. H., Pu, C. M., Chien, H. F., Tsai, J. S., Lee, C. W., Yen, F. L., & Chen, Y. L. (2013). Thalidomide inhibits fibronectin production in TGF-beta1-treated normal and keloid fibroblasts via inhibition of the p38/Smad3 pathway. Biochemical Pharmacology, 85, 1594–1602.
Lin, T. W., Cardenas, L., & Soslowsky, L. J. (2004). Biomechanics of tendon injury and repair. Journal of Biomechanics, 37, 865–877.
Linard, C., Busson, E., Holler, V., Strup-Perrot, C., Lacave-Lapalun, J. V., Lhomme, B., Prat, M., Devauchelle, P., Sabourin, J. C., Simon, J. M., et al. (2013). Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Translational Medicine, 2, 916–927.
Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H., Lee, E. H., & Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells, 25, 750–760.
Liu, W., Watson, S. S., Lan, Y., Keene, D. R., Ovitt, C. E., Liu, H., Schweitzer, R., & Jiang, R. (2010). The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Molecular and Cellular Biology, 30, 4797–4807.
Liu, H., Zhu, S., Zhang, C., Lu, P., Hu, J., Yin, Z., Ma, Y., Chen, X., & OuYang, H. (2014). Crucial transcription factors in tendon development and differentiation: Their potential for tendon regeneration. Cell and Tissue Research, 356, 287–298.
Liu, J., Tao, X., Chen, L., Han, W., Zhou, Y., & Tang, K. (2015). CTGF positively regulates BMP12 induced tenogenic differentiation of tendon stem cells and signaling. Cellular Physiology and Biochemistry, 35, 1831–1845.
Loiselle, A. E., Yukata, K., Geary, M. B., Kondabolu, S., Shi, S., Jonason, J. H., Awad, H. A., & O’Keefe, R. J. (2015). Development of antisense oligonucleotide (ASO) technology against Tgf-beta signaling to prevent scarring during flexor tendon repair. Journal of Orthopaedic Research, 33, 859–866.
Loiselle, A. E., Kelly, M., & Hammert, W. C. (2016). Biological augmentation of flexor tendon repair: A challenging cellular landscape. The Journal of Hand Surgery, 41, 144–149. quiz 149.
Lou, J., Tu, Y., Burns, M., Silva, M. J., & Manske, P. (2001). BMP-12 gene transfer augmentation of lacerated tendon repair. Journal of Orthopaedic Research, 19, 1199–1202.
Lovati, A. B., Corradetti, B., Cremonesi, F., Bizzaro, D., & Consiglio, A. L. (2012). Tenogenic differentiation of equine mesenchymal progenitor cells under indirect co-culture. The International Journal of Artificial Organs, 35, 996–1005.
Maffulli, N., Khan, K. M., & Puddu, G. (1998). Overuse tendon conditions: Time to change a confusing terminology. Arthroscopy, 14, 840–843.
Majewski, M., Betz, O., Ochsner, P. E., Liu, F., Porter, R. M., & Evans, C. H. (2008). Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Therapy, 15, 1139–1146.
Majewski, M., Ochsner, P. E., Liu, F., Fluckiger, R., & Evans, C. H. (2009). Accelerated healing of the rat Achilles tendon in response to autologous conditioned serum. The American Journal of Sports Medicine, 37, 2117–2125.
Mao, W. F., Wu, Y. F., Yang, Q. Q., Zhou, Y. L., Wang, X. T., Liu, P. Y., & Tang, J. B. (2017). Modulation of digital flexor tendon healing by vascular endothelial growth factor gene transfection in a chicken model. Gene Therapy, 24, 234–240.
Martin, P., D’Souza, D., Martin, J., Grose, R., Cooper, L., Maki, R., & McKercher, S. R. (2003a). Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Current Biology: CB, 13, 1122–1128.
