Skip to main content

P2Y1 Receptors – Properties and Functional Activities

Part of the Advances in Experimental Medicine and Biology book series (PROTRE,volume 1051)

Abstract

In this chapter we try to show a comprehensive image of current knowledge of structure, activity and physiological role of the P2Y1 purinergic receptor. The structure, distribution and changes in the expression of this receptor are summarized, as well as the mechanism of its signaling activity by the intracellular calcium mobilization. We try to show the connection between the components of its G protein activation and cellular or physiological effects, starting from changes in protein phosphorylation patterns and ending with such remote effects as receptor-mediated apoptosis. The special emphasis is put on the role of the P2Y1 receptor in cancer cells and neuronal plasticity. We concentrate on the P2Y1 receptor, it is though impossible to completely abstract from other aspects of nucleotide signaling and cross-talk with other nucleotide receptors is here discussed. Especially, the balance between P2Y1 and P2Y12 receptors, sharing the same ligand but signaling through different pathways, is presented.

Keywords

This is a preview of subscription content, log in via an institution.

Abbreviations

AC:

Adenylate cyclase

Akt:

Protein kinase B/Akt kinase

[Ca2+]:

Intracellular calcium concentration

CA1:

Cornu Ammonis area 1

CA3:

Cornu Ammonis area 3

DAG:

Diacylglycerol

ER:

Endoplasmic reticulum

ERK1/2:

Extracellular signal-regulated kinases 1/2

GABA:

γ-Aminobutyric acid

IP3 :

Inositol-1,4,5-trisphosphate

LTD:

Long term depression

mGluR:

Metabotropic glutamate receptor

2MeSADP:

2-Methylthio ADP

MRS2365:

(N)-Methanocarba 2MeSADP

NMDA:

N-Methyl-D-aspartic acid

NR2B:

NMDA receptor subtype 2B

PI3K:

Phosphatidylinositol 3-kinase

PIP2 :

Phosphatidylinositol-4,5-bisphosphate

PIP3 :

Phosphatidylinositol-3,4,5-trisphosphate

PKC:

Protein kinase C

PLC:

Phospholipase C

PMCA:

Plasma membrane calcium pump

PPADS:

Pyridoxal-phosphate-6-azophenyl-2′,4′disulfonic acid

PTEN:

3-Phosphatase and tensin homolog

SOCE:

Store-operated calcium entry

STIM1:

Stromal interaction molecule

TM:

Transmembrane domain

References

  • Abbracchio MP, Boeynaems J-MM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA, Burnstock G (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24:52–55

    CrossRef  CAS  PubMed  Google Scholar 

  • Abbracchio MP, Burnstock G, Boeynaems J-M, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson CM, Bergher JP, Swanson RA (2004) ATP-induced ATP release from astrocytes. J Neurochem 88:246–256

    CrossRef  CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    CrossRef  CAS  PubMed  Google Scholar 

  • Banachewicz W, Supłat D, Krzemiński P, Pomorski P, Barańska J (2005) P2 nucleotide receptors on C2C12 satellite cells. Purinergic Signal 1:249–257

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Barańska J, Chaban V, Czarny M, Sabała P (1995) Changes in Ca2+ concentration in phorbol ester and thapsigargin treated glioma C6 cells. The role of protein kinase C in regulation of Ca2+ entry. Cell Calcium 17:207–215

    CrossRef  PubMed  Google Scholar 

  • Barańska J, Czajkowski R, Sabała P (2004) Cross-talks between nucleotide receptor-induced signaling pathways in serum-deprived and non-starved glioma C6 cells. Adv Enzym Regul 44:219–232

    CrossRef  CAS  Google Scholar 

  • Barragán-Iglesias P, Mendoza-Garcés L, Pineda-Farias JB, Solano-Olivares V, Rodríguez-Silverio J, Flores-Murrieta FJ, Granados-Soto V, Rocha-González HI (2015) Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats. Pharmacol Biochem Behav 128:23–32

