Advertisement

Airway Evaluation with Multidetector Computed Tomography Post-Processing Methods in Asthmatic Patients

  • Mateusz PatykEmail author
  • Andrzej Obojski
  • Łukasz Gojny
  • Bernard Panaszek
  • Urszula Zaleska-Dorobisz
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 934)

Abstract

Asthma is a chronic inflammatory obstructive airways disease. The disease occurs regardless of age and manifests with cough, attacks of breathlessness, and tightness in the chest. The pathophysiology of asthma is complex and still not fully understood. It is essential to find answers concerning the role of each part of the bronchial tree in asthma, especially the role of small bronchioles. With the development of newer generations of multidetector computed tomography (MDCT) and advanced post-processing methods it is possible to obtain more detailed images and gain insight into further aspects of asthma. MDCT post-processing methods can be divided into two-dimensional (2D) and three-dimensional (3D). In 2D projections, visualized hypodense regions correspond to the airway flow limitations. With the more advanced methods, such as multi planar reconstructions (MPR), images in different planes (axial, coronal, or sagittal) can be created. In the MPR technique only the voxels which are adjacent to each other in the predetermined plane can be extracted from the data set. Using the minimal/maximal intensity projections and shaded surface display, the volume of interest (VOI) can be extracted. High resolution CT scans can be used to create a more advanced imaging tool – the virtual bronchoscopy (VB). Using the VB makes it possible to visualize regions of obturation in the bronchi of up to the 5-8th generation. The MDCT with advanced post-processing methods is likely to assume an important role in the differential diagnosis of asthma, particularly when the diagnosis is dubious or hard to settle due to accompanying other lung diseases.

Keywords

Asthma Airway flow limitation Airway remodeling Bronchi Inflammatory disease Multidetector computed tomography Volume of interest 

