Advertisement

Renalase in Children with Glomerular Kidney Diseases

  • Piotr Skrzypczyk
  • Joanna Przychodzień
  • Małgorzata Mizerska-Wasiak
  • Elżbieta Kuźma-Mroczkowska
  • Magdalena Okarska-Napierała
  • Elżbieta Górska
  • Anna Stelmaszczyk-Emmel
  • Urszula Demkow
  • Małgorzata Pańczyk-Tomaszewska
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1021)

Abstract

Studies suggest that renalase, a renal catecholamine-inactivating enzyme, plays a major role in the pathogenesis of kidney and cardiovascular diseases in adults. This study seeks to determine the role of renalase in children with glomerular kidney diseases. We evaluated the serum renalase, arterial stiffness, intima-media thickness, blood pressure, and clinical and biochemical parameters in 78 children (11.9 ± 4.6 years of age) with glomerulopathies such as idiopathic nephrotic syndrome (40 cases), IgA nephropathy (12 cases), Henoch-Schönlein nephropathy (12 cases), and other glomerulopathies (14 cases). The control group consisted of 38 healthy children aged 11.8 ± 3.3 years. The mean renalase was 25.74 ± 8.94 μg/mL in the glomerulopathy group, which was not significantly different from the 27.22 ± 5.15 in the control group. The renalase level did not differ among various glomerulopathies either. However, proteinuric patients had a higher renalase level than those without proteinuria (28.43 ± 11.71 vs. 24.05 ± 6.23, respectively; p = 0.03). In proteinuric patients, renalase correlated with daily proteinuria. In the entire glomerulopathy group, renalase correlated with age, systolic central blood pressure (BP), diastolic peripheral and central BP, mean peripheral and central BP; peripheral diastolic BP Z-score, glomerular filtration rate, cholesterol, triglycerides, and pulse wave velocity. We conclude that in children with glomerulopathies renalase, although basically not enhanced, may underlie blood pressure elevation and arterial damage.

Keywords

Arterial stiffness Blood pressure Children Glomerular kidney diseases Intima-media thickness Proteinuria Renalase Sympathetic system 