    CrossRef  PubMed  CAS  Google Scholar 

  • Barragán-Iglesias P, Pineda-Farias JB, Bravo-Hernández M, Cervantes-Durán C, Price TJ, Murbartián J, Granados-Soto V (2016) Predominant role of spinal P2Y1 receptors in the development of neuropathic pain in rats. Brain Res 1636:43–51

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett GC, Boarder MR (2000) The effect of nucleotides and adenosine on stimulus-evoked glutamate release from rat brain cortical slices. Br J Pharmacol 131:617–623

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird GS, Hwang S-Y, Smyth JT, Fukushima M, Boyles RR, Putney JW (2009) STIM1 is a calcium sensor specialized for digital signaling. Curr Biol 19:1724–1729

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Boarder MR, Hourani SM (1998) The regulation of vascular function by P2 receptors: multiple sites and multiple receptors. Trends Pharmacol Sci 19:99–107

    CrossRef  CAS  PubMed  Google Scholar 

  • Bowser DN, Khakh BS (2007) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129:485–491

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G (2002) Potential therapeutic targets in the rapidly expanding field of purinergic signalling. Clin Med 2:45–53

    CrossRef  CAS  Google Scholar 

  • Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    CrossRef  CAS  PubMed  Google Scholar 

  • Burnstock G (2017) Purinergic signaling in the cardiovascular system. Circ Res 120:207–228

    CrossRef  CAS  PubMed  Google Scholar 

  • Burnstock G ed. (2014) Special issue: purinergic signalling in visceral organs in health and disease. Purinergic Signal 10:1–231

    CrossRef  CAS  Google Scholar 

  • Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    CrossRef  CAS  PubMed  Google Scholar 

  • Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    CrossRef  CAS  PubMed  Google Scholar 

  • Calloway N, Vig M, Kinet J-P, Holowka D, Baird B (2009) Molecular clustering of STIM1 with orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol Biol Cell 20:389–399

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–4245

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasquero LMG, Delicado EG, Jiménez AI, Pérez-Sen R, Miras-Portugal MT (2005) Cerebellar astrocytes co-express several ADP receptors. Presence of functional P2Y(13)-like receptors. Purinergic Signal 1:153–159

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceruti S, Abbracchio MP (2013) Adenosine signaling in glioma cells. Adv Exp Med Biol 986:13–30

    CrossRef  CAS  PubMed  Google Scholar 

  • Cha SH, Hahn TW, Sekine T, Lee KH, Endou H (2000) Purinoceptor-mediated calcium mobilization and cellular proliferation in cultured bovine corneal endothelial cells. Jpn J Pharmacol 82:181–187

    CrossRef  CAS  PubMed  Google Scholar 

  • Chen Y-F, Chiu W-T, Chen Y-T, Lin P-Y, Huang H-J, Chou C-Y, Chang H-C, Tang M-J, Shen M-R (2011) Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci 108:15225–15230

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-T, Chen Y-F, Chiu W-T, Wang Y-K, Chang H-C, Shen M-R (2013) The ER Ca2+ sensor STIM1 regulates actomyosin contractility of migratory cells. J Cell Sci 126:1260–1267

    CrossRef  CAS  PubMed  Google Scholar 

  • Chhatriwala M, Ravi RG, Patel RI, Boyer JL, Jacobson KA, Harden TK (2004) Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by conformational constraint of an ADP analog. J Pharmacol Exp Ther 311:1038–1043

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiono M, Mahey R, Tate G, Cooper DM (1995) Capacitative Ca2+ entry exclusively inhibits cAMP synthesis in C6-2B glioma cells. Evidence that physiologically evoked Ca2+ entry regulates Ca(2+)-inhibitable adenylyl cyclase in non-excitable cells. J Biol Chem 270:1149–1155

    CrossRef  CAS  PubMed  Google Scholar 

  • Choi R, Wong CSS, Simon J, Barnard EA (2005) Agonist-induced homodimerisation of P2Y1 receptors demonstrated by fluorescence energy transfer analysis. Proc Br Pharmacol Soc 3:abst010P. http//www.pa2online.org/abstracts/Vol3Issue2abst001P.pdf

