Skip to main content

Inhibition of Urease Enzyme Production and some Other Virulence Factors Expression in Proteus mirabilis by N-Acetyl Cysteine and Dipropyl Disulphide

  • Chapter
  • First Online:
Advances in Microbiology, Infectious Diseases and Public Health

Abstract

Proteus mirabilis is one of the important pathogens that colonize the urinary tract and catheters resulting in various complications, such as blockage of the catheters and the formation of infective stones. Purpose: In this study we evaluated the effect of N-acetyl cysteine (NAC) and dipropyl disulphide on some virulence factors expressed by a Proteus mirabilis strain isolated from a catheterized patient. Methods: Antibacterial activity of both compounds was determined by broth microdilution method. Their effect on different types of motility was determined by LB medium with variable agar content and sub-MIC of each drug. Their effect on adherence and mature biofilms was tested by tissue culture plate assay. Inhibitory effect on urease production was determined and supported by molecular docking studies. Results: The minimum inhibitory concentration (MIC) of NAC and dipropyl disulphide was 25 mM and 100 mM, respectively. Both compounds decreased the swarming ability and biofilm formation of the tested isolate in a dose-dependent manner. NAC had higher urease inhibitory activity (IC50 249 ±0.05 mM) than that shown by dipropyl disulphide (IC50 10±0.2 mM). Results were supported by molecular docking studies which showed that NAC and dipropyl disulphide interacted with urease enzyme with binding free energy of −4.8 and −8.528 kcal/mol, respectively. Docking studies showed that both compounds interacted with Ni ion and several amino acids (His-138, Gly-279, Cysteine-321, Met-366 and His-322) which are essential for the enzyme activity. Conclusion: NAC and dipropyl disulphide could be used in the control of P. mirabilis urinary tract infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Baky RM, Abo El Ela DMM, Gad GFM (2014) N-acetyl cysteine inhibits and eradicates Candida albicans biofilms. Am J Infect Dis Microbiol 2:122–130

    CAS  Google Scholar 

  • Akhtar T, Muhammad A, Iqbal KJ et al (2014) Facile one-pot synthesis of 2-arylamino-5- aryloxylalkyl-1,3,4-oxadiazoles and their urease inhibition studies. Chem Biol Drug Des 84:92–98

    Article  CAS  PubMed  Google Scholar 

  • Amtul Z, Rahman AU, Siddiqui RA et al (2002) Chemistry and mechanism of urease inhibition. Curr Med Chem 9:1323–1348

    Article  CAS  PubMed  Google Scholar 

  • Amtul Z, Rasheed M, Choudhary MI et al (2004) Kinetics of novel competitive inhibitors of urease enzymes by a focused library of oxadiazoles/thiadiazoles and triazoles. Biochem Biophys Res Commun 319:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Benson HC (2002) Microbiological application: laboratory manual in general microbiology, 11th edn. McGram-Hill Higher Education, San Francisco, p. 168

    Google Scholar 

  • Bibby JM, Hukins DWL (1992) Measurement of pH to quantify urease activity. J Biochem Biophys Methods 25:231–236

    Article  CAS  PubMed  Google Scholar 

  • Bray D (2000) Critical point drying of biological specimens for scanning electron microscopy. In: Williams JR, Clifford AA (eds) Supercritical fluid methods and protocols. Humana Press Inc, Totowa, pp 235–243

    Chapter  Google Scholar 

  • Christensen GD, Simpson WA, Younger JA et al (1985) Adherence of coagulase negative Staphylococci to plastic tissue cultures: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clinical and laboratory standards institutes performance standards for antimicrobial susceptibility testing (2011) Twenty first informational supplement M100-S21. CLSI, Wayne

    Google Scholar 

  • Coker C, Poore CA, Li X et al (2000) Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect 2:1497–1505

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11:217–221

    Article  CAS  PubMed  Google Scholar 

  • Dixon NE, Riddles PW, Gazzola C et al (1980) Jack bean urease (EC 3515) V On the mechanism of action of urease on urea, formamide, acetamide N-methylurea, and related compounds. Can J Biochem 58:1335–1344

    Article  CAS  PubMed  Google Scholar 

  • Dodd S, Dean O, Copolov DL et al (2008) N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther 8:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Dusane DH, Hosseinidoust Z, Asadishad B et al (2014) Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli. PLoS One 9:e112093

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Feky MA, Hassan MA, Abolella H et al (2009) Effect of ciprofloxacin and N-acetylcysteine on bacterial adherence and biofilm formation on ureteral stent surfaces. Pol J microbiol 58:261–267

    Article  CAS  PubMed  Google Scholar 

  • Fernebro J (2011) Fighting bacterial infections-future treatment options. Drug Resist Updat 14:125–139

    Article  PubMed  Google Scholar 

  • Garsin DA, Willems RJ (2010) Insights into the biofilm lifestyle of enterococci. Virulence 1:219–221

    Article  PubMed  Google Scholar 

  • Golbabaei S, Bazl R, Golestanian S et al (2013) Urease inhibitory activities of β-boswellic acid derivatives DARU. J Pharm Sci 21:2

    CAS  Google Scholar 

  • Goldie J, Veldhuyzen van Zanten SJ, Jalali S et al (1989) Optimization of a medium for the rapid urease test for detection of Campylobacter pylori in gastric antral biopsies. J Clin Microbiol 27:2080–2082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goller CC, Seed PC (2010) Revisiting the Escherichia coli polysaccharide capsule as a virulence factor during urinary tract infection: contribution to intracellular biofilm development. Virulence 1:333–337