References

  1. Al-Muhsen S, Johnson JR, Hamid Q (2011) Remodeling in asthma. J Allergy Clin Immunol 128(3):451–462CrossRefPubMedGoogle Scholar
  2. Amdo T, Godoy MC, Ost D, Naidich DP (2010) Imaging-bronchoscopic correlations for interventional pulmonology. Thorac Surg Clin 20(1):103–119CrossRefPubMedGoogle Scholar
  3. Asano F (2010) Virtual bronchoscopic navigation. Clin Chest Med 31(1):75–85CrossRefPubMedGoogle Scholar
  4. Aysola RS, Hoffman EA, Gierada D, Wenzel S, Cook-Granroth J, Tarsi J, Zheng J, Schechtman KB, Ramkumar TP, Cochran R, Xueping E, Christie C, Newell J, Fain S, Altes TA, Castro M (2008) Airway remodeling measured by multidetector CT is increased in severe asthma and correlates with pathology. Chest 134(6):1183–1191CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bauer TL, Steiner KV (2007) Virtual bronchoscopy: clinical applications and limitations. Surg Oncol Clin North Am 16(2):323–328CrossRefGoogle Scholar
  6. Carolan BJ, Sutherland ER (2013) Clinical phenotypes of chronic obstructive pulmonary disease and asthma: recent advances. J Allergy Clin Immunol 131(3):627–634CrossRefPubMedGoogle Scholar
  7. Castro M, Fain SB, Hoffman EA, Gierada DS, Erzurum SC, Wenzel S (2011) Lung imaging in asthmatic patients: the picture is clearer. J Allergy Clin Immunol 128(3):467–478CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chalmers GW, Mcsharry CP, Thomson NC (2002) High resolution computed tomographic assessment of airway wall thickness in chronic asthma: reproducibility and relationship with lung function and severity. Thorax 57:247–253CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cierniak R (2011) Some words about the history of computed tomography. In: X-Ray computed tomography in biomedical engineering. Springer, LondonCrossRefGoogle Scholar
  10. Das KM, Lababidi H, Al Dandan S, Raja S, Sakkijha H, Al Zoum M, AlDosari K, Larsson SG (2014) Computed tomography virtual bronchoscopy: normal variants, pitfalls, and spectrum of common and rare pathology. Can Assoc Radiol J 66:58–70CrossRefPubMedGoogle Scholar
  11. De Wever W, Vandecaveye V, Lanciotti S, Verschakelen JA (2004) Multidetector CT-generated virtual bronchoscopy: an illustrated review of the potential clinical indications. Eur Respir J 23(5):776–782CrossRefPubMedGoogle Scholar
  12. Debnath J, George RA, Satija L, Ahmed S, Rai SP, Roy S (2013) Virtual bronchoscopy in the era of multi-detector computed tomography: is there any reality? Med J Armed Forces India 69(3):305–310CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fain SB, Gonzalez-Fernandez G, Peterson ET, Evans MD, Sorkness RL, Jarjour NN, Busse WW, Kuhlman JE (2008) evaluation of structure-function relationships in asthma using multidetector CT and hyperpolarized He-3 MRI. Acad Radiol 15(6):753–762CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gono H, Fujimoto K, Kawakami S, Kubo K (2003) Evaluation of airway wall thickness and air trapping by HRCT in asymptomatic asthma. Eur Respir J 22(6):965–971CrossRefPubMedGoogle Scholar
  15. Gupta S, Hartley R, Khan UT, Singapuri A, Hargadon B, Monteiro W, Pavord ID, Sousa AR, Marshall RP, Subramanian D, Parr D, Entwisle JJ, Siddiqui S, Raj V, Brightling CE (2014) Quantitative computed tomography-derived clusters: redefining airway remodeling in asthmatic patients. J Allergy Clin Immunol 133(3):729–738CrossRefPubMedPubMedCentralGoogle Scholar
  16. Helferty JP, Sherbondy AJ, Kiraly AP, Higgins WE (2007) Computer-based system for the virtual-endoscopic guidance of bronchoscopy. Comput Vis Image Underst 108(1–2):171–187CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hochhegger B, Irion KL, Marchiori E, Moreira JS (2011) Reconstruction algorithms influence the follow-up variability in the longitudinal CT emphysema index measurements. Korean J Radiol 12(2):169–175CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hoshino M, Matsuoka S, Handa H, Miyazawa T, Yagihashi K (2010) Correlation between airflow limitation and airway dimensions assessed by multidetector CT in asthma. Respir Med 104(6):794–800CrossRefPubMedGoogle Scholar