  • Claes P, Grobben B, Van Kolen K, Roymans D, Slegers H (2001) P2Y(AC)(−)-receptor agonists enhance the proliferation of rat C6 glioma cells through activation of the p42/44 mitogen-activated protein kinase. Br J Pharmacol 134:402–408

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Claes P, Van Kolen K, Roymans D, Blero D, Vissenberg K, Erneux C, Verbelen J-P, Esmans EL, Slegers H (2004) Reactive blue 2 inhibition of cyclic AMP-dependent differentiation of rat C6 glioma cells by purinergic receptor-independent inactivation of phosphatidylinositol 3-kinase. Biochem Pharmacol 67:1489–1498

    CrossRef  CAS  PubMed  Google Scholar 

  • Czajkowski R, Lei L, Sabała P, Barańska J (2002) ADP-evoked phospholipase C stimulation and adenylyl cyclase inhibition in glioma C6 cells occur through two distinct nucleotide receptors, P2Y(1) and P2Y(12). FEBS Lett 513:179–183

    CrossRef  CAS  PubMed  Google Scholar 

  • Czajkowski R, Banachewicz W, Ilnytska O, Drobot LB, Baranska J (2004) Differential effects of P2Y1 and P2Y12 nucleotide receptors on ERK1/ERK2 and phosphatidylinositol 3-kinase signalling and cell proliferation in serum-deprived and nonstarved glioma C6 cells. Br J Pharmacol 141:497–507

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Ambrosi N, Iafrate M, Saba E, Rosa P, Volonté C (2007) Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. Biochim Biophys Acta Biomembr 1768:1592–1599

    CrossRef  CAS  Google Scholar 

  • De Simone R, Niturad CE, De Nuccio C, Ajmone-Cat MA, Visentin S, Minghetti L (2010) TGF-β and LPS modulate ADP-induced migration of microglial cells through P2Y1 and P2Y12 receptor expression. J Neurochem 115:450–459

    CrossRef  PubMed  CAS  Google Scholar 

  • Dugan LL, Kim JS, Zhang Y, Bart RD, Sun Y, Holtzman DM, Gutmann DH (1999) Differential effects of cAMP in neurons and astrocytes. Role of B-raf J Biol Chem 274:25842–25848

    CAS  PubMed  Google Scholar 

  • Ecke D, Hanck T, Tulapurkar ME, Schäfer R, Kassack M, Stricker R, Reiser G (2008) Hetero-oligomerization of the P2Y 11 receptor with the P2Y 1 receptor controls the internalization and ligand selectivity of the P2Y 11 receptor. Biochem J 409:107–116

    CrossRef  CAS  PubMed  Google Scholar 

  • Erb L, Weisman GA (2012) Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip Rev Membr Transp Signal 1:789–803

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357:503–505

    CrossRef  CAS  PubMed  Google Scholar 

  • Fields RD (2011) Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol 22:214–219

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippov AK, Simon J, Barnard EA, Brown DA (2010) The scaffold protein NHERF2 determines the coupling of P2Y1 nucleotide and mGluR5 glutamate receptor to different ion channels in neurons. J Neurosci 30:11068–11072

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Filtz TM, Li Q, Boyer JL, Nicholas RA, Harden TK (1994) Expression of a cloned P2Y purinergic receptor that couples to phospholipase C. Mol Pharmacol 46:8–14

    CAS  PubMed  Google Scholar 

  • Fumagalli M, Brambilla R, D’Ambrosi N, Volonté C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–213

    CrossRef  PubMed  Google Scholar 

  • Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P, Abbracchio MP (2004) Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y(13) receptor. Biochem Pharmacol 68:113–124

    CrossRef  CAS  PubMed  Google Scholar 

  • Grobben B, Claes P, Van Kolen K, Roymans D, Fransen P, Sys SU, Slegers H (2001) Agonists of the P2Y(AC)-receptor activate MAP kinase by a ras-independent pathway in rat C6 glioma. J Neurochem 78:1325–1338

