Advertisement

Impact of Internal and External Factors on EBC-pH and FeNO Changes in Humans Following Challenge with Ethyl Acrylate

  • F. Hoffmeyer
  • K. Sucker
  • H. Berresheim
  • C. Monsé
  • B. Jettkant
  • A. Beine
  • M. Raulf
  • J. Bünger
  • T. Brüning
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1020)

Abstract

Acute effects of ethyl acrylate exposure at 5 ppm for 4 h include changes of pH in exhaled breath condensate (EBC-pH) and exhaled nitric oxide (FeNO). So far, few data have been reported for atopic persons or the impact of the exposure conditions on biomarkers, e.g., constant versus variable application of irritants. Nine atopic and eighteen healthy volunteers without bronchial hyperresponsiveness were exposed for 4 h to ethyl acrylate concentrations of 0.05 ppm (sham), 5 ppm (constant concentration), and 0–10 ppm (variable, mean concentration of 5 ppm) in an exposure laboratory. A positive atopic status was defined according to specific IgE concentrations to common inhalant allergens (sx1 ≥ 0.35 kU/L). Biomarker levels were assessed before and after challenge and adjusted for levels after sham exposure (net response). Ethyl acrylate at constant, but not at variable concentrations induced a significant change in the net responses of EBC-pH and FeNO. Concerning FeNO, this could be observed only for atopic persons. The changes of biomarker levels were related to their baseline values. Biomarker responses to challenge with ethyl acrylate may be influenced by the patterns of application as well as baseline airway inflammation and atopic status of the volunteers.

Keywords

Atopy Ethyl acrylate Exhaled breath condensate Exhaled nitric oxide Exposure profile Irritant challenge Susceptibility 

Notes

Acknowledgements

We gratefully acknowledge the technicians of IPA Jennifer Gili, Ursula Meurer, Anja Molkenthin, Melanie Ulbrich, and Susann Widmer. The statements and conclusions in this article are those of the authors and not necessarily those of the German Social Accident Insurance.

Competing Interests

The authors declare that they have no competing interests that might influence the results of this report.

