Polymorphisms of Selected DNA Repair Genes and Lung Cancer in Chromium Exposure

  • E. Halasova
  • T. Matakova
  • M. Skerenova
  • M. Krutakova
  • P. Slovakova
  • A. Dzian
  • S. Javorkova
  • M. Pec
  • K. Kypusova
  • J. Hamzik
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 911)

Abstract

Chromium is a well-known mutagen and carcinogen involved in lung cancer development. DNA repair genes play an important role in the elimination of genetic changes caused by chromium exposure. In the present study, we investigated the polymorphisms of the following DNA repair genes: XRCC3, participating in the homologous recombination repair, and hMLH1 and hMSH2, functioning in the mismatch repair. We focused on the risk the polymorphisms present in the development of lung cancer regarding the exposure to chromium. We analyzed 106 individuals; 45 patients exposed to chromium with diagnosed lung cancer and 61 healthy controls. Genotypes were determined by a PCR-RFLP method. We unravelled a potential for increased risk of lung cancer development in the hMLH1 (rs1800734) AA genotype in the recessive model. In conclusion, gene polymorphisms in the DNA repair genes underscores the risk of lung cancer development in chromium exposed individuals.

Keywords

Carcinogens Chromium exposure DNA repair Genes Genotype Lung cancer Polymorphism 

References

  1. Adamkov M, Kajo K, Výbohová D, Krajčovič J, Štuller F, Rajčáni J (2012) Correlations of survivin expression with clinicomorphological parameters and hormonal receptor status in breast ductal carcinoma. Neoplasma 59(1):30–37CrossRefPubMedGoogle Scholar
  2. Bei L, Xiao-Dong T, Yu-Fang G, Jian-Ping S, Zhao-Yu Y (2015) DNA repair gene XRCC3 Thr241Met polymorphisms and lung cancer risk: a meta-analysis. Bull Cancer 102(4):332–339CrossRefPubMedGoogle Scholar
  3. Bray FJ, Weiderpass E (2010) Lung cancer mortality trends in 36 European countries: secular trends and birth cohort patterns by sex and region 1970–2007. Int J Cancer 126(6):1454–1466PubMedGoogle Scholar
  4. Chen HJ, Chang WS, Hsia TC, Miao CE, Chen WC, Liang SJ, Chen AC, Chang JG, Tsai CW, Hsu CM, Tsai CH, Bau DT (2015) Contribution of genotype of DNA double-strand break repair gene XRCC3, gender, and smoking behavior to lung cancer risk in Taiwan. Anticancer Res 35(7):3893–3899PubMedGoogle Scholar
  5. Dai H, Liu J, Malkas LH, Catalano J, Alagharu S, Hickey RJ (2009) Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome. Toxicol Appl Pharmacol 236(2):154–165CrossRefPubMedPubMedCentralGoogle Scholar
  6. Geng H, Hsieh P (eds) (2013). Molecular mechanisms and functions of DNA mismatch repair. DNA Alterations in Lynch Syndrome. Springer, Chapter 2, pp 25–45Google Scholar
  7. Halasova E, Baska T, Kukura F, Mazurova D, Bukovska E, Dobrota D, Poliacek I, Halasa M (2005) Lung cancer in relation to occupational and environmental chromium exposure and smoking. Neoplasma 52(4):287–291PubMedGoogle Scholar
  8. Huang HH, Huang JY, Lung C, Wu CL, Ho C, Hua Sun YH, Ko PC, Su SY, Chen SC, Yung-Po Liaw YP (2013) Cell-type specificity of lung cancer associated with low-dose soil heavy metal contamination in Taiwan: an ecological study. BMC Public Health 2(13):330–336CrossRefGoogle Scholar
  9. Huvinen M, Pukkala E (2013) Cancer incidence among Finnish ferrochromium and stainless steel production workers in 1967–2011: a cohort study. BMJ Open 3(11):e003819CrossRefPubMedPubMedCentralGoogle Scholar
  10. IARC (1990) International agency for research on cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Vol 49: Chromium nickel and welding, Geneva, Switzerland pp 49–256Google Scholar
  11. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106(2):302–323CrossRefPubMedGoogle Scholar
  12. Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, Storey KB, Lushchak VI (2010) Chromium effects on free radical processes in goldfish tissues: comparison of Cr (III) and Cr (VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Physiol C Toxicol Pharmacol 152(3):360–370CrossRefPubMedGoogle Scholar