Martin, S. D., Patel, N. A., Adams, S. B., Jr., Roberts, M. J., Plummer, S., Stamper, D. L., Brezinski, M. E., & Fujimoto, J. G. (2003b). New technology for assessing microstructural components of tendons and ligaments. International Orthopaedics, 27, 184–189.
Massimino, M. L., Rapizzi, E., Cantini, M., Libera, L. D., Mazzoleni, F., Arslan, P., & Carraro, U. (1997). ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochemical and Biophysical Research Communications, 235, 754–759.
Mienaltowski, M. J., Adams, S. M., & Birk, D. E. (2013). Regional differences in stem cell/progenitor cell populations from the mouse Achilles tendon. Tissue Engineering Part A, 19, 199–210.
Mikic, B., Entwistle, R., Rossmeier, K., & Bierwert, L. (2008). Effect of GDF-7 deficiency on tail tendon phenotype in mice. Journal of Orthopaedic Research, 26, 834–839.
Mikic, B., Rossmeier, K., & Bierwert, L. (2009). Identification of a tendon phenotype in GDF6 deficient mice. Anatomical Record, 292, 396–400.
Mohammadi Gorji, S., Karimpor Malekshah, A. A., Hashemi-Soteh, M. B., Rafiei, A., Parivar, K., & Aghdami, N. (2012). Effect of mesenchymal stem cells on Doxorubicin-induced fibrosis. Cell Journal, 14, 142–151.
Mok, P. L., Leong, C. F., & Cheong, S. K. (2013). Cellular mechanisms of emerging applications of mesenchymal stem cells. The Malaysian Journal of Pathology, 35, 17–32.
Molloy, T., Wang, Y., & Murrell, G. (2003). The roles of growth factors in tendon and ligament healing. Sports Medicine, 33, 381–394.
Moodley, Y., Atienza, D., Manuelpillai, U., Samuel, C. S., Tchongue, J., Ilancheran, S., Boyd, R., & Trounson, A. (2009). Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. The American Journal of Pathology, 175, 303–313.
Muller, S. A., Todorov, A., Heisterbach, P. E., Martin, I., & Majewski, M. (2015). Tendon healing: An overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 2097–2105.
Murchison, N. D., Price, B. A., Conner, D. A., Keene, D. R., Olson, E. N., Tabin, C. J., & Schweitzer, R. (2007). Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development, 134, 2697–2708.
Natsu-ume, T., Nakamura, N., Shino, K., Toritsuka, Y., Horibe, S., & Ochi, T. (1997). Temporal and spatial expression of transforming growth factor-beta in the healing patellar ligament of the rat. Journal of Orthopaedic Research, 15, 837–843.
Ngo, M., Pham, H., Longaker, M. T., & Chang, J. (2001). Differential expression of transforming growth factor-beta receptors in a rabbit zone II flexor tendon wound healing model. Plastic and Reconstructive Surgery, 108, 1260–1267.
Nixon, A. J., Dahlgren, L. A., Haupt, J. L., Yeager, A. E., & Ward, D. L. (2008). Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. American Journal of Veterinary Research, 69, 928–937.
Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., et al. (2011). A more efficient method to generate integration-free human iPS cells. Nature Methods, 8, 409–412.
Onizuka, N., Ito, Y., Inagawa, M., Nakahara, H., Takada, S., Lotz, M., Toyama, Y., & Asahara, H. (2014). The Mohawk homeobox transcription factor regulates the differentiation of tendons and volar plates. Journal of Orthopaedic Science, 19, 172–180.
Oshima, Y., Shukunami, C., Honda, J., Nishida, K., Tashiro, F., Miyazaki, J., Hiraki, Y., & Tano, Y. (2003). Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes. Investigative Ophthalmology & Visual Science, 44, 1814–1823.
Otabe, K., Nakahara, H., Hasegawa, A., Matsukawa, T., Ayabe, F., Onizuka, N., Inui, M., Takada, S., Ito, Y., Sekiya, I., et al. (2015). Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. Journal of Orthopaedic Research, 33, 1–8.
