pp 1-11 | Cite as

Oscillations of Subarachnoid Space Width as a Potential Marker of Cerebrospinal Fluid Pulsatility

  • Marcin Gruszecki
  • Magdalena K. Nuckowska
  • Arkadiusz Szarmach
  • Marek Radkowski
  • Dominika Szalewska
  • Monika Waskow
  • Edyta Szurowska
  • Andrzej F. Frydrychowski
  • Urszula Demkow
  • Pawel J. Winklewski
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

In the cerebrospinal fluid (CSF) circulation, two components can be distinguished: bulk flow (circulation) and pulsatile flow (back and forth motion). CSF pulsatile flow is generated by both cardiac and respiratory cycles. Recent years have seen increased interest in cardiac and respiratory-driven CSF pulsatility as an important component of cerebral homeostasis. CSF pulsatility is affected by cerebral arterial inflow and jugular outflow and potentially linked to white matter abnormalities in various diseases, such as multiple sclerosis or hypertension. In this review, we discuss the physiological mechanisms associated with CSF pulsation and its clinical significance. Finally, we explain the concept of using the oscillations of subarachnoid space width as a surrogate for CSF pulsatility.

Keywords

Cerebrospinal fluid CSF pulsation Oscillations Pulsatile flow Subarachnoid space 

Notes

Competing Interests

Drs. Andrzej Frydrychowski and Pawel J. Winklewski are stakeholders in NIRTI SA, Wierzbice, Poland, which has developed and produces the NIR-T/BSS device. NIRTI SA had no role in manuscript design, preparation, or the decision to publish.