  13. Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710CrossRefPubMedGoogle Scholar
  14. Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98CrossRefPubMedGoogle Scholar
  15. Li M, Zhang Q, Liu L, Lu W, Wei H, Li RW, Lu S (2013) Expression of the mismatch repair gene hMLH1 is enhanced in non-small cell lung cancer with EGFR mutations. PLoS One 8(10), e78500CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mandal RK, Gangwar R, Kapoor R, Mittal RD (2012) Polymorphisms in base-excision repair genes and prostate cancer risk in north Indian population. Indian J Med Res 135(1):64–71CrossRefPubMedPubMedCentralGoogle Scholar
  17. Pal T, Permuth-Wey J, Sellers TA (2008) A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer 113(4):733–742CrossRefPubMedPubMedCentralGoogle Scholar
  18. Salah GB, Fendri-Kria N, Hassen Kamoun H, Kallab F, Mkaouar-Rebai E, Amine Fourati A, Ayadi H, Fakhfakh F (2012) An interethnic variability and a functional prediction of DNA repair gene polymorphisms: the example of XRCC3 (p.Thr241 > Met) and XPD (p.Lys751 > Gln) in a healthy Tunisian population. Mol Biol Rep 39:9639–9647CrossRefPubMedGoogle Scholar
  19. Slovakova P, Majerova L, Matakova T, Skerenova M, Kavcova E, Halasova E (2015) Mismatch repair gene polymorphisms and association with lung cancer development. Adv Exp Med Biol 833:15–22CrossRefPubMedGoogle Scholar
  20. Vageli DP, Zaravinos A, Daniil Z, Dahabreh J, Doukas SG, Spandidos DA, Gourgoulianis KI, Koukoulis GK (2013) hMSH2 and hMLH1 gene expression patterns differ between lung adenocarcinoma and squamous cell carcinoma: correlation with patient survival and response to adjuvant chemotherapy treatment. Int J Biol Markers 27(4):e400–e404CrossRefPubMedGoogle Scholar
  21. Velma V, Tchounwou PB (2010) Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish, Carassius auratus. Mutat Res 698(1–2):43–51CrossRefPubMedPubMedCentralGoogle Scholar
  22. Xing ZS, Zhu G, Yang YL, Feng GQ, Ding GC (2014) Meta analysis of XRCC3 Thr241Met polymorphism and lung cancer susceptibility of populations in East Asia. Asian Pac J Trop Med 7(6):483–487CrossRefPubMedGoogle Scholar
  23. Zhang XH, Zhang X, Wang XC, Jin LF, Yang ZP, Jiang CX, Chen Q, Ren XB, Cao JZ, Wang Q (2011) Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers. BMC Public Health 11(1):224CrossRefPubMedPubMedCentralGoogle Scholar
  24. Zhang JH, Wen QL, Yang C, Li AL, Lium Y, Li XS (2014) XRCC3 T241M polymorphism and lung cancer risk in the Han Chinese population: a meta-analysis. Genet Mol Res 13(4):9505–9513CrossRefPubMedGoogle Scholar
  25. Zmetakova I, Danihel L, Smolkova B, Mego M, Kajabova V, Krivulcik T, Rusnak I, Rychly B, Danis D, Repiska V, Blasko P, Karaba M, Benca J, Pechan J, Fridrichova I (2013) Evaluation of protein expression and DNA methylation profiles detected by pyrosequencing in invasive breast cancer. Neoplasma 60(6):635–646CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • E. Halasova
    • 1
    • 2
  • T. Matakova
    • 3
  • M. Skerenova
    • 4
  • M. Krutakova
    • 1
  • P. Slovakova
    • 1
  • A. Dzian
    • 5
  • S. Javorkova
    • 6
  • M. Pec
    • 2
  • K. Kypusova
    • 2
  • J. Hamzik
    • 5
  1. 1.Division of Molecular Medicine, Biomedical Center MartinComenius University in BratislavaMartinSlovakia
  2. 2.Department of Medical BiologyComenius University in BratislavaMartinSlovakia
  3. 3.Department of Medical BiochemistryComenius University in BratislavaMartinSlovakia
  4. 4.Department of Clinical BiochemistryUniversity Hospital MartinMartinSlovakia
  5. 5.Clinic of Thoracic Surgery and University Hospital MartinComenius University in BratislavaMartinSlovakia
  6. 6.Clinic of PaediatricsCentral Military HospitalRuzomberokSlovakia

Personalised recommendations