  19. Jung JW, Kwon JW, Kim TW, Lee SH, Kim KM, Kang HR, Park HW, Lee CH, Goo JM, Min KU, Cho SH (2013) New insight into the assessment of asthma using xenon ventilation computed tomography. Ann Allergy Asthma Immunol 111(2):90–95CrossRefPubMedGoogle Scholar
  20. Kirchgeorg MA, Prokop M (1998) Increasing spiral CT benefits with postprocessing applications. Eur J Radiol 28(1):39–54CrossRefPubMedGoogle Scholar
  21. Manso L, Reche M, Padial MA, Valbuena T, Pascual C (2012) Diagnostic tools assessing airway remodelling in asthma. Allergol Immunopathol 40(2):108–116CrossRefGoogle Scholar
  22. Montaudon M, Berger P, de Dietrich G, Braquelaire A, Marthan R, Tunon-de-Lara JM, Laurent F (2007) Assessment of airways with three-dimensional quantitative thin-section CT: in vitro and in vivo validation. Radiology 242(2):563–572CrossRefPubMedGoogle Scholar
  23. Moore WC, Bleecker ER (2014) Asthma heterogeneity and severity-why is comprehensive phenotyping important? Lancet Respir Med 2(1):10–11CrossRefPubMedGoogle Scholar
  24. Murphy P, Hillman T, Rajakulasingam K (2010) Therapeutic targets for persistent airway inflammation in refractory asthma. Biomed Pharmacother 64(2):140–145CrossRefPubMedGoogle Scholar
  25. Park SW, Park JS, Jeong SH, Lee YN, Hwangbo Y, Park JS, Lee JH, Jang AS, Kim DJ, Uh ST, Kim YH, Park CS (2012) Air trapping is a major determinant of persistent airway obstruction in asthmatics. Respir Med 106(6):786–793CrossRefPubMedGoogle Scholar
  26. Saglani S, Papaioannou G, Khoo L, Ujita M, Jeffery PK, Owens C, Hansell DM, Payne DN, Bush A (2006) Can HRCT be used as a marker of airway remodelling in children with difficult asthma? Respir Res 7:46CrossRefPubMedPubMedCentralGoogle Scholar
  27. Salvolini L, Bichi Secchi E, Costarelli L, De Nicola M (2000) Clinical applications of 2D and 3D CT imaging of the airways – a review. Eur J Radiol 34(1):9–25CrossRefPubMedGoogle Scholar
  28. Scichilone N, Contoli M, Paleari D, Pirina P, Rossi A, Sanguinetti CM, Santus P, Sofia M, Sverzellati N (2013) Assessing and accessing the small airways; implications for asthma management. Pulm Pharmacol Ther 26(2):172–179CrossRefPubMedGoogle Scholar
  29. Sheshadri A, Hoffman EA, Castro M (2014) Can computed tomography help us identify asthmatic phenotypes? J Allergy Clin Immunol 133(3):739–740CrossRefPubMedGoogle Scholar
  30. Shimizu K, Hasegawa M, Makita H, Nasuhara Y, Konno S, Nishimura M (2011) Comparison of airway remodelling assessed by computed tomography in asthma and COPD. Respir Med 105(9):1275–1283CrossRefPubMedGoogle Scholar
  31. Singh AK, Hiroyuki Y, Sahani DV (2009) Advanced postprocessing and the emerging role of computer-aided detection. Radiol Clin North Am 47(1):59–77CrossRefPubMedGoogle Scholar
  32. Slejko JF, Ghushchyan VH, Sucher B, Globe DR, Lin SL, Globe G, Sullivan PW (2014) Asthma control in the United States, 2008–2010: indicators of poor asthma control. J Allergy Clin Immunol 133(6):1579–1587CrossRefPubMedGoogle Scholar
  33. Sont JK, Willems LN, Bel EH, van Krieken JH, Vandenbroucke JP, Sterk PJ (1999) Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment. The AMPUL study group. Am J Respir Crit Care Med 159(4 Pt 1):1043–1051CrossRefPubMedGoogle Scholar
  34. Szydłowski J, Grzegorowski M, Wójcik M, Pucher B (2007) Virtual endoscopy of the respiratory tract in children. Otolaryngologia 6(4):179–181Google Scholar
  35. Tsurikisawa N, Oshikata C, Tsuburai T, Saito H, Sekiya K, Tanimoto H, Takeichi S, Mitomi H, Akiyama K (2010) Bronchial hyperresponsiveness to histamine correlates with airway remodelling in adults with asthma. Respir Med 104(9):1271–1277CrossRefPubMedGoogle Scholar
  36. Walsh SL, Nair A, Hansell DM (2013) Post-processing applications in thoracic computed tomography. Clin Radiol 68(5):433–448CrossRefPubMedGoogle Scholar
  37. Woods AQ, Lynch DA (2009) Asthma: an imaging update. Radiol Clin North Am 47(2):317–329CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mateusz Patyk
    • 1
    Email author
  • Andrzej Obojski
    • 2
  • Łukasz Gojny
    • 1
  • Bernard Panaszek
    • 2
  • Urszula Zaleska-Dorobisz
    • 1
  1. 1.Department of General and Pediatric RadiologyWroclaw Medical UniversityWrocławPoland
  2. 2.Department of Internal Diseases and AllergologyWroclaw Medical UniversityWroclawPoland

Personalised recommendations