References

  1. Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC (2008) The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology 50:491–497CrossRefPubMedGoogle Scholar
  2. Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C (2011) Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol 84:758–765CrossRefPubMedPubMedCentralGoogle Scholar
  3. Becher E (1919) Beobachtungen ueber die Abhaengigkeit des Lumbaldruckes yon der Kopfhaltung. Dtsch Z Nervenheilkd 63:89–96 (Article in German)Google Scholar
  4. Becher E (1924) Ueber Druckverhaeltnisse im Liqour cerebrospinalis. Grenzgeb Med Chir 35:324–332 (Article in German)Google Scholar
  5. Beggs CB, Magnano C, Belov P, Krawiecki J, Ramasamy DP, Hagemeier J, Zivadinov R (2016a) Internal jugular vein cross-sectional area and cerebrospinal fluid pulsatility in the aqueduct of sylvius: a comparative study between healthy subjects and multiple sclerosis patients. PLoS One 11:e0153960CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beggs CB, Magnano C, Shepherd SJ, Belov P, Ramasamy DP, Hagemeier J, Zivadinov R (2016b) Dirty-appearing white matter in the brain is associated with altered cerebrospinal fluid pulsatility and hypertension in individuals without neurologic disease. J Neuroimaging 26:136–143CrossRefPubMedGoogle Scholar
  7. Beggs CB, Magnano C, Shepherd SJ, Marr K, Valnarov V, Hojnacki D, Bergsland N, Belov P, Grisafi S, Dwyer MG, Carl E, Weinstock-Guttman B, Zivadinov R (2014) Aqueductal cerebrospinal fluid pulsatility in healthy individuals is affected by impaired cerebral venous outflow. J Magn Reson Imaging 40:1215–1222CrossRefPubMedGoogle Scholar
  8. Beggs CB, Shepherd SJ, Dwyer MG, Polak P, Magnano C, Carl E, Poloni GU, Weinstock-Guttman B, Zivadinov R (2012) Sensitivity and specificity of SWI venography for detection of cerebral venous alterations in multiple sclerosis. Neurol Res 34:793–801CrossRefPubMedGoogle Scholar
  9. Belov P, Magnano C, Krawiecki J, Hagemeier J, Bergsland N, Beggs C, Zivadinov R (2017) Age-related brain atrophy may be mitigated by internal jugular vein enlargement in male individuals without neurologic disease. Phlebology 32:125–134CrossRefPubMedGoogle Scholar
  10. Benarroch EE (2009) Brain iron homeostasis and neurodegenerative disease. Neurology 72:1436–1440CrossRefPubMedGoogle Scholar
  11. Bernjak A, Stefanovska A, McClintock PVE, Owen-Lynch PJ, Clarkson PBM (2012) Coherence between fluctuations in blood flow and oxygen saturation. Fluct Noise Lett 11:1240013CrossRefGoogle Scholar
  12. Caprio MG, Marr K, Gandhi S, Jakimovski D, Hagemeier J, Weinstock-Guttman B, Zivadinov R, Mancini M (2017) Centralized and local color Doppler ultrasound reading agreement for diagnosis of the chronic cerebrospinal venous insufficiency in patients with Multiple Sclerosis. Curr Neurovasc Res 14:266–273CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen L, Beckett A, Verma A, Feinberg DA (2015) Dynamics of respiratory and cardiac CSF motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging. NeuroImage 122:281–287CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chung CP, Beggs C, Wang PN, Bergsland N, Shepherd S, Cheng CY, Ramasamy DP, Dwyer MG, Hu HH, Zivadinov R (2014) Jugular venous reflux and white matter abnormalities in Alzheimer’s disease: a pilot study. J Alzheimers Dis 39:601–609PubMedGoogle Scholar
  15. Dreha-Kulaczewski S, Joseph AA, Merboldt KD, Ludwig HC, GaÈrtner J, Frahm J (2015) Inspiration is the major regulator of human CSF flow. J Neurosci 35:2485–2491CrossRefPubMedGoogle Scholar
  16. DuBoulay GH (1966) Pulsatile movements in the CSF pathways. Br J Radiol 139:255–262CrossRefGoogle Scholar
  17. DuBoulay GH, O’Connell J, Currie J, Bostic KT, Verity P (1972) Further investigations on pulsatile movements in the cerebrospinal fluid pathways. Acta Radiol 113:496–523Google Scholar
  18. Egnor M, Zheng L, Rosiello A, Gutman F, Davis R (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36:281–303CrossRefPubMedGoogle Scholar
  19. Enzmann DR, Pelc NJ (1991) Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology 178:467–474CrossRefPubMedGoogle Scholar
  20. Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 63:921e35CrossRefGoogle Scholar
  21. Frydrychowski AF, Gumiński W, Rojewski M, Kaczmarek J, Juzwa W (2002) Technical foundations for noninvasive assessment of changes in the width of the subarachnoid space with near-infrared transillumination-backscattering sounding (NIR-TBSS). IEEE Trans Biomed Eng 49:887–904CrossRefPubMedGoogle Scholar
  22. Frydrychowski AF, Pluciński J (2007) New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination-backscattering sounding, part 2: clinical verification in the patient. J Biomed Opt 12:044016CrossRefPubMedGoogle Scholar
