Advertisement

Copeptin Blood Content as a Diagnostic Marker of Chronic Kidney Disease

  • Stanisław Niemczyk
  • Longin Niemczyk
  • Wawrzyniec Żmudzki
  • Marek Saracyn
  • Katarzyna Czarzasta
  • Katarzyna Szamotulska
  • Agnieszka Cudnoch-Jędrzejewska
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1096)

Abstract

Plasma content of copeptin increases with the advancement of chronic kidney disease (CKD). The purpose of this study was to evaluate copeptin content as a potential marker of CKD, as a single pathology or with coexisting heart failure. Seventy-six patients were divided into the following groups: Group 1 (control), without CKD and heart failure; Group 2, CKD stage 3a; Group 3, CKD stage 3b; Group 4, CKD stage 4; Group 5, CKD stage 5; and Group 6, CKD stage 3b and heart failure. For all patients, plasma concentrations of copeptin, creatinine, urea, cystatin C, sodium, C-reactive protein (CRP), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), and blood pH were assessed. We found that plasma content of creatinine, urea, CRP, cystatin, NT-proBNP, and copeptin increased with CKD progression. Heart failure in CKD patients was not the cause of an appreciable increase of copeptin level. Copeptin/creatinine, copeptin/cystatin C ratios, and especially copeptin/eGFR ratio enhanced copeptin prognostic sensitivity concerning renal failure in CKD, compared with copeptin alone. The copeptin×NT-proBNP ratio decreased along CKD progression, reaching a nadir in the accompanying heart failure. In contradistinction, copeptin×NT-proBNP/creatinine ratio increased along CKD progression, reaching a peak in the accompanying heart failure. We conclude that copeptin is an important marker in CKD, but not so concerning heart failure in the disease. A decrease in copeptin×NT-proBNP and an increase in copeptin×NT-proBNP/creatinine ratio are useful markers of cardiac function decline in CKD.

Keywords

Biomarkers Cardiac function Chronic kidney disease Copeptin Heart failure 

Notes

Acknowledgments

Funded by a grant no. 307 from the Military Institute of Medicine. This research was carried out with the use of CePT infrastructure financed by the European Union Regional Development Fund within the Operational Program “Innovative Economy” for 2007–2013.