    Article  PubMed  Google Scholar 

  • Hawthorn L, Reid G (1990) The effect of protein and urine on uropathogen adhesion to polymer substrata. J Biomed Mater Res 24:1325–1332

    Article  CAS  PubMed  Google Scholar 

  • Hawtin PR, Stacey AR, Newell DG (1990) Investigation of the structure and localization of the urease of Helicobacter pylori using monoclonal antibodies. J Gen Microbiol 136:1995–2000

    Article  CAS  PubMed  Google Scholar 

  • Hola V, Peroutkova T, Ruzicka F (2012) Virulence factors in Proteus bacteria from biofilm communities of catheter-associated urinary tract infections. FEMS Immunol Med Microbiol 65:343–349

    Article  CAS  PubMed  Google Scholar 

  • Hu LT, Mobley HLT (1990) Purification and N-terminal analysis of urease from Helicobacter pylori. Infect Immun 58:992–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen SM, Shirtliff ME (2011) Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence 2:460–465

    Article  PubMed  Google Scholar 

  • Jones BD, Lockatell CV, Johnson DE et al (1990) Construction of a urease-negative mutant of Proteus mirabilis: analysis of virulence in a mouse model of ascending urinary tract infection. Infect Immun 58:1120–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones BV, Mahenthiralingam E, Sabbuba NA et al (2005) Role of swarming in the formation of crystalline Proteus mirabilis biofilms on urinary catheters. J Med Microbiol 54:807–813

    Article  PubMed  Google Scholar 

  • Kim JW, Huh JE, Kyung SH et al (2004) Antimicrobial activity of Alk(en)yl Sulfides found in essential oils of garlic and onion. Food Sci Biotechnol 13:235–239

    CAS  Google Scholar 

  • Kühler TC, Fryklund J, Bergman NA et al (1995) Structure-activity relationship of omeprazole and analogs as Helicobacter pylori urease inhibitors. J Med Chem 38:4906–4916

    Article  PubMed  Google Scholar 

  • Labigne A, Cussac V, Courcoux P (1991) Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J Bacteriol 173:1920–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchese A, Bozzolasc M, Gualco L et al (2003) Effect of fosfomycin alone and in combination with N-acetylcysteine on E coli biofilms. Inter J Antimicrob Agents 22:S95–S100

    Article  CAS  Google Scholar 

  • Millea PJ (2009) N-acetylcysteine: multiple clinical applications. Am Fam Physician 80:265–269

    PubMed  Google Scholar 

  • Mnayer D, Fabiano-Tixier A, Petitcolas E et al (2014) Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 19:20034–20053

    Article  PubMed  Google Scholar 

  • Mobley HLT (2001) Chapter 16: Urease. In: HLT M, Mendz GL, Hazell SL (eds) Helicobacter pylori: physiology and genetics. ASM Press, Washington, DC

    Google Scholar 

  • Mobley HL, Belas R (1995) Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol 3:280–284

    Article  CAS  PubMed  Google Scholar 

  • Mobley HL, Warren JW (1987) Urease-positive bacteriuria and obstruction of long-term urinary catheters. J Clin Microbiol 25:2216–2217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mobley HLT, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohsen A, Gomaa A, Mohamed F et al (2015) Antibacterial, anti-biofilm activity of some non-steroidal anti-Inflammatory drugs and N-acetyl cysteine against some biofilm producing uropathogens. Am J Epidemiol Infect Dis 3:1–9

    Article  Google Scholar 

  • Mokracka J, Gruszczyńska B, Kaznowski A (2012) Integrons, β-lactamase and qnr genes in multidrug resistant clinical isolates of Proteus mirabilis and P vulgaris. APMIS 120:950–958

    Article  CAS  PubMed  Google Scholar 

  • Morris NS et al (1997) Which indwelling urethral catheters resist encrustation by Proteus mirabilis biofilms? Br J Urol 80:58–63

    Article  CAS  PubMed  Google Scholar 

  • Musher DM, Griffith DP, Yawn D et al (1975) Role of urease in pyelonephritis resulting from urinary tract infection with Proteus. J Infect Dis 131:177–181

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Yoshiyama H, Takeuchi H et al (1998) Urease plays an important role in the chemotactic motility of Helicobacter pylori in a viscous environment. Infect Immun 66:4832

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’May GA, Jacobsen SM, Stickler DJ et al (2008) Complicated urinary tract infections due to catheters. In: Shirtliff M, Leid JG (eds) The role of biofilms in device-related infections. Spinger-Verlag, Berlin, pp 123–165

    Google Scholar 

  • O’May C, Ciobanu A, Lam H et al (2012) Tannin derived materials can block swarming motility and enhance biofilm formation in Pseudomonas aeruginosa. Biofouling 28:1063–1076

    Article  PubMed  Google Scholar 

  • Olofsson AC, Hermansson M, Elwing H (2003) N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol 69:4814–4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peerbooms PGH, Verweij AMJJ, Maclare DM (1985) Uropathogenic properties of Proteus mirabilis and P vulgaris. J Med Microbiol 19:55–60

    Article  CAS  PubMed  Google Scholar 

  • Prywer J, Torzewska A (2012) Effect of Curcumin against Proteus mirabilis during crystallization of struvite from artificial urine. Evid Based Complement Alternat Med:1–7

    Google Scholar 

  • Ranjbar-Omid M, Arzanlou M, Amani M et al (2015) Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro. FEMS Microbiol Lett 362:9

    Article  Google