Skip to main content

Physico-Mechanical Properties of HA/TCP Pellets and Their Three-Dimensional Biological Evaluation In Vitro

Part of the Advances in Experimental Medicine and Biology book series (ICRRM,volume 1084)


The use of bioceramics, especially the combination of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), as a three-dimensional scaffold in bone engineering is essential because together these elements constitute 60% of the bone content. Different ratios of HA and β-TCP were previously tested for their ability to produce suitable bioceramic scaffolds, which must be able to withstand high mechanical load. In this study, two ratios of HA/TCP (20:80 and 70:30) were used to create pellets, which then were evaluated in vitro to identify any adverse effects of using the material in bone grafting. Diametral tensile strength (DTS) and density testing was conducted to assess the mechanical strength and porosity of the pellets. The pellets then were tested for their toxicity to normal human fibroblast cells. In the toxicity assay, cells were incubated with the pellets for 3 days. At the end of the experiment, cell morphological changes were assessed, and the absorbance was read using PrestoBlue Cell Viability Reagent™. An inversely proportional relationship between DTS and porosity percentage was detected. Fibroblasts showed normal cell morphology in both treatments, which suggests that the HA/TCP pellets were not toxic. In the osteoblast cell attachment assay, cells were able to attach to the surface of both ratios, but cells were also able to penetrate inside the scaffold of the 70:30 pellets. This finding suggests that the 70:30 ratio had better osteoconduction properties than the 20:80 ratio.


  • Bioceramics
  • HA/TCP
  • 3D scaffold
  • Bone substitution
  • Cell evaluation
  • Cell toxicity

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/5584_2017_130
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-19857-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9





β-Tricalcium phosphate




Tricalcium phosphate


Alpha Minimum Essential Medium


Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12


Phosphate buffered saline


Fetal bovine serum




Normal human fibroblast




American Type Culture Collection


Diametral tensile strength






Scanning electron microscopy


Field-emission scanning electron microscopy with energy dispersive X-ray spectroscopy


  • Bagher, Z., Rajaei, F., & Shokrgozar, M. (2012). Comparative study of bone repair using porous hydroxyapatite/beta-tricalcium phosphate and xenograft scaffold in rabbits with tibia defect. Iranian Biomedical Journal, 16(1), 18–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrère, F., van Blitterswijk, C. A., & de Groot, K. (2006). Bone regeneration: Molecular and cellular interactions with calcium phosphate ceramics. International Journal of Nanomedicine, 1(3), 317–332.

    PubMed  PubMed Central  Google Scholar 

  • Bosco, R., Van Den Beucken, J., Leeuwenburgh, S., & Jansen, J. (2012). Surface engineering for bone implants: A trend from passive to active surfaces. Coatings, 2, 95–119.

    CrossRef  CAS  Google Scholar 

  • Cao, H., & Kuboyama, N. (2010). A biodegradable porous composite scaffold of PGA/??-TCP for bone tissue engineering. Bone, 46(2), 386–395.

    CrossRef  CAS  Google Scholar 

  • Castilho, M., Moseke, C., Ewald, A., Gbureck, U., Groll, J., Pires, I., Tessmar, J., & Vorndran, E. (2014). Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication, 6(1), 1–12.

    CrossRef  Google Scholar 

  • Chang, Y., Stanford, C. M., Wefel, J. S., & Keller, J. C. (1999). Osteoblastic cell attachment to hydroxyapatite- coated implant surfaces in vitro. International Journal of Oral and Maxillofacial Implants, 14, 239–247.

    CAS  PubMed  Google Scholar 

  • De Jong, W. H. (2008). Drug delivery and nanoparticles : Applications and hazards. International Journal of Nanomedicine, 3(2), 133–149.

    CrossRef  Google Scholar 

  • Della, Á. (2008). Flexural and diametral tensile strength of composite resins. Restorative Dentistry, 22(1), 84–89.

    Google Scholar 

  • Detsch, R., Mayr, H., & Ziegler, G. (2008). Formation of osteoclast-like cells on HA and TCP ceramics. Acta Biomaterialia, 4, 139–148.