    CrossRef  CAS  PubMed  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    CAS  PubMed  Google Scholar 

  • Guzman SJ, Gerevich Z (2016) P2Y receptors in synaptic transmission and plasticity: therapeutic potential in cognitive dysfunction. Neural Plast 2016:1–12

    CrossRef  Google Scholar 

  • Guzman SJ, Gerevich Z, Hengstler JG, Illes P, Kleemann W (2005) P2Y1 receptors inhibit both strength and plasticity of glutamatergic synaptic neurotransmission in the rat prefrontal cortex. Synapse 57:235–238

    CrossRef  CAS  PubMed  Google Scholar 

  • Guzman SJ, Schmidt H, Franke H, Krügel U, Eilers J, Illes P, Gerevich Z (2010) P2Y1 receptors inhibit long-term depression in the prefrontal cortex. Neuropharmacology 59:406–415

    CrossRef  CAS  PubMed  Google Scholar 

  • Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy AR, Jones ML, Mundell SJ, Poole AW (2004) Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood 104:1745–1752

    CrossRef  CAS  PubMed  Google Scholar 

  • Hechler B, Gachet C (2015) Purinergic receptors in thrombosis and inflammation. Arterioscler Thromb Vasc Biol 35:2307–2315

    CrossRef  CAS  PubMed  Google Scholar 

  • Henderson DJ, Elliot DG, Smith GM, Webb TE, Dainty IA (1995) Cloning and characterisation of a bovine P2Y receptor. Biochem Biophys Res Commun 212:648–656

    CrossRef  CAS  PubMed  Google Scholar 

  • Hockley JRF, Tranter MM, McGuire C, Boundouki G, Cibert-Goton V, Thaha MA, Blackshaw LA, Michael GJ, Baker MD, Knowles CH, Winchester WJ, Bulmer DC (2016) P2Y receptors sensitize mouse and human colonic nociceptors. J Neurosci 36:2364–2376

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann C, Moro S, Nicholas RA, Harden TK, Jacobson KA (1999) The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes. J Biol Chem 274:14639–14647

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    CrossRef  CAS  PubMed  Google Scholar 

  • Illes P, Ribeiro AJ (2004) Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol 483:5–17

    CrossRef  CAS  PubMed  Google Scholar 

  • Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, Moriishi K, Moriyama Y, Koizumi S (2013) Microglia release ATP by exocytosis. Glia 61:1320–1330

    CrossRef  PubMed  Google Scholar 

  • Jalink K, Hordijk PL, Moolenaar WH (1994) Growth factor-like effects of lysophosphatidic acid, a novel lipid mediator. Biochim Biophys Acta 1198:185–196

    PubMed  Google Scholar 

  • Janssens R, Communi D, Pirotton S, Samson M, Parmentier M, Boeynaems JM (1996) Cloning and tissue distribution of the human P2Y1 receptor. Biochem Biophys Res Commun 221:588–593

    CrossRef  CAS  PubMed  Google Scholar 

  • Jiang Q, Guo D, Lee BX, Van Rhee AM, Kim YC, Nicholas RA, Schachter JB, Harden TK, Jacobson KA (1997) A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor. Mol Pharmacol 52:499–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339

    CrossRef  CAS  PubMed  Google Scholar 

  • Kawamura M, Gachet C, Inoue K, Kato F (2004) Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice. J Neurosci 24:10835–10845

    CrossRef  CAS  PubMed  Google Scholar 

  • Kłopocka W, Korczyński J, Pomorski P (2013) Cytoskeleton and nucleotide signaling in glioma C6 cells. Adv Exp Med Biol 986:103–119

    CrossRef  PubMed  CAS  Google Scholar 

  • Koch H, Franke H, Kruegel U (2010) Impact of purinergic receptors in prefrontal mediated cognitive and executive functions. Eur Neuropsychopharmacol 20:S43–S44