Notes

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

References

  1. Alegría-Torres GA, Aguilar-Kitsu MA, Estrada-Loza MJ, Villasís-Keever MÁ (2015) Cardiovascular risk factors in children with primary nephrotic syndrome. Rev Med Inst Mex Seguro Soc 53(Suppl 3):284–293. (Article in Spanish)Google Scholar
  2. Buraczynska M, Zukowski P, Buraczynska K, Mozul S, Ksiazek A (2011) Renalase gene polymorphisms in patients with type 2 diabetes, hypertension and stroke. Neruomol Med 13:321–327CrossRefGoogle Scholar
  3. Camici M (2007) Nephrotic proteinuria and the autonomic nervous system. Saudi J Kidney Dis Transpl 18:512–522PubMedGoogle Scholar
  4. Candan C, Canpolat N, Gökalp S, Yıldız N, Turhan P, Taşdemir M, Sever L, Çalışkan S (2014) Subclinical cardiovascular disease and its association with risk factors in children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 29:95–102CrossRefPubMedGoogle Scholar
  5. Chesnaye N, Bonthuis M, Schaefer F, Groothoff JW, Verrina E, Heaf JG, Jankauskiene A, Lukosiene V, Molchanova EA, Mota C, Peco-Antić A, Ratsch IM, Bjerre A, Roussinov DL, Sukalo A, Topaloglu R, Van Hoeck K, Zagozdzon I, Jager KJ, Van Stralen KJ, ESPN/ERA–EDTA registry (2014) Demographics of paediatric renal replacement therapy in Europe: a report of the ESPN/ERA-EDTA registry. Pediatr Nephrol 29:2403–2410CrossRefPubMedGoogle Scholar
  6. Desir GV (2009) Regulation of blood pressure and cardiovascular function by renalase. Kidney Int 76:366–370CrossRefPubMedGoogle Scholar
  7. Desir GV, Peixoto AJ (2014) Renalase in hypertension and kidney disease. Nephrol Dial Transplant 29:22–28CrossRefPubMedGoogle Scholar
  8. DiBona GF, Sawin LL, Jones SY (1996) Characteristics of renal sympathetic nerve activity in sodium-retaining disorders. Am J Phys 271(1 Pt 2):R295–R302Google Scholar
  9. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung and Blood Institute (2011) Summary report. Pediatrics 128(Suppl 5):213–256Google Scholar
  10. Gu R, Lu W, Xie J, Bai J, Xu B (2011) Renalase deficiency in heart failure model of rats-a potential mechanism underlying circulating norepinephrine accumulation. PLoS One 6:e14633CrossRefPubMedPubMedCentralGoogle Scholar
  11. Farzaneh-Far R, Desir GV, Na B, Schiller NB, Whooley MA (2010) A functional polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy, dysfunction, and ischemia: data from the heart and soul study. PLoS One 5(10):e13496. doi: 10.1371/journal.pone.0013496 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Guizar JM, Ahuatzin R, Amador N, Sanchez G, Romer G (2005) Heart autonomic function in overweight adolescents. Indian Pediatr 42:464–469PubMedGoogle Scholar
  13. Guo Z, Wang Y, Li R, Huang H, Wang R (2014) Use of laser microdissection in the analysis of renal infiltrating T cells in murine lupus. Centr Eur J Immunol 39:285–293CrossRefGoogle Scholar
  14. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27:363–373CrossRefPubMedGoogle Scholar
  15. Hennebry SC, Eikelis N, Socratous F, Desir G, Lambert G, Schlaich M (2010) Renalase, a novel soluble FAD-dependent protein, is synthesized in the brain and peripheral nerves. Mol Psychiatry 15:234–236CrossRefPubMedGoogle Scholar
  16. Herman PJ, Sawin LL, DiBona GF (1989) Role of renal nerves in renal sodium retention of nephrotic syndrome. Am J Phys 256:823–829Google Scholar
  17. Ishii M, Ikeda T, Takagi M, Sugimoto T, Atarashi K, Igari T, Uehara Y, Matsuoka H, Hirata Y, Kimura K, Takeda T, Murao S (1983) Elevated plasma catecholamines in hypertensives with primary glomerular diseases. Hypertension 5:545–551CrossRefPubMedGoogle Scholar
  18. Koszowska AU, Nowak J, Dittfeld A, Brończyk-Puzoń A, Kulpok A, Zubelewicz-Szkodzińska B (2014) Obesity, adipose tissue function and the role of vitamin D. Centr Eur J Immunol 39:260–264CrossRefGoogle Scholar
  19. Ksiazek J, Niemirska A, Lipka M, Grenda R (2006) Evaluation of arterial intima-media thickness (IMT) in children with idiopathic nephrotic syndrome-preliminary report. Przegl Lek 63(Suppl 3):205–207. Article in PolishPubMedGoogle Scholar
  20. Kułaga Z, Litwin M, Grajda A, Kułaga K, Gurzkowska B, Góźdź M, Pan H, OLAF Study Group (2012) Oscillometric blood pressure percentiles for polish normal-weight school-aged children and adolescents. J Hypertens 30:1942–1954CrossRefPubMedGoogle Scholar
  21. Maciorkowska D, Zbroch E, Malyszko J (2015) Circulating renalase, catecholamines, and vascular adhesion protein 1 in hypertensive patients. J Am Soc Nephrol 9:855–864Google Scholar
  22. Malyszko J, Zbroch E, Malyszko JS, Koc-Zorawska E, Mysliwiec M (2011) Renalase, a novel regulator of blood pressure, is predicted by kidney function in renal transplant recipients. Transplant Proc 43:3004–3007CrossRefPubMedGoogle Scholar
  23. McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB (2014) Central blood pressure: current evidence and clinical importance. Eur Heart J 35:1719–1725CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nakamura A, Niimi R, Kurosaki K, Yanagawa Y (2010) Factors influencing cardiovascular risk following termination of glucocorticoid therapy for nephrotic syndrome. Clin Exp Nephrol 14:457–462CrossRefPubMedGoogle Scholar
  25. Okarska-Napierała M, Skrzypczyk P, Pańczyk-Tomaszewska M (2016) Fibroblast growth factor 23 in chronic kidney disease in children. Pol Merkur Lekarski 40:393–398. Article in PolishPubMedGoogle Scholar
  26. Palatini P (2013) Heart rate and the cardiometabolic risk. Curr Hypertens Rep 15:253–259CrossRefPubMedGoogle Scholar