    CrossRef  CAS  Google Scholar 

  • Dhaliwal, A. (2012). Three dimensional cell culture : A review. Mater Methods, 2011 (2), 162 doi:

  • Di Filippo, A., Ciapetti, M., Prencipe, D., Tini, L., Casucci, A., Messeri, D., Ciuti, R., Falchi, S., & Dani, C. (2006). Experimentally-induced acute lung injury : The protective effect of hydroxyethyl starch. Anuals of Clinical and Laboratory Science, 36(3), 345–352.

    Google Scholar 

  • Duan, Y. R., Zhang, Z. R., Wang, C. Y., Chen, J. Y., & Zhang, X. D. (2005). Dynamic study of calcium phosphate formation on porous HA/TCP ceramics. Journal of Materials Science: Materials in Medicine, 16(9), 795–801.

    CAS  PubMed  Google Scholar 

  • Ghanaati, S., Barbeck, M., Detsch, R., Deisinger, U., Hilbig, U., Rausch, V., Sader, R., Unger, R. E., Ziegler, G., & Kirkpatrick, C. J. (2012). The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: Histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomedical Materials, 7(1), 1–14.

    CrossRef  Google Scholar 

  • Hutmacher, D. W., & Garcia, A. J. (2005). Scaffold-based bone engineering by using genetically modified cells. Gene, 347, 1–10.

    CrossRef  CAS  Google Scholar 

  • Jang, J. W., Yun, J. H., Lee, K. I., Jang, J. W., Jung, U. W., Kim, C. S., Choi, S. H., & Cho, K. S. (2012). Osteoinductive activity of biphasic calcium phosphate with different rhBMP-2 doses in rats. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 113(4), 480–487.

    CrossRef  Google Scholar 

  • Javaid, M. A., & Kaartinen, M. T. (2013). Mesenchymal stem cell-based bone tissue engineering. International Dental Journal of Student’s Research, 1(3), 24–35. 0029.

    Google Scholar 

  • Kawashita, M., Araki, R., & Takaoka, G. H. (2009). Induction of bioactivity on silicone elastomer by simultaneous irradiation of oxygen cluster and monomer ion beams. Acta Biomaterialia, 5(2), 621–627.

    CrossRef  CAS  Google Scholar 

  • Kivrak, N., & Tas, A. C. (1998). Synthesis of calcium hydroxyapatite – tricalcium phosphate ( HA – TCP ) composite bioceramic powders and their sintering behavior. Journal of American Ceramic Society, 52(9), 2245–2252.

    CrossRef  Google Scholar 

  • Klammert, U., Reuther, T., Jahn, C., Kraski, B., & Ku, A. C. (2009). Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomaterialia, 5, 727–734.

    CrossRef  CAS  Google Scholar 

  • Laschke, M. W., Strohe, A., Menger, M. D., Alini, M., & Eglin, D. (2010). In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Acta Biomaterialia, 6(6), 2020–2027.

    CrossRef  CAS  Google Scholar 

  • Macchetta, A., Turner, I. G., & Bowen, C. R. (2009). Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomaterialia, 5(4), 1319–1327.

    CrossRef  CAS  Google Scholar 

  • Marolt, D., Knezevic, M., & Novakovic, G. V. (2010). Bone tissue engineering with human stem cells. Stem Cell Research & Therapy, 10(May), 1–10.

    Google Scholar 

  • Miao, X., Tan, D. M., Li, J., Xiao, Y., & Crawford, R. (2007). Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomaterialia, 4, 638–645.

    CrossRef  Google Scholar 

  • Miao, X., Tan, D. M., Li, J., Xiao, Y., & Crawford, R. (2008). Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid). Acta Biomaterialia, 4, 638–645.

    CrossRef  CAS  Google Scholar 

  • Monteiro, M. M., Carbonel, N., & Soares, G. D. A. (2003). Dissolution properties of calcium phosphate granules with different compositions in simulated body fluid. Journal of Biomedical Materials Research. Part A, 65, 199–305.