    CrossRef  Google Scholar 

  • Koch H, Bespalov A, Drescher K, Franke H, Krügel U (2015) Impaired cognition after stimulation of P2Y1 receptors in the rat medial prefrontal cortex. Neuropsychopharmacology 40:305–314

    CrossRef  CAS  PubMed  Google Scholar 

  • Koizumi S, Fujishita K, Tsuda M, Shigemoto-Mogami Y, Inoue K (2003) Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proc Natl Acad Sci USA 100:11023–11028

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranenburg O, Moolenaar WH (2001) Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene 20:1540–1546

    CrossRef  CAS  PubMed  Google Scholar 

  • Krzemiński P, Supłat D, Czajkowski R, Pomorski P, Barańska J (2007) Expression and functional characterization of P2Y1 and P2Y 12 nucleotide receptors in long-term serum-deprived glioma C6 cells. FEBS J 274:1970–1982

    CrossRef  PubMed  CAS  Google Scholar 

  • Kubiatowski T, Jang T, Lachyankar MB, Salmonsen R, Nabi RR, Quesenberry PJ, Litofsky NS, Ross AH, Recht LD (2001) Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg 95:480–488

    CrossRef  CAS  PubMed  Google Scholar 

  • Kwon S-G, Roh D-H, Yoon S-Y, Moon J-Y, Choi S-R, Choi H-S, Kang S-Y, Han H-J, Beitz AJ, Oh SB, Lee J-H (2014) Acid evoked thermal hyperalgesia involves peripheral P2Y1 receptor mediated TRPV1 phosphorylation in a rodent model of thrombus induced ischemic pain. Mol Pain 10:1744-8069-10–2

    Google Scholar 

  • Lalo U, Rasooli-Nejad S, Pankratov Y (2014) Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging. Biochem Soc Trans 42:1275–1281

    CrossRef  CAS  PubMed  Google Scholar 

  • Léon C, Vial C, Cazenave JP, Gachet C (1996) Cloning and sequencing of a human cDNA encoding endothelial P2Y1 purinoceptor. Gene 171:295–297

    CrossRef  PubMed  Google Scholar 

  • Léon C, Hechler B, Vial C, Leray C, Cazenave JP, Gachet C (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett 403:26–30

    CrossRef  PubMed  Google Scholar 

  • Li G, Zhang Z, Wang R, Ma W, Yang Y, Wei J, Wei Y (2013) Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest. J Exp Clin Cancer Res 32:20

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Luthardt J, Borvendeg SJ, Sperlagh B, Poelchen W, Wirkner K, Illes P (2003) P2Y(1) receptor activation inhibits NMDA receptor-channels in layer V pyramidal neurons of the rat prefrontal and parietal cortex. Neurochem Int 42:161–172

    CrossRef  CAS  PubMed  Google Scholar 

  • Mamedova LK, Gao Z-G, Jacobson KA (2006) Regulation of death and survival in astrocytes by ADP activating P2Y1 and P2Y12 receptors. Biochem Pharmacol 72:1031–1041

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Fernández V, Andrew RD, Barajas-López C (2000) ATP inhibits glutamate synaptic release by acting at P2Y receptors in pyramidal neurons of hippocampal slices. J Pharmacol Exp Ther 293:172–179

    PubMed  Google Scholar 

  • Messens J, Slegers H (1992) Synthesis of glial fibrillary acidic protein in rat C6 glioma in chemically defined medium: cyclic AMP-dependent transcriptional and translational regulation. J Neurochem 58:2071–2080

    CrossRef  CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    CrossRef  CAS  PubMed  Google Scholar 

  • Mitchell C, Syed N -i.-H, Tengah A, Gurney AM, Kennedy C (2012) Identification of contractile P2Y1, P2Y6, and P2Y12 receptors in rat intrapulmonary artery using selective ligands. J Pharmacol Exp Ther 343:755–762

    Google Scholar 

  • Montero TD, Orellana JA (2015) Hemichannels: new pathways for gliotransmitter release. Neuroscience 286:45–59