Park, A., Hogan, M. V., Kesturu, G. S., James, R., Balian, G., & Chhabra, A. B. (2010). Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Engineering Part A, 16, 2941–2951.
Patterson-Kane, J. C., & Firth, E. C. (2009). The pathobiology of exercise-induced superficial digital flexor tendon injury in Thoroughbred racehorses. Veterinary Journal, 181, 79–89.
Pennisi, E. (2002). Tending tender tendons. Science, 295, 1011.
Peroni, J. F., & Borjesson, D. L. (2011). Anti-inflammatory and immunomodulatory activities of stem cells. The Veterinary Clinics of North America Equine Practice, 27, 351–362.
Petersen, W., Unterhauser, F., Pufe, T., Zantop, T., Sudkamp, N. P., & Weiler, A. (2003). The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Archives of Orthopaedic and Trauma Surgery, 123, 168–174.
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.
Potter, B. K., Burns, T. C., Lacap, A. P., Granville, R. R., & Gajewski, D. A. (2007). Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. The Journal of Bone and Joint Surgery American, 89, 476–486.
Provenzano, P.P., Alejandro-Osorio, A.L., Grorud, K.W., Martinez, D.A., Vailas, A.C., Grindeland, R.E., and Vanderby, R., Jr. (2007). Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: Evaluation of loaded and unloaded ligaments. BMC Physiology 7, 2.
Pryce, B. A., Brent, A. E., Murchison, N. D., Tabin, C. J., & Schweitzer, R. (2007). Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Developmental Dynamics, 236, 1677–1682.
Qi, Y., Jiang, D., Sindrilaru, A., Stegemann, A., Schatz, S., Treiber, N., Rojewski, M., Schrezenmeier, H., Vander Beken, S., Wlaschek, M., et al. (2014). TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. The Journal of Investigative Dermatology, 134, 526–537.
Qiao, H., Tong, Y., Han, H., Xu, W., Ren, Z., Ouyang, J., & Chen, Y. (2011). A novel therapeutic regimen for hepatic fibrosis using the combination of mesenchymal stem cells and baicalin. Die Pharmazie, 66, 37–43.
Raabe, O., Shell, K., Fietz, D., Freitag, C., Ohrndorf, A., Christ, H. J., Wenisch, S., & Arnhold, S. (2013). Tenogenic differentiation of equine adipose-tissue-derived stem cells under the influence of tensile strain, growth differentiation factors and various oxygen tensions. Cell and Tissue Research, 352, 509–521.
Rahr-Wagner, L., Thillemann, T. M., Pedersen, A. B., & Lind, M. (2014). Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: Results from the Danish registry of knee ligament reconstruction. The American Journal of Sports Medicine, 42, 278–284.
Randelli, P., Arrigoni, P., Ragone, V., Aliprandi, A., & Cabitza, P. (2011). Platelet rich plasma in arthroscopic rotator cuff repair: A prospective RCT study, 2-year follow-up. Journal of Shoulder and Elbow Surgery, 20, 518–528.
Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V., & March, K. L. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.
Ricco, S., Renzi, S., Del Bue, M., Conti, V., Merli, E., Ramoni, R., Lucarelli, E., Gnudi, G., Ferrari, M., & Grolli, S. (2013). Allogeneic adipose tissue-derived mesenchymal stem cells in combination with platelet rich plasma are safe and effective in the therapy of superficial digital flexor tendonitis in the horse. International Journal of Immunopathology and Pharmacology, 26, 61–68.
Richardson, L. E., Dudhia, J., Clegg, P. D., & Smith, R. (2007). Stem cells in veterinary medicine--attempts at regenerating equine tendon after injury. Trends in Biotechnology, 25, 409–416.
Rickert, M., Jung, M., Adiyaman, M., Richter, W., & Simank, H. G. (2001). A growth and differentiation factor-5 (GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats. Growth Factors, 19, 115–126.