  23. Frydrychowski AF, Szarmach A, Czaplewski B, Winklewski PJ (2012a) Subarachnoid space: new tricks by an old dog. PLoS One 7:e37529ADSCrossRefPubMedPubMedCentralGoogle Scholar
  24. Frydrychowski AF, Winklewski PJ, Guminski W (2012b) Influence of acute jugular vein compression on the cerebral blood flow velocity, pial artery pulsation and width of subarachnoid space in humans. PLoS One 7:e48245ADSCrossRefPubMedPubMedCentralGoogle Scholar
  25. Frydrychowski AF, Wszedybyl-Winklewska M, Guminski W, Przyborska A, Kaczmarek J, Winklewski PJ (2011) Use of near infrared transillumination/back scattering sounding (NIR-T/BSS) to assess effects of elevated intracranial pressure on width of subarachnoid space and cerebrovascular pulsation in animals. Acta Neurobiol Exp 71:313–321Google Scholar
  26. Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F (1992) Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 34:370–380CrossRefPubMedGoogle Scholar
  27. Jolly TA, Bateman GA, Levi CR, Parsons MW, Michie PT, Karayanidis F (2013) Early detection of microstructural white matter changes associated with arterial pulsatility. Front Hum Neurosci 7:782CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kalicka R, Mazur K, Wolf J, Frydrychowski AF, Narkiewicz K, Winklewski PJ (2017) Modelling of subarachnoid space width changes in apnoea resulting as a function of blood flow parameters. Microvasc Res 113:16–21CrossRefPubMedGoogle Scholar
  29. Knoll P (1886) Ueber die Druckschwankungen in der Cerebrospinalfluessigkeit und den Wechsel in der Blutfuelle des centralen Nervensystems. Sitzungsberichte der Wiener kaiserlichen Akademie der Wissenschaften. Bd. XCIII. Heft 5. Abtheilung 3. Jahrg. 1886. Wien 1886 (Article in German)Google Scholar
  30. Kuehn BM (2012) FDA warns about the risks of unproven surgical therapy for multiple sclerosis. JAMA 307:2575–2576PubMedGoogle Scholar
  31. Laukontaus SJ, Pekkola J, Numminen J, Kagayama T, Lepäntalo M, Färkkilä M, Atula S, Tienari P, Venermo M (2017) Magnetic resonance imaging of internal jugular veins in multiple sclerosis: interobserver agreement and comparison with Doppler ultrasound examination. Ann Vasc Surg 42:84–92CrossRefPubMedGoogle Scholar
  32. Lin JP, Kricheff II (1972) Angiographic investigation of cerebral aneurysms. Technical aspects. Radiology 105(1):69–76CrossRefPubMedGoogle Scholar
  33. Magnano C, Belov P, Krawiecki J, Hagemeier J, Beggs C, Zivadinov R (2016) Internal jugular vein cross-sectional area enlargement is associated with aging in healthy individuals. PLoS One 11:e0149532CrossRefPubMedPubMedCentralGoogle Scholar
  34. Magnano C, Schirda C, Weinstock-Guttman B, Wack DS, Lindzen E, Hojnacki D, Bergsland N, Kennedy C, Belov P, Dwyer MG, Poloni GU, Beggs CB, Zivadinov R (2012) Cine cerebrospinal fluid imaging in multiple sclerosis. J Magn Reson Imaging 36:825–834CrossRefPubMedGoogle Scholar
  35. Pluciński J, Frydrychowski AF (2007) New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination/backscattering sounding, part 1: Monte Carlo numerical modeling. J Biomed Opt 12:044015CrossRefPubMedGoogle Scholar
  36. Pluciński J, Frydrychowski AF, Kaczmarek J, Juzwa W (2000) Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space. J Biomed Opt 5:291–299CrossRefPubMedGoogle Scholar
  37. Quencer RM, Post MJ, Hinks RS (1990) Cine MR in the evaluation of normal and abnormal CSF flow: intracranial and intraspinal studies. Neuroradiology 32:371–391CrossRefPubMedGoogle Scholar
  38. Schroth G, Klose U (1992a) Cerebrospinal fluid flow. I. Physiology of cardiac-related pulsation. Neuroradiology 35:1–9CrossRefPubMedGoogle Scholar
  39. Schroth G, Klose U (1992b) Cerebrospinal fluid flow. I. Physiology of respiration-related pulsation. Neuroradiology 35:10–15CrossRefPubMedGoogle Scholar
  40. Siddiqui AH, Zivadinov R, Benedict RH, Karmon Y, Yu J, Hartney ML, Marr KL, Valnarov V, Kennedy CL, Ramanathan M, Ramasamy DP, Dolic K, Hojnacki DW, Carl E, Levy EI, Hopkins LN, Weinstock-Guttman B (2014) Prospective randomized trial of venous angioplasty in MS (PREMiSe). Neurology 83:441–449CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shiogai Y, Stefanovska A, McClintock PV (2010) Nonlinear dynamics of cardiovascular ageing. Phys Rep 488:51–110ADSCrossRefPubMedPubMedCentralGoogle Scholar
  42. Singh AV, Zamboni P (2009) Anomalous venous blood flow and iron deposition in multiple sclerosis. J Cereb Blood Flow Metab 29:1867–1878CrossRefPubMedGoogle Scholar
  43. Stefanovska A, Bracic M, Kvernmo HD (1999) Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Biomed Eng 46:1230–1239CrossRefPubMedGoogle Scholar