    Google Scholar 

  • Nookuar, S., Kaewsichan, L., & Kaewsrichan, J. (2011). Physical characterization of bone scaffolds prepared from ceramic core coated with ceramic-polycaprolactone mixture. TIChE International Conference 2011, pp. 1–4.

    Google Scholar 

  • Oryan, A., Alidadi, S., Moshiri, A., & Maffulli, N. (2014). Bone regenerative medicine: Classic options, novel strategies, and future directions. Journal of Orthopaedic Surgery and Research, 9(18), 1–27.

    Google Scholar 

  • Panzavolta, S., Fini, M., Nicoletti, A., Bracci, B., Rubini, K., Giardino, R., & Bigi, A. (2009). Porous composite scaffolds based on gelatin and partially hydrolyzed a -tricalcium phosphate. Acta Biomaterialia, 5(2), 636–643.

    CrossRef  CAS  Google Scholar 

  • Prakasam, M., Locs, J., Salma-ancane, K., Loca, D., Largeteau, A., & Berzina-Cimdina, L. (2015). Fabrication , properties and applications of dense hydroxyapatite : A review. Journal of Functional Biomaterials, 6, 1099–1140.

    CrossRef  CAS  Google Scholar 

  • Ramay, H. R. R., & Zhang, M. (2004). Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials, 25(21), 5171–5180.

    CrossRef  CAS  Google Scholar 

  • Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27, 3413–3431.

    CrossRef  CAS  Google Scholar 

  • Roldán, J. C., Deisinger, U., Detsch, R., Chang, E., & Kelantan, M. (2007). A novel HA/TCP ceramic : Implant design and bone formation. European Cells & Materials, 14(1), 91.

    Google Scholar 

  • Ryan, J. (2005). Understanding and managing cell culture contamination, Technical bulletin. Lowell: Corning Incorporated.

    Google Scholar 

  • Salgado, A. J., Coutinho, O. P., & Reis, R. L. (2004). Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience, 4(8), 743–765.

    CrossRef  CAS  Google Scholar 

  • Schwartz, J., Avaltroni, M. J., Danahy, M. P., Silverman, B. M., Hanson, E. L., Schwarzbauer, J. E., Midwood, K. S., & Gawalt, E. S. (2003). Cell attachment and spreading on metal implant materials. Materials Science and Engineering: C, 23, 395–400.

    CrossRef  Google Scholar 

  • Sulaiman, S. B., Keong, T. K., Cheng, C. H., Saim, A. B., Bt, R., & Idrus, H. (2014). Tricalcium phosphate/hydroxyapatite (TCP – HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian Journal of Medical Research, 137(6), 1093–1101.

    Google Scholar 

  • Tas, A. C., Bhaduri, S. B., & Jalota, S. (2007). Preparation of Zn-doped β-tricalcium phosphate (β-Ca3 (PO 4)2) bioceramics. Materials Science and Engineering, 27, 394–401.

    CrossRef  CAS  Google Scholar 

  • Tzaphlidou, M. (2008). Bone architecture : Collagen structure and calcium/phosphorus maps. Journal of Biological Physics, 34, 39–49.

    CrossRef  CAS  Google Scholar 

  • Zhang, Z., Kurita, H., & Kobayashi, H. (2005). Osteoinduction with HA/TCP ceramics of different composition and porous structure in rabbits. Oral Science International, 2(November), 85–95.

    CrossRef  Google Scholar 

Download references


The authors gratefully acknowledge assistance given by all staff of the Advanced Medical and Dental Institute and School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM), Penang. The authors also would like to express gratitude to USM for providing excellent facilities and the Ministry of Higher Education, Malaysia, for the Transdisciplinary Research Grant Scheme, 203/CIPPT/6761002, that funded this research.

Author Disclosure Statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Badrul Hisham Yahaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kamalaldin, N.‘., Jaafar, M., Zubairi, S.I., Yahaya, B.H. (2017). Physico-Mechanical Properties of HA/TCP Pellets and Their Three-Dimensional Biological Evaluation In Vitro. In: Pham, P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology(), vol 1084. Springer, Cham.

Download citation