    CrossRef  CAS  PubMed  Google Scholar 

  • Moolenaar WH (1999) Bioactive lysophospholipids and their G protein-coupled receptors. Exp Cell Res 253:230–238

    CrossRef  CAS  PubMed  Google Scholar 

  • Moore D, Chambers J, Waldvogel H, Faull R, Emson P (2000) Regional and cellular distribution of the P2Y(1) purinergic receptor in the human brain: striking neuronal localisation. J Comp Neurol 421:374–384

    CrossRef  CAS  PubMed  Google Scholar 

  • Moore D, Chambers J, Wahlin J, Tan K, Moore G, Jenkins O, Emson P, Murdock P (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta 1521:107–119

    CrossRef  CAS  PubMed  Google Scholar 

  • Moraga-Amaro R, Jerez-Baraona JM, Simon F, Stehberg J (2014) Role of astrocytes in memory and psychiatric disorders. J Physiol 108:240–251

    CAS  Google Scholar 

  • Morán-Jiménez MJ, Matute C (2000) Immunohistochemical localization of the P2Y(1) purinergic receptor in neurons and glial cells of the central nervous system. Brain Res Mol Brain Res 78:50–58

    CrossRef  PubMed  Google Scholar 

  • Nakata H, Yoshioka K, Saitoh O (2003) Hetero-oligomerization between adenosine A1 and P2Y1 receptors in living cells: formation of ATP-sensitive adenosine receptors. Drug Dev Res 58:340–349

    CrossRef  CAS  Google Scholar 

  • Naviaux RK, Zolkipli Z, Wang L, Nakayama T, Naviaux JC, Le TP, Schuchbauer MA, Rogac M, Tang Q, Dugan LL, Powell SB (2013) Antipurinergic therapy corrects the autism-like features in the Poly(IC) mouse model. PLoS One 8:e57380

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Naviaux JC, Schuchbauer MA, Li K, Wang L, Risbrough VB, Powell SB, Naviaux RK (2014) Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry 4:e400

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Grady SM, Elmquist E, Filtz TM, Nicholas RA, Harden TK (1996) A guanine nucleotide-independent inwardly rectifying cation permeability is associated with P2Y1 receptor expression in Xenopus oocytes. J Biol Chem 271:29080–29087

    CrossRef  PubMed  Google Scholar 

  • Pankratov Y, Lalo U, Castro E, Miras-Portugal MT, Krishtal O (1999) ATP receptor-mediated component of the excitatory synaptic transmission in the hippocampus. Prog Brain Res 120:237–249

    CrossRef  CAS  PubMed  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflügers Arch – Eur J Physiol 452:589–597

    CrossRef  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A, North RA (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul J-Y, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    CrossRef  CAS  PubMed  Google Scholar 

  • Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109:E197–E205

    CrossRef  CAS  PubMed  Google Scholar 

  • Putney JW (1990) Capacitative calcium entry revisited. Cell Calcium 11:611–624

    CrossRef  CAS  PubMed  Google Scholar 

  • Putney JW, Bird GSJ (1993) The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev 14:610–631

    CrossRef  CAS  PubMed  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  • Rapaport E (1983) Treatment of human tumor cells with ADP or ATP yields arrest of growth in the S phase of the cell cycle. J Cell Physiol 114:279–283

    CrossRef  CAS  PubMed  Google Scholar 

  • Rapaport E (1990) Mechanisms of anticancer activities of adenine nucleotides in tumor-bearing hosts. Ann N Y Acad Sci 603:142-9-50

    Google Scholar 

  • Rapaport E, Fontaine J (1989) Generation of extracellular ATP in blood and its mediated inhibition of host weight loss in tumor-bearing mice. Biochem Pharmacol 38:4261–4266