References

  1. Adams WC (2003) Comparison of chamber and face mask 6.6-hour exposure to 0.08 ppm ozone via square-wave and triangular profiles on pulmonary responses. Inhal Toxicol 15:265–281CrossRefPubMedGoogle Scholar
  2. Adams WC, Savin WM, Christo AE (1981) Detection of ozone toxicity during continuous exercise via the effective dose concept. J Appl Physiol Respir Environ Exerc Physiol 51:415–422PubMedGoogle Scholar
  3. Arts JH, de Heer C, Woutersen RA (2006) Local effects in the respiratory tract: relevance of subjectively measured irritation for setting occupational exposure limits. Int Arch Occup Environ Health 79:283–298CrossRefPubMedGoogle Scholar
  4. ATS/ERS (2005) Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. American Thoracic Society European Respiratory Society. Am J Respir Crit Care Med 171(8):912–930CrossRefGoogle Scholar
  5. Balmes JR, Chen LL, Scannell C, Tager I, Christian D, Hearne PQ, Kelly T, Aris RM (1996) Ozone-induced decrements in FEV1 and FVC do not correlate with measures of inflammation. Am J Respir Crit Care Med 153:904–909CrossRefPubMedGoogle Scholar
  6. Bartoli ML, Vagaggini B, Malagrinò L, Bacci E, Cianchetti S, Dente FL, Novelli F, Costa F, Paggiaro P (2013) Baseline airway inflammation may be a determinant of the response to ozone exposure in asthmatic patients. Inhal Toxicol 25:127–133CrossRefPubMedGoogle Scholar
  7. Blaszkewicz M, Hey K, Kiesswetter E, Kleinbeck S, Schäper M, van Thriel C (2010) Abgrenzung und Differenzierung “irritativer” und “belästigender” Effekte von Gefahrstoffen. Abschlussbericht. DGUV (Deutsche Gesetzliche Unfallversicherung). http://www.dguv.de/medien/ifa/de/pro/pro1/ff-fp0267/ff_fp0267_abschlussbericht.pdf. Accessed 10 Dec 2016
  8. Brüning T, Bartsch R, Bolt HM, Desel H, Drexler H, Gundert-Remy U, Hartwig A, Jäckh R, Leibold E, Pallapies D, Rettenmeier AW, Schlüter G, Stropp G, Sucker K, Triebig G, Westphal G, van Thriel C (2014) Sensory irritation as a basis for setting occupational exposure limits. Arch Toxicol 88:1855–1879CrossRefPubMedPubMedCentralGoogle Scholar
  9. Davis MD, Walsh BK, Dwyer ST, Combs C, Vehse N, Paget-Brown A, Pajewski T, Hunt JF (2013) Safety of an alkalinizing buffer designed for inhaled medications in humans. Respir Care 58:1226–1232CrossRefPubMedGoogle Scholar
  10. De Zotti R, Bovenzi M (2000) Prospective study of work related respiratory symptoms in trainee bakers. Occup Environ Med 57:58–61CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gaston B, Kelly R, Urban P, Liu L, Henderson EM, Doctor A, Teague WG, Fitzpatrick A, Erzurum S, Hunt JF (2006) Buffering airway acid decreases exhaled nitric oxide in asthma. J Allergy Clin Immunol 118:817–822CrossRefPubMedGoogle Scholar
  12. Hoffmeyer F, Raulf-Heimsoth M, Brüning T (2009) Exhaled breath condensate and airway inflammation. Curr Opin Allergy Clin Immunol 9:16–22CrossRefPubMedGoogle Scholar
  13. Hoffmeyer F, Sucker K, Monsé C, Berresheim H, Jettkant B, Rosenkranz N, Brüning T, Bünger J (2015a) Different patterns in changes of exhaled breath condensate pH and exhaled nitric oxide after ozone exposure. Adv Exp Med Biol 834:39–47CrossRefPubMedGoogle Scholar
  14. Hoffmeyer F, Berresheim H, Beine A, Sucker K, Brüning T, Bünger J (2015b) Methodological implications in pH standardization of exhaled breath condensate. J Breath Res 9(3):036003CrossRefPubMedGoogle Scholar
  15. Hoffmeyer F, Bünger J, Monsé C, Berresheim H, Jettkant B, Beine A, Brüning T, Sucker K (2016) Clinical effects, exhaled breath condensate ph and exhaled nitric oxide in humans after ethyl acrylate exposure. Adv Exp Med Biol 921:11–20CrossRefPubMedGoogle Scholar
  16. Horstman DH, Ball BA, Brown J, Gerrity T, Folinsbee LJ (1995) Comparison of pulmonary responses of asthmatic and nonasthmatic subjects performing light exercise while exposed to a low level of ozone. Toxicol Ind Health 11:369–385CrossRefPubMedGoogle Scholar
  17. Horváth I, Hunt J, Barnes PJ, Alving K, Antczak A, Baraldi E, Becher G, van Beurden WJ, Corradi M, Dekhuijzen R, Dweik RA, Dwyer T, Effros R, Erzurum S, Gaston B, Gessner C, Greening A, Ho LP, Hohlfeld J, Jöbsis Q, Laskowski D, Loukides S, Marlin D, Montuschi P, Olin AC, Redington AE, Reinhold P, van Rensen EL, Rubinstein I, Silkoff P, Toren K, Vass G, Vogelberg C, Wirtz H, ATS/ERS Task Force on Exhaled Breath Condensate (2005) Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26(3):523–548CrossRefPubMedGoogle Scholar