  27. Patel HP (2010) Early origins of cardiovascular disease in pediatric chronic kidney disease. Renal Fail 32:1–9CrossRefGoogle Scholar
  28. Przybylowski P, Malyszko J, Kozlowska S, Malyszko J, Koc-Zorawska E, Mysliwiec M (2011) Serum renalase depends on kidney function but not on blood pressure in heart transplant recipients. Transplant Proc 43:3888–3891CrossRefPubMedGoogle Scholar
  29. Qi C, Wang L, Zhang M, Shao X, Chang X, Fan Z, Cao Q, Mou S, Wang Q, Yan Y, Desir G, Ni Z (2015) Serum renalase levels correlate with disease activity in lupus nephritis. PLoS One 10:e0139627CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rahman SN, Abraham WT, Van Putten VJ, Hasbargen JA, Schrier RW (1993) Increased norepinephrine secretion in patients with the nephrotic syndrome and normal glomerular filtration rates: evidence for primary sympathetic activation. Am J Nephrol 13:266–270CrossRefPubMedGoogle Scholar
  31. Schlaich MP (2009) Sympathetic activation in chronic renal failure. J Am Soc Nephrol 20:933–939CrossRefPubMedGoogle Scholar
  32. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637CrossRefPubMedPubMedCentralGoogle Scholar
  33. Serwin NM, Wiśniewska M, Jesionowska A, Skwirczyńska E, Marcinowska Z, Dołęgowska B (2016) Serum levels of 12 renal function and injury markers in patients with glomerulonephritis. Pol Arch Med Wewn 126:483–493PubMedGoogle Scholar
  34. Soares-Miranda L, Alves AJ, Vale S, Aires L, Santos R, Oliveira J, Mota J (2011) Central fat influences cardiac autonomic function in obese and overweight girls. Pediatr Cardiol 32:924–928CrossRefPubMedGoogle Scholar
  35. Szymanik-Grzelak H, Kuźma-Mroczkowska E, Małdyk J, Pańczyk-Tomaszewska M (2016) Lupus nephritis in children – 10 years’ experience. Centr Eur J Immunol 3:248–254CrossRefGoogle Scholar
  36. Taranta-Janusz K, Roszkowska R, Wasilewska A (2015) Renalase levels in children with solitary functioning kidney. Indian Pediatr 52:1047–1050CrossRefPubMedGoogle Scholar
  37. Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, Jacobson M, Mahoney L, Mietus-Snyder M, Rocchini A, Steinberger J, McCrindle B, American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young (2009) Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension 54:919–950CrossRefPubMedGoogle Scholar
  38. Vink EE, de Jager RL, Blankestijn PJ (2013) Sympathetic hyperactivity in chronic kidney disease: pathophysiology and (new) treatment options. Curr Hypertens Rep 15:370–376CrossRefGoogle Scholar
  39. Wang Y, Lv YB, Chu C, Wang M, Xie BQ, Wang L, Yang F, Yan DY, Yang RH, Yang J, Ren Y, Yuan ZY, Mu JJ (2016) Plasma renalase is not associated with blood pressure and brachial-ankle pulse wave velocity in Chinese adults with normal renal function. Kidney Blood Press Res 41:837–847CrossRefPubMedGoogle Scholar
  40. Wu Y, Xu J, Velazquez H, Wang P, Li G, Liu D, Sampaio-Maia B, Quelhas-Santos J, Russell K, Russell R, Flavell RA, Pestana M, Giordano F, Desir GV (2011) Renalase deficiency aggravates ischemic myocardial damage. Kidney Int 79:853–860CrossRefPubMedGoogle Scholar
  41. Xu J, Lig G, Wang P, Velazquez H, Yao X, Li Y, Wu Y, Peixoto A, Crowley S, Desir GV (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Investig 115:1275–1280CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yin J, Lu Z, Wang F, Jiang Z, Lu L, Miao N, Wang N (2016) Renalase attenuates hypertension, renal injury and cardiac remodelling in rats with subtotal nephrectomy. J Cell Mol Med 20:1106–1117CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zbroch E, Malyszko J, Malyszko JS, Koc-Zorawska E, Mysliwiec M (2012) Renalase, a novel enzyme involved in blood pressure regulation, is related to kidney function but not to blood pressure in hemodialysis patients. Kidney Blood Press Res 35:395–399CrossRefPubMedGoogle Scholar
  44. Zbroch E, Musialowska D, Koc-Zorawska E, Malyszko J (2016) Age influence on renalase and catecholamines concentration in hypertensive patients, including maintained dialysis. Clin Interv Aging 11:1545–1550CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhao Q, Fan Z, He J, Chen S, Li H, Zhang P, Wang L, Hu D, Huang J, Qiang B, Gu D (2007) Renalase gene is a novel susceptibility gene for essential hypertension: a two-stage association study in northern Han Chinese population. J Mol Med (Berl) 85:877–885CrossRefGoogle Scholar
  46. Żurowska A, Zagozdzon I, Bałasz I, Boguszewska A, Prokurat C, Pietrzyk J, Drozdz D, Szczepańska M, Stefaniak E, Jander A, Roszkowska-Blaim D, Ziółkowska H, Makulska I, Kołłątaj B, Jarmoliński T, Siteń G, Stankiewicz R, Wierciński R (2006) Congenital and genetic related causes of end-stage renal disease-data from polish registry of renal replacement therapy in children 2000–2004. Przegl Lek 63(Suppl 3):57–59. Article in PolishPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Piotr Skrzypczyk
    • 1
  • Joanna Przychodzień
    • 1
  • Małgorzata Mizerska-Wasiak
    • 1
  • Elżbieta Kuźma-Mroczkowska
    • 1
  • Magdalena Okarska-Napierała
    • 2
  • Elżbieta Górska
    • 3
  • Anna Stelmaszczyk-Emmel
    • 3
  • Urszula Demkow
    • 3
  • Małgorzata Pańczyk-Tomaszewska
    • 1
  1. 1.Department of Pediatrics and NephrologyMedical University of WarsawWarsawPoland
  2. 2.Department of Pediatrics with Clinical Assessment UnitMedical University of WarsawWarsawPoland
  3. 3.Department of Laboratory Diagnostics and Clinical Immunology of Developmental AgeMedical University of WarsawWarsawPoland

Personalised recommendations