Rinkevich, Y., Lindau, P., Ueno, H., Longaker, M. T., & Weissman, I. L. (2011). Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature, 476, 409–413.
Rodeo, S. A., Suzuki, K., Deng, X. H., Wozney, J., & Warren, R. F. (1999). Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. The American Journal of Sports Medicine, 27, 476–488.
Roensch, K., Tazaki, A., Chara, O., & Tanaka, E. M. (2013). Progressive specification rather than intercalation of segments during limb regeneration. Science, 342, 1375–1379.
Rosso, C., Buckland, D. M., Polzer, C., Sadoghi, P., Schuh, R., Weisskopf, L., Vavken, P., & Valderrabano, V. (2015). Long-term biomechanical outcomes after Achilles tendon ruptures. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 890–898.
Rui, Y. F., Lui, P. P., Li, G., Fu, S. C., Lee, Y. W., & Chan, K. M. (2010). Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Engineering Part A, 16, 1549–1558.
Rux, D. R., Song, J. Y., Swinehart, I. T., Pineault, K. M., Schlientz, A. J., Trulik, K. G., Goldstein, S. A., Kozloff, K. M., Lucas, D., & Wellik, D. M. (2016). Regionally restricted hox function in adult bone marrow multipotent mesenchymal stem/stromal cells. Developmental Cell, 39, 653–666.
Saether, E. E., Chamberlain, C. S., Aktas, E., Leiferman, E. M., Brickson, S. L., & Vanderby, R. (2016). Primed mesenchymal stem cells alter and improve rat medial collateral ligament healing. Stem Cell Reviews, 12, 42–53.
Saiki, A., Olsson, M., Jernas, M., Gummesson, A., McTernan, P. G., Andersson, J., Jacobson, P., Sjoholm, K., Olsson, B., Yamamura, S., et al. (2009). Tenomodulin is highly expressed in adipose tissue, increased in obesity, and down-regulated during diet-induced weight loss. The Journal of Clinical Endocrinology and Metabolism, 94, 3987–3994.
Sato, N., Taniguchi, T., Goda, Y., Kosaka, H., Higashino, K., Sakai, T., Katoh, S., Yasui, N., Sairyo, K., & Taniguchi, H. (2016). Proteomic analysis of human tendon and ligament: Solubilization and analysis of insoluble extracellular matrix in connective tissues. Journal of Proteome Research, 15, 4709–4721.
Schneider, P. R., Buhrmann, C., Mobasheri, A., Matis, U., & Shakibaei, M. (2011). Three-dimensional high-density co-culture with primary tenocytes induces tenogenic differentiation in mesenchymal stem cells. Journal of Orthopaedic Research, 29, 1351–1360.
Schweitzer, R., Chyung, J. H., Murtaugh, L. C., Brent, A. E., Rosen, V., Olson, E. N., Lassar, A., & Tabin, C. J. (2001). Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 128, 3855–3866.
Sciore, P., Boykiw, R., & Hart, D. A. (1998). Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue. Journal of Orthopaedic Research, 16, 429–437.
Semedo, P., Correa-Costa, M., Antonio Cenedeze, M., Maria Avancini Costa Malheiros, D., Antonia dos Reis, M., Shimizu, M. H., Seguro, A. C., Pacheco-Silva, A., & Saraiva Camara, N. O. (2009). Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells, 27, 3063–3073.
Senol-Cosar, O., Flach, R. J., DiStefano, M., Chawla, A., Nicoloro, S., Straubhaar, J., Hardy, O. T., Noh, H. L., Kim, J. K., Wabitsch, M., et al. (2016). Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nature Communications, 7, 10686.
Sharma, P., & Maffulli, N. (2005a). Basic biology of tendon injury and healing. The surgeon, 3, 309–316.
Sharma, P., & Maffulli, N. (2005b). Tendon injury and tendinopathy: Healing and repair. The Journal of Bone and Joint Surgery American Volume, 87, 187–202.