  18. Kharitonov SA, Robbins RA, Yates D, Keatings V, Barnes PJ (1995) Acute and chronic effects of cigarette smoking on exhaled nitric oxide. Am J Respir Crit Care Med 152:609–612CrossRefPubMedGoogle Scholar
  19. Kharitonov S, Alving K, Barnes PJ (1997) Exhaled and nasal nitric oxide measurements: recommendations. The European Respiratory Society Task Force. Eur Respir J 10:1683–1693CrossRefPubMedGoogle Scholar
  20. Koczulla AR, Noeske S, Herr C, Jörres RA, Römmelt H, Vogelmeier C, Bals R (2010) Acute and chronic effects of smoking on inflammation markers in exhaled breath condensate in current smokers. Respiration 79:61–67CrossRefPubMedGoogle Scholar
  21. Kostikas K, Papatheodorou G, Ganas K, Psathakis K, Panagou P, Loukides S (2002) pH in expired breath condensate of patients with inflammatory airway diseases. Am J Respir Crit Care Med 165:1364–1370CrossRefPubMedGoogle Scholar
  22. Kullmann T, Barta I, Lázár Z, Szili B, Barát E, Valyon M, Kollai M, Horváth I (2007) Exhaled breath condensate pH standardised for CO2 partial pressure. Eur Respir J 29:496–501CrossRefPubMedGoogle Scholar
  23. MAK (2012) The MAK collection for occupational health and safety, Wiley Online Library, Online ISBN: 9783527600410. doi:  10.1002/3527600418
  24. Maniscalco M, Grieco L, Galdi A, Lundberg JO, Sofia M (2004) Increase in exhaled nitric oxide in shoe and leather workers at the end of the work-shift. Occup Med (Lond) 54:404–407CrossRefGoogle Scholar
  25. McDonnell WF, Stewart PW, Smith MV (2010) Prediction of ozone-induced lung function responses in humans. Inhal Toxicol 22:160–168CrossRefPubMedGoogle Scholar
  26. Monsé C, Sucker K, van Thriel C, Broding HC, Jettkant B, Berresheim H, Wiethege T, Käfferlein H, Merget R, Bünger J, Brüning T (2012) Considerations for the design and technical setup of a human whole-body exposure chamber. Inhal Toxicol 24:99–108CrossRefPubMedGoogle Scholar
  27. Nowak D, Jörres R, Berger J, Claussen M, Magnussen H (1997) Airway responsiveness to sulfur dioxide in an adult population sample. Am J Respir Crit Care Med 156:1151–1156CrossRefPubMedGoogle Scholar
  28. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, Enright PL, Hankinson JL, Ip MS, Zheng J, Stocks J, ERS Global Lung Function Initiative (2012) Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J 40(6):1324–1343CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ricciardolo FL, Sorbello V, Ciprandi G (2015) FeNO as biomarker for asthma phenotyping and management. Allergy Asthma Proc 36:e1–e8CrossRefPubMedGoogle Scholar
  30. Riediker M, Danuser B (2007) Exhaled breath condensate pH is increased after moderate exercise. J Aerosol Med 20:13–18CrossRefPubMedGoogle Scholar
  31. Shusterman D, Murphy MA, Balmes J (2003) Influence of age, gender, and allergy status on nasal reactivity to inhaled chlorine. Inhal Toxicol 15:1179–1189CrossRefPubMedGoogle Scholar
  32. Tossa P, Paris C, Zmirou-Navier D, Demange V, Acouetey DS, Michaely JP, Bohadana A (2010) Increase in exhaled nitric oxide is associated with bronchial hyperresponsiveness among apprentices. Am J Respir Crit Care Med 182:738–744CrossRefPubMedGoogle Scholar
  33. Ulvestad B, Lund MB, Bakke B, Djupesland PG, Kongerud J, Boe J (2001) Gas and dust exposure in underground construction is associated with signs of airway inflammation. Eur Respir J 17:416–421CrossRefPubMedGoogle Scholar
  34. Utell MJ, Frampton MW (2000) Toxicologic methods: controlled human exposures. Environ Health Perspect 108(Suppl 4):605–613CrossRefPubMedPubMedCentralGoogle Scholar
  35. Vagaggini B, Bartoli ML, Cianchetti S, Costa F, Bacci E, Dente FL, Di Franco A, Malagrinò L, Paggiaro P (2010) Increase in markers of airway inflammation after ozone exposure can be observed also in stable treated asthmatics with minimal functional response to ozone. Respir Res 11:5CrossRefPubMedPubMedCentralGoogle Scholar
  36. van Thriel C, Schäper M, Kiesswetter E, Kleinbeck S, Juran S, Blaszkewicz M, Fricke HH, Altmann L, Berresheim H, Brüning T (2006) From chemosensory thresholds to whole body exposures-experimental approaches evaluating chemosensory effects of chemicals. Int Arch Occup Environ Health 79:308–321CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • F. Hoffmeyer
    • 1
  • K. Sucker
    • 1
  • H. Berresheim
    • 1
  • C. Monsé
    • 1
  • B. Jettkant
    • 1
  • A. Beine
    • 1
  • M. Raulf
    • 1
  • J. Bünger
    • 1
  • T. Brüning
    • 1
  1. 1.Institute for Prevention and Occupational Medicine of the German Social Accident InsuranceInstitute of the Ruhr-Universität Bochum (IPA)BochumGermany

Personalised recommendations