    CrossRef  CAS  PubMed  Google Scholar 

  • Ribeiro-Filho AC, Buri MV, Barros CC, Dreyfuss JL, Nader HB, Justo GZ, Craveiro RB, Pesquero JB, Miranda A, Ferreira AT, Paredes-Gamero EJ (2016) Functional and molecular evidence for heteromeric association of P2Y1 receptor with P2Y2 and P2Y4 receptors in mouse granulocytes. BMC Pharmacol Toxicol 17:29

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286–6295

    CrossRef  CAS  PubMed  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca 2 + channel function. J Cell Biol 169:435–445

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabala P, Czajkowski R, Przybyłek K, Kalita K, Kaczmarek L, Barańska J (2001) Two subtypes of G protein-coupled nucleotide receptors, P2Y(1) and P2Y(2) are involved in calcium signalling in glioma C6 cells. Br J Pharmacol 132:393–402

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitow F, Murakoshi T, Suzuki H, Konishi S (2005) Metabotropic P2Y purinoceptor-mediated presynaptic and postsynaptic enhancement of cerebellar GABAergic transmission. J Neurosci 25:2108–2116

    CrossRef  CAS  PubMed  Google Scholar 

  • Sak K, Illes P (2005) Neuronal and glial cell lines as model systems for studying P2Y receptor pharmacology. Neurochem Int 47:401–412

    CrossRef  CAS  PubMed  Google Scholar 

  • Salińska E, Danysz W, Łazarewicz JW (2005) The role of excitotoxicity in neurodegeneration. Folia Neuropathol 43:322–339

    PubMed  Google Scholar 

  • Schachter JB, Li Q, Boyer JL, Nicholas RA, Harden TK (1996) Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor. Br J Pharmacol 118:167–173

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellers LA, Simon J, Lundahl TS, Cousens DJ, Humphrey PP, Barnard EA (2001) Adenosine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J Biol Chem 276:16379–16390

    CrossRef  CAS  PubMed  Google Scholar 

  • Soulet C, Hechler B, Gratacap M-P, Plantavid M, Offermanns S, Gachet C, Payrastre B (2005) A differential role of the platelet ADP receptors P2Y1 and P2Y12 in Rac activation. J Thromb Haemost 3:2296–2306

    CrossRef  CAS  PubMed  Google Scholar 

  • Stork PJS, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266

    CrossRef  CAS  PubMed  Google Scholar 

  • Suplat D, Krzemiński P, Pomorski P, Barańska J (2007) P2Y1 and P2Y12 receptor cross-talk in calcium signalling: evidence from nonstarved and long-term serum-deprived glioma C6 cells. Purinergic Signal 3:221–230

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuyama Y, Hara M, Jones EMC, Fan Z, Bell GI (1995) Cloning of Rat and Mouse P2Y Purinoceptors. Biochem Biophys Res Commun 211:211–218

    CrossRef  CAS  PubMed  Google Scholar 

  • Tremblay M-È, Majewska AK (2011) A role for microglia in synaptic plasticity? Commun Integr Biol 4:220–222

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Uehara K, Uehara A (2011) P2Y1, P2Y6, and P2Y12 receptors in rat splenic sinus endothelial cells: an immunohistochemical and ultrastructural study. Histochem Cell Biol 136:557–567

    CrossRef  CAS  PubMed  Google Scholar 

  • Van Kolen K, Slegers H (2006) Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks. Purinergic Signal 2:451–469

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Kolen K, Gilany K, Moens L, Esmans EL, Slegers H (2006) P2Y12 receptor signalling towards PKB proceeds through IGF-I receptor cross-talk and requires activation of Src, Pyk2 and Rap1. Cell Signal 18:1169–1181

    CrossRef  PubMed  CAS  Google Scholar 

  • von Kügelgen I, Koch H, Starke K (1997) P2-receptor-mediated inhibition of serotonin release in the rat brain cortex. Neuropharmacology 36:1221–1227

    CrossRef  Google Scholar 

  • Waldo GL, Harden TK (2004) Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol 65:426–436

    CrossRef  CAS  PubMed  Google Scholar 

  • Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF, Burnstock G, Barnard EA (1993) Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett 324:219–225