Sharma, P., and Maffulli, N. (2006). Biology of tendon injury: Healing, modeling and remodeling. Journal of Musculoskeletal & Neuronal Interactions 6, 181-190.
Shen, H., Gelberman, R. H., Silva, M. J., Sakiyama-Elbert, S. E., & Thomopoulos, S. (2013). BMP12 induces tenogenic differentiation of adipose-derived stromal cells. PLoS One, 8, e77613.
Shi, Y., Xiong, Y., Jiang, Y., Zhang, Z., Zhou, G., Zhang, W., Cao, Y., He, J., & Liu, W. (2017). Conditional tenomodulin overexpression favors tenogenic lineage differentiation of transgenic mouse derived cells. Gene, 598, 9–19.
Shukunami, C., Takimoto, A., Oro, M., & Hiraki, Y. (2006). Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Developmental Biology, 298, 234–247.
Singer, N. G., & Caplan, A. I. (2011). Mesenchymal stem cells: Mechanisms of inflammation. Annual Review of Pathology, 6, 457–478.
Smith, R. K., Werling, N. J., Dakin, S. G., Alam, R., Goodship, A. E., & Dudhia, J. (2013). Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy. PLoS One, 8, e75697.
Song, L., Yang, Y. J., Dong, Q. T., Qian, H. Y., Gao, R. L., Qiao, S. B., Shen, R., He, Z. X., Lu, M. J., Zhao, S. H., et al. (2013). Atorvastatin enhance efficacy of mesenchymal stem cells treatment for swine myocardial infarction via activation of nitric oxide synthase. PLoS One, 8, e65702.
Sorrell, J. M., Baber, M. A., & Caplan, A. I. (2009). Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Engineering Part A, 15, 1751–1761.
Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24, 74–85.
Steinert, A. F., Kunz, M., Prager, P., Barthel, T., Jakob, F., Noth, U., Murray, M. M., Evans, C. H., & Porter, R. M. (2011). Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Engineering Part A, 17, 1375–1388.
Stewart, M. C., & Stewart, A. A. (2011). Cell-based therapies in orthopedics. The Veterinary Clinics of North America Equine Practice, 27, xiii–xxiv.
Sun, Y., Berger, E. J., Zhao, C., An, K. N., Amadio, P. C., & Jay, G. (2006). Mapping lubricin in canine musculoskeletal tissues. Connective Tissue Research, 47, 215–221.
Sun, H. B., Li, Y., Fung, D. T., Majeska, R. J., Schaffler, M. B., & Flatow, E. L. (2008). Coordinate regulation of IL-1beta and MMP-13 in rat tendons following subrupture fatigue damage. Clinical Orthopaedics and Related Research, 466, 1555–1561.
Suwalski, A., Dabboue, H., Delalande, A., Bensamoun, S. F., Canon, F., Midoux, P., Saillant, G., Klatzmann, D., Salvetat, J. P., & Pichon, C. (2010). Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials, 31, 5237–5245.
Suzuki, H., Ito, Y., Shinohara, M., Yamashita, S., Ichinose, S., Kishida, A., Oyaizu, T., Kayama, T., Nakamichi, R., Koda, N., et al. (2016). Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis. Proceedings of the National Academy of Sciences of the United States of America, 113, 7840–7845.
Takaya, N., Katoh, Y., Iwabuchi, K., Hayashi, I., Konishi, H., Itoh, S., Okumura, K., Ra, C., Nagaoka, I., & Daida, H. (2005). Platelets activated by collagen through the immunoreceptor tyrosine-based activation motif in the Fc receptor gamma-chain play a pivotal role in the development of myocardial ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 39, 856–864.
Tan, S. L., Ahmad, R. E., Ahmad, T. S., Merican, A. M., Abbas, A. A., Ng, W. M., & Kamarul, T. (2012). Effect of growth differentiation factor 5 on the proliferation and tenogenic differentiation potential of human mesenchymal stem cells in vitro. Cells, Tissues, Organs, 196, 325–338.