  44. Wagshul ME, Chen JJ, Egnor MR, McCormack EJ, Roche PE (2006) Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg 104:810–819CrossRefPubMedGoogle Scholar
  45. Winklewski PJ, Barak O, Madden D, Gruszecka A, Gruszecki M, Guminski W, Kot J, Frydrychowski AF, Drvis I, Dujic Z (2015a) Effect of maximal apnoea easy-going and struggle phases on subarachnoid width and pial artery pulsation in elite breath-hold divers. PLoS One 10:e0135429CrossRefPubMedPubMedCentralGoogle Scholar
  46. Winklewski PJ, Gruszecki M, Wolf J, Swierblewska E, Kunicka K, Wszedybyl-Winklewska M, Guminski W, Zabulewicz J, Frydrychowski AF, Bieniaszewski L, Narkiewicz K (2015b) Wavelet transform analysis to assess oscillations in pial artery pulsation at the human cardiac frequency. Microvasc Res 99:86–91CrossRefPubMedGoogle Scholar
  47. Winklewski PJ, Tkachenko Y, Mazur K, Kot J, Gruszecki M, Guminski W, Czuszynski K, Wtorek J, Frydrychowski AF (2015c) Sympathetic activation does not affect the cardiac and respiratory contribution to the relationship between blood pressure and pial artery pulsation oscillations in healthy subjects. PLoS One 10:e0135751CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wszedybyl-Winklewska M, Wolf J, Swierblewska E, Kunicka K, Gruszecka A, Gruszecki M, Kucharska W, Winklewski PJ, Zabulewicz J, Guminski W, Pietrewicz M, Frydrychowski AF, Bieniaszewski L, Narkiewicz K (2017a) Acute hypoxia diminishes the relationship between blood pressure and subarachnoid space width oscillations at the human cardiac frequency. PLoS One 12:e0172842CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wszedybyl-Winklewska M, Wolf J, Swierblewska E, Kunicka K, Mazur K, Gruszecki M, Winklewski PJ, Frydrychowski AF, Bieniaszewski L, Narkiewicz K (2017b) Increased inspiratory resistance affects the dynamic relationship between blood pressure changes and subarachnoid space width oscillations. PLoS One 12:e0179503CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wszedybyl-Winklewska M, Wolf J, Szarmach A, Winklewski PJ, Szurowska E, Narkiewicz K (2017c) Central sympathetic nervous system reinforcement in obstructive sleep apnoea. Sleep Med Rev.  https://doi.org/10.1016/j.smrv.2017.08.006
  51. Zamboni P, Galeotti R, Menegatti E, Malagoni AM, Gianesini S, Bartolomei I, Mascoli F, Salvi F (2009a) A prospective open-label study of endovascular treatment of chronic cerebrospinal venous insufficiency. J Vasc Surg 50:1348–1358CrossRefPubMedGoogle Scholar
  52. Zamboni P, Galeotti R, Menegatti E, Malagoni AM, Tacconi G, Dall’Ara S, Bartolomei I, Salvi F (2009b) Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 80:392–399CrossRefPubMedGoogle Scholar
  53. Zamboni P, Menegatti E, Weinstock-Guttman B, Schirda C, Cox JL, Malagoni AM, Hojanacki D, Kennedy C, Carl E, Dwyer MG, Bergsland N, Galeotti R, Hussein S, Bartolomei I, Salvi F, Zivadinov R (2009c) The severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis is related to altered cerebrospinal fluid dynamics. Funct Neurol 24:133–138PubMedGoogle Scholar
  54. Zivadinov R, Magnano C, Galeotti R, Schirda C, Menegatti E, Weinstock-Guttman B, Marr K, Bartolomei I, Hagemeier J, Malagoni AM, Hojnacki D, Kennedy C, Carl E, Beggs C, Salvi F, Zamboni P (2013) Changes of cine cerebrospinal fluid dynamics in patients with multiple sclerosis treated with percutaneous transluminal angioplasty: a case-control study. J Vasc Interv Radiol 24:829–838CrossRefPubMedGoogle Scholar
  55. Zivadinov R, Ramanathan M, Dolic K, Marr K, Karmon Y, Siddiqui AH, Benedict RH, Weinstock-Guttman B (2011) Chronic cerebrospinal venous insufficiency in multiple sclerosis: diagnostic, pathogenetic, clinical and treatment perspectives. Expert Rev Neurother 11:1277–1294CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG  2018

Authors and Affiliations

  • Marcin Gruszecki
    • 1
  • Magdalena K. Nuckowska
    • 2
  • Arkadiusz Szarmach
    • 3
  • Marek Radkowski
    • 4
  • Dominika Szalewska
    • 5
  • Monika Waskow
    • 6
  • Edyta Szurowska
    • 3
  • Andrzej F. Frydrychowski
    • 2
  • Urszula Demkow
    • 7
  • Pawel J. Winklewski
    • 2
    • 3
    • 6
  1. 1.Department of Radiology Informatics and StatisticsMedical University of GdanskGdanskPoland
  2. 2.Department of Human PhysiologyMedical University of GdanskGdanskPoland
  3. 3.Second Department of RadiologyMedical University of GdanskGdanskPoland
  4. 4.Department of Immunopathology of Infectious and Parasitic DiseasesWarsaw Medical UniversityWarsawPoland
  5. 5.Chair of Rehabilitation MedicineMedical University of GdanskGdanskPoland
  6. 6.Faculty of Health SciencesSlupsk Pomeranian UniversitySlupskPoland
  7. 7.Department of Laboratory Diagnostics and Clinical Immunology of Developmental AgeWarsaw Medical UniversityWarsawPoland

Personalised recommendations