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

References

  1. Afsar B (2017) Pathophysiology of copeptin in kidney disease and hypertension. Clin Hypertens 23:13CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bankir L, Bardoux P, Ahloulay M (2001) Vasopressin and diabetes mellitus. Nephron 87:8–18CrossRefPubMedGoogle Scholar
  3. Bhandari SS, Loke I, Davies JE, Squire IB, Struck J, Ng LL (2009) Gender and renal function influence plasma levels of copeptin in healthy individuals. Clin Sci (Lond) 116:257–263CrossRefGoogle Scholar
  4. Boeck L, Eggimann P, Smyrnios N, Pargger H, Thakkar N, Siegemund M, Morgenthaler NG, Rakic J, Tamm M, Stolz D (2012) The Sequential Organ Failure Assessment score and copeptin for predicting survival in ventilator-associated pneumonia. J Crit Care 27:523.e1–523.e9CrossRefGoogle Scholar
  5. Boertien WE, Meijer E, Zittema D, van Dijk MA, Rabelink TJ, Breuning MH, Struck J, Bakker SJ, Peters DJ, de Jong PE, Gansevoort RT (2012) Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 27:4131–4137CrossRefPubMedGoogle Scholar
  6. De Marchis GM, Katan M, Weck A, Fluri F, Foerch C, Findling O, Schuetz P, Buhl D, El-Koussy M, Gensicke H, Seiler M, Morgenthaler N, Mattle HP, Mueller B, Christ-Crain M, Arnold M (2013) Copeptin adds prognostic information after ischemic stroke: results from the CoRisk study. Neurology 80:1278–1286CrossRefPubMedGoogle Scholar
  7. Engelbertz C, Brand E, Fobker M, Fischer D, Pavenstädt H, Reinecke H (2016) Elevated copeptin is a prognostic factor for mortality even in patients with renal dysfunction. Int J Cardiol 221:327–332CrossRefPubMedGoogle Scholar
  8. Fenske W, Wanner C, Allolio B, Drechsler C, Blouin K, Lilienthal J, Krane V, German Diabetes, Dialysis Study Investigators (2011) Copeptin levels associate with cardiovascular events in patients with ESRD and type 2 diabetes mellitus. J Am Soc Nephrol 22:782–790CrossRefPubMedPubMedCentralGoogle Scholar
  9. Filler G, Bökenkamp A, Hofmann W, Le Bricon T, Martínez-Brú C, Grubb A (2005) Cystatin C as a marker of GFR--history, indications, and future research. Clin Biochem 38:1–8CrossRefPubMedGoogle Scholar
  10. Fogo AB (2006) Progression versus regression of chronic kidney disease. Nephrol Dial Transplant 21:281–284CrossRefPubMedGoogle Scholar
  11. Hooper L, Abdelhamid A, Ali A, Bunn DK, Jennings A, John WG, Kerry S, Lindner G, Pfortmueller CA, Sjöstrand F, Walsh NP, Fairweather-Tait SJ, Potter JF, Hunter PR, Shepstone L (2015) Diagnostic accuracy of calculated serum osmolarity to predict dehydration in older people: adding value to pathology laboratory reports. BMJ Open 5:e008846CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hu W, Ni YJ, Ma L, Hao HR, Chen L, Yu WN (2015) Serum copeptin as a new biomarker in the early diagnosis of decline in renal function of type 2 diabetes mellitus patients. Int J Clin Exp Med 8:9730–9736PubMedPubMedCentralGoogle Scholar
  13. Jochberger S, Dörler J, Luckner G, Mayr VD, Wenzel V, Ulmer H, Morgenthaler NG, Hasibeder WR, Dünser MW (2009) The vasopressin and copeptin response to infection, severe sepsis, and septic shock. Crit Care Med 37:476–482CrossRefPubMedGoogle Scholar
  14. Katan M, Christ-Crain M (2010) The stress hormone copeptin: a new prognostic biomarker in acute illness. Swiss Med Wkly 140:w13101PubMedGoogle Scholar
  15. Lane BR, Poggio ED, Herts BR, Novick AC, Campbell SC (2009) Renal function assessment in the era of chronic kidney disease: renewed emphasis on renal function centered patient care. J Urol 182:435–443CrossRefPubMedGoogle Scholar
  16. Levey AS, Greene T, Kusek JW, Beck GL, MDRD Study Group (2000) A simplified equation to predict glomerular filtration rate from serum creatinine (abstract). J Am Soc Nephrol 11:155AGoogle Scholar
  17. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Køber L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Rønnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A (2012) ESC Committee for Practice Guidelines. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European society of cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847Google Scholar