Tarafder, S., Chen, E., Jun, Y., Kao, K., Sim, K. H., Back, J., Lee, F. Y., & Lee, C. H. (2017). Tendon stem/progenitor cells regulate inflammation in tendon healing via JNK and STAT3 signaling. FASEB Journal.
Taylor, S. E., & Clegg, P. D. (2011). Collection and propagation methods for mesenchymal stromal cells. The Veterinary Clinics of North America Equine Practice, 27, 263–274.
Taylor, D. W., Petrera, M., Hendry, M., & Theodoropoulos, J. S. (2011a). A systematic review of the use of platelet-rich plasma in sports medicine as a new treatment for tendon and ligament injuries. Clinical Journal of Sport Medicine, 21, 344–352.
Taylor, S. H., Al-Youha, S., Van Agtmael, T., Lu, Y., Wong, J., McGrouther, D. A., & Kadler, K. E. (2011b). Tendon is covered by a basement membrane epithelium that is required for cell retention and the prevention of adhesion formation. PLoS One, 6, e16337.
Tempfer, H., Wagner, A., Gehwolf, R., Lehner, C., Tauber, M., Resch, H., & Bauer, H. C. (2009). Perivascular cells of the supraspinatus tendon express both tendon- and stem cell-related markers. Histochemistry and Cell Biology, 131, 733–741.
Thampatty, B. P., Li, H., Im, H. J., & Wang, J. H. (2007). EP4 receptor regulates collagen type-I, MMP-1, and MMP-3 gene expression in human tendon fibroblasts in response to IL-1 beta treatment. Gene, 386, 154–161.
Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27.
Theodoropoulos, J. (2011). Platelet-rich fibrin matrix augmentation did not improve recovery and healing more than nonaugmented rotator cuff repair. The Journal of Bone and Joint Surgery American Volume, 93, 2125.
Thomopoulos, S., Hattersley, G., Rosen, V., Mertens, M., Galatz, L., Williams, G. R., & Soslowsky, L. J. (2002). The localized expression of extracellular matrix components in healing tendon insertion sites: An in situ hybridization study. Journal of Orthopaedic Research, 20, 454–463.
Thomopoulos, S., Harwood, F. L., Silva, M. J., Amiel, D., & Gelberman, R. H. (2005). Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. The Journal of Hand Surgery, 30, 441–447.
Thomopoulos, S., Das, R., Silva, M. J., Sakiyama-Elbert, S., Harwood, F. L., Zampiakis, E., Kim, H. M., Amiel, D., & Gelberman, R. H. (2009). Enhanced flexor tendon healing through controlled delivery of PDGF-BB. Journal of Orthopaedic Research, 27, 1209–1215.
Tolppanen, A. M., Pulkkinen, L., Kuulasmaa, T., Kolehmainen, M., Schwab, U., Lindstrom, J., Tuomilehto, J., Uusitupa, M., & Kuusisto, J. (2008). The genetic variation in the tenomodulin gene is associated with serum total and LDL cholesterol in a body size-dependent manner. International Journal of Obesity, 32, 1868–1872.
Trippel, S. B., Wroblewski, J., Makower, A. M., Whelan, M. C., Schoenfeld, D., & Doctrow, S. R. (1993). Regulation of growth-plate chondrocytes by insulin-like growth-factor I and basic fibroblast growth factor. The Journal of Bone and Joint Surgery American, 75, 177–189.
Tsubone, T., Moran, S. L., Amadio, P. C., Zhao, C., & An, K. N. (2004). Expression of growth factors in canine flexor tendon after laceration in vivo. Annals of Plastic Surgery, 53, 393–397.
Tsuzaki, M., Guyton, G., Garrett, W., Archambault, J. M., Herzog, W., Almekinders, L., Bynum, D., Yang, X., & Banes, A. J. (2003). IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. Journal of Orthopaedic Research, 21, 256–264.