    CrossRef  CAS  PubMed  Google Scholar 

  • Webb TE, Feolde E, Vigne P, Neary JT, Runberg A, Frelin C, Barnard EA (1996) The P2Y purinoceptor in rat brain microvascular endothelial cells couple to inhibition of adenylate cyclase. Br J Pharmacol 119:1385–1392

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Costanzi S, Liu Q-Z, Gao Z-G, Jacobson KA (2011) Activation of the P2Y1 receptor induces apoptosis and inhibits proliferation of prostate cancer cells. Biochem Pharmacol 82:418–425

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27:211–217

    CrossRef  CAS  PubMed  Google Scholar 

  • White N, Ryten M, Clayton E, Butler P, Burnstock G (2005) P2Y purinergic receptors regulate the growth of human melanomas. Cancer Lett 224:81–91

    CrossRef  CAS  PubMed  Google Scholar 

  • Wypych D, Barańska J (2013) Cross-talk in nucleotide signaling in glioma C6 cells. Adv Exp Med Biol 986:31–59

    CrossRef  CAS  PubMed  Google Scholar 

  • Wypych D, Pomorski P (2012) P2Y1 nucleotide receptor silencing and its effect on glioma C6 calcium signaling. Acta Biochim Pol 59:711–717

    PubMed  Google Scholar 

  • Wypych D, Pomorski P (2013) Calcium signaling in glioma cells – the role of nucleotide receptors. Adv Exp Med Biol 986:61–79

    CrossRef  CAS  PubMed  Google Scholar 

  • Yang S, Zhang JJ, Huang X-Y (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15:124–134

    CrossRef  CAS  PubMed  Google Scholar 

  • Yang N, Tang Y, Wang F, Zhang H, Xu D, Shen Y, Sun S, Yang G (2013) Blockade of store-operated Ca(2+) entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett 330:163–169

    CrossRef  CAS  PubMed  Google Scholar 

  • Yang J, Yang H, Liu Y, Li X, Qin L, Lou H, Duan S, Wang H (2016) Astrocytes contribute to synapse elimination via type 2 inositol 1,4,5-trisphosphate receptor-dependent release of ATP. elife 5:e15043

    PubMed  PubMed Central  Google Scholar 

  • Yoshida J, Iwabuchi K, Matsui T, Ishibashi T, Masuoka T, Nishio M (2012) Knockdown of stromal interaction molecule 1 (STIM1) suppresses store-operated calcium entry, cell proliferation and tumorigenicity in human epidermoid carcinoma A431 cells. Biochem Pharmacol 84:1592–1603

    CrossRef  CAS  PubMed  Google Scholar 

  • Yoshioka K, Saitoh O, Nakata H (2001) Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci USA 98:7617–7622

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka K, Hosoda R, Kuroda Y, Nakata H (2002) Hetero-oligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains. FEBS Lett 531:299–303

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang J, Wang H, Ye C, Ge W, Chen Y, Jiang Z, Wu C, Poo M, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Gao Z-G, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W, Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q, Wu B (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520:317–321

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Qin J, Zou J, Lv Z, Tan B, Shi J, Zhao Y, Ren H, Liu M, Qian M, Du B (2016) Extracellular ADP facilitates monocyte recruitment in bacterial infection via ERK signaling. Cell Mol Immunol. doi:10.1038/cmi.2016.56

  • Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113-28-30, 233–237, 275–281

    Google Scholar 

Download references

Conflicts of Interest

Authors clearly state that no data present in this manuscript creates any conflict of interest for any of coauthors. The article is an review and do not contain any experimental data which could violate any standards of animal or human participation in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Pomorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Barańska, J., Czajkowski, R., Pomorski, P. (2017). P2Y1 Receptors – Properties and Functional Activities. In: Atassi, M. (eds) Protein Reviews. Advances in Experimental Medicine and Biology(), vol 1051. Springer, Singapore. https://doi.org/10.1007/5584_2017_57

Download citation

Publish with us

Policies and ethics