  18. Morgenthaler NG, Müller B, Struck J, Bergmann A, Redl H, Christ-Crain M (2007) Copeptin, a stable peptide of the arginine vasopressin precursor, is elevated in hemorrhagic and septic shock. Shock 28:219–226CrossRefPubMedGoogle Scholar
  19. Niizuma S, Iwanaga Y, Yahata T, Tamaki Y, Goto Y, Nakahama H, Miyazaki S (2009) Impact of left ventricular end-diastolic wall stress on plasma B-type natriuretic peptide in heart failure with chronic kidney disease and end-stage renal disease. Clin Chem 55:1347–1353CrossRefPubMedGoogle Scholar
  20. Plischke M, Kohl M, Bankir L, Shayganfar S, Handisurya A, Heinze G, Haas M (2014) Urine osmolarity and risk of dialysis initiation in a chronic kidney disease cohort–a possible titration target? PLoS One 9:e93226CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ponte B, Pruijm M, Ackermann D, Vuistiner P, Guessous I, Ehret G, Alwan H, Youhanna S, Paccaud F, Mohaupt M, Péchère-Bertschi A, Vogt B, Burnier M, Martin PY, Devuyst O, Bochud M (2015) Copeptin is associated with kidney length, renal function, and prevalence of simple cysts in a population-based study. J Am Soc Nephrol 6:1415–1425CrossRefGoogle Scholar
  22. Roussel R, Fezeu L, Marre M, Velho G, Fumeron F, Jungers P, Lantieri O, Balkau B, Bouby N, Bankir L, Bichet DG (2014) Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J Clin Endocrinol Metab 99:4656–4663CrossRefPubMedGoogle Scholar
  23. Roussel R, Matallah N, Bouby N, El Boustany R, Potier L, Fumeron F, Mohammedi K, Balkau B, Marre M, Bankir L, Velho G (2015) Plasma copeptin and decline in renal function in a cohort from the community: the prospective D.E.S.I.R. Study. Am J Nephrol 42:107–114CrossRefPubMedGoogle Scholar
  24. Tasevska I, Enhörning S, Christensson A, Persson M, Nilsson PM, Melander O (2016) Increased levels of copeptin, a surrogate marker of arginine vasopressin, are associated with an increased risk of chronic kidney disease in a general population. Am J Nephrol 44:22–28CrossRefPubMedGoogle Scholar
  25. Tesch GH (2010) Review: serum and urine biomarkers of kidney disease: a pathophysiological perspective. Nephrology (Carlton) 15:609–616CrossRefGoogle Scholar
  26. Vuilleumier N, Simona A, Méan M, Limacher A, Lescuyer P, E G, Bounameaux H, Aujesky D, Righini M (2016) Comparison of cardiac and non-cardiac biomarkers for risk stratification in elderly patients with non-massive pulmonary embolism. PLoS 11:e0155973CrossRefGoogle Scholar
  27. Yasuda K, Kimura T, Sasaki K, Obi Y, Iio K, Yamato M, Rakugi H, Isaka Y, Hayashi T (2012) Plasma B-type natriuretic peptide level predicts kidney prognosis in patients with predialysis chronic kidney disease. Nephrol Dial Transplant 27:3885–3891CrossRefPubMedGoogle Scholar
  28. Zittema D, Boertien WE, van Beek AP, Dullaart RP, Franssen CF, de Jong PE, Meijer E, Gansevoort RT (2012) Vasopressin, copeptin, and renal concentrating capacity in patients with autosomal dominant polycystic kidney disease without renal impairment. Clin J Am Soc Nephrol 7:906–913CrossRefPubMedGoogle Scholar
  29. Zittema D, van den Berg E, Meijer E, Boertien WE, Muller Kobold AC, Franssen CF, de Jong PE, Bakker SJ, Navis G, Gansevoort RT (2014) Kidney function and plasma copeptin levels in healthy kidney donors and autosomal dominant polycystic kidney disease patients. Clin J Am Soc Nephrol 9:1553–1562CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stanisław Niemczyk
    • 1
  • Longin Niemczyk
    • 1
    • 2
  • Wawrzyniec Żmudzki
    • 1
  • Marek Saracyn
    • 1
  • Katarzyna Czarzasta
    • 3
  • Katarzyna Szamotulska
    • 4
  • Agnieszka Cudnoch-Jędrzejewska
    • 3
  1. 1.Department of Internal Medicine, Nephrology and DialysisMilitary Institute of MedicineWarsawPoland
  2. 2.Department of Nephrology, Dialysis and Internal MedicineMedical University of WarsawWarsawPoland
  3. 3.Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical ResearchMedical University of WarsawWarsawPoland
  4. 4.Department of Epidemiology and BiostatisticsInstitute of Mother and Child in WarsawWarsawPoland

Personalised recommendations