Ueno, T., Nakashima, A., Doi, S., Kawamoto, T., Honda, K., Yokoyama, Y., Doi, T., Higashi, Y., Yorioka, N., Kato, Y., et al. (2013). Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-beta1 signaling. Kidney International, 84, 297–307.
Uggen, C., Dines, J., McGarry, M., Grande, D., Lee, T., & Limpisvasti, O. (2010). The effect of recombinant human platelet-derived growth factor BB-coated sutures on rotator cuff healing in a sheep model. Arthroscopy, 26, 1456–1462.
Usunier, B., Benderitter, M., Tamarat, R., & Chapel, A. (2014). Management of fibrosis: The mesenchymal stromal cells breakthrough. Stem Cells International, 2014, 340257.
Vidal, M. A., Kilroy, G. E., Lopez, M. J., Johnson, J. R., Moore, R. M., & Gimble, J. M. (2007). Characterization of equine adipose tissue-derived stromal cells: Adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary Surgery: VS, 36, 613–622.
Violini, S., Ramelli, P., Pisani, L. F., Gorni, C., & Mariani, P. (2009). Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biology, 10, 29.
Voleti, P. B., Buckley, M. R., & Soslowsky, L. J. (2012). Tendon healing: Repair and regeneration. Annual Review of Biomedical Engineering, 14, 47–71.
Wagner, D. O., Sieber, C., Bhushan, R., Borgermann, J. H., Graf, D., & Knaus, P. (2010). BMPs: From bone to body morphogenetic proteins. Science Signaling, 3, mr1.
Wang, A., Breidahl, W., Mackie, K. E., Lin, Z., Qin, A., Chen, J., & Zheng, M. H. (2013). Autologous tenocyte injection for the treatment of severe, chronic resistant lateral epicondylitis: A pilot study. The American Journal of Sports Medicine, 41, 2925–2932.
Wang, A., Mackie, K., Breidahl, W., Wang, T., & Zheng, M. H. (2015). Evidence for the durability of autologous tenocyte injection for treatment of chronic resistant lateral epicondylitis: Mean 4.5-year clinical follow-up. The American Journal of Sports Medicine, 43, 1775–1783.
Wang, W., Li, J., Wang, K., Zhang, Z., Zhang, W., Zhou, G., Cao, Y., Ye, M., Zou, H., & Liu, W. (2016). Induction of predominant tenogenic phenotype in human dermal fibroblasts via synergistic effect of TGF-beta and elongated cell shape. American Journal of Physiology. Cell Physiology, 310, C357–C372.
Watts, A.E., Yeager, A.E., Kopyov, O.V., and Nixon, A.J. (2011). Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis modelStem Cell Research & Therapy 2, 4.
Weber, S. C., Kauffman, J. I., Parise, C., Weber, S. J., & Katz, S. D. (2013). Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: A prospective, randomized, double-blinded study. The American Journal of Sports Medicine, 41, 263–270.
Wilkins, R., & Bisson, L. J. (2012). Operative versus nonoperative management of acute Achilles tendon ruptures: A quantitative systematic review of randomized controlled trials. The American Journal of Sports Medicine, 40, 2154–2160.
Wolfman, N. M., Hattersley, G., Cox, K., Celeste, A. J., Nelson, R., Yamaji, N., Dube, J. L., DiBlasio-Smith, E., Nove, J., Song, J. J., et al. (1997). Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. The Journal of Clinical Investigation, 100, 321–330.
Woo, Y. K., Kwon, S. Y., Lee, H. S., & Park, Y. S. (2007). Proliferation of anterior cruciate ligament cells in vitro by photo-immobilized epidermal growth factor. Journal of Orthopaedic Research, 25, 73–80.
Wu, P. T., Kuo, L. C., Su, F. C., Chen, S. Y., Hsu, T. I., Li, C. Y., Tsai, K. J., & Jou, I. M. (2017). High-molecular-weight hyaluronic acid attenuated matrix metalloproteinase-1 and -3 expression via CD44 in tendinopathy. Scientific Reports, 7, 40840.
Wurgler-Hauri, C. C., Dourte, L. M., Baradet, T. C., Williams, G. R., & Soslowsky, L. J. (2007). Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. Journal of Shoulder and Elbow Surgery, 16, S198–S203.
Xu, Y., Guo, S., Wei, C., Li, H., Chen, L., Yin, C., & Zhang, C. (2016). The comparison of adipose stem cell and placental stem cell in secretion characteristics and in facial antiaging. Stem Cells International, 2016, 7315830.
Yang, G., Rothrauff, B. B., & Tuan, R. S. (2013). Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm. Birth Defects Research Part C, Embryo Today: Reviews, 99, 203–222.
Yin, Z., Chen, X., Zhu, T., Hu, J. J., Song, H. X., Shen, W. L., Jiang, L. Y., Heng, B. C., Ji, J. F., & Ouyang, H. W. (2013). The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomaterialia, 9, 9317–9329.
Yin, Z., Guo, J., Wu, T. Y., Chen, X., Xu, L. L., Lin, S. E., Sun, Y. X., Chan, K. M., Ouyang, H., & Li, G. (2016). Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem Cells Translational Medicine, 5, 1106–1116.
Yoshikawa, Y., & Abrahamsson, S. O. (2001). Dose-related cellular effects of platelet-derived growth factor-BB differ in various types of rabbit tendons in vitro. Acta Orthopaedica Scandinavica, 72, 287–292.
Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell and Tissue Research, 327, 449–462.
Yu, Y., Bliss, J. P., Bruce, W. J., & Walsh, W. R. (2007). Bone morphogenetic proteins and Smad expression in ovine tendon-bone healing. Arthroscopy, 23, 205–210.
Zhang, J., & Wang, J. H. (2010). Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskeletal Disorders, 11, 10.
Zhang, F., Lei, M. P., Oswald, T. M., Pang, Y., Blain, B., Cai, Z. W., & Lineaweaver, W. C. (2003). The effect of vascular endothelial growth factor on the healing of ischaemic skin wounds. British Journal of Plastic Surgery, 56, 334–341.
Zhang, A. Y., Pham, H., Ho, F., Teng, K., Longaker, M. T., & Chang, J. (2004). Inhibition of TGF-beta-induced collagen production in rabbit flexor tendons. The Journal of Hand Surgery, 29, 230–235.
Zhang, D., Jiang, M., & Miao, D. (2011). Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One, 6, e16789.
Zhang, K., Asai, S., Yu, B., & Enomoto-Iwamoto, M. (2015). IL-1beta irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro. Biochemical and Biophysical Research Communications, 463, 667–672.
Zhao, C., Ozasa, Y., Reisdorf, R. L., Thoreson, A. R., Jay, G. D., An, K. N., & Amadio, P. C. (2014). CORR(R) ORS Richard A. Brand award for outstanding orthopaedic research: Engineering flexor tendon repair with lubricant, cells, and cytokines in a canine model. Clinical Orthopaedics and Related Research, 472, 2569–2578.
Zhou, C. H., Li, M. L., Qin, A. L., Lv, S. X., Wen, T., Zhu, X. Y., Li, L. Y., Dong, Y., Hu, C. Y., Hu, D. M., et al. (2013a). Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly. Pancreas, 42, 1291–1302.
Zhou, Y., Zhang, L., Zhao, W., Wu, Y., Zhu, C., & Yang, Y. (2013b). Nanoparticle-mediated delivery of TGF-beta1 miRNA plasmid for preventing flexor tendon adhesion formation. Biomaterials, 34, 8269–8278.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Conrad, S., Weber, K., Walliser, U., Geburek, F., Skutella, T. (2018). Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. In: Pham, P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology(), vol 1084. Springer, Cham. https://doi.org/10.1007/5584_2018_194
Download citation
DOI: https://doi.org/10.1007/5584_2018_194
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19856-5
Online ISBN: 978-3-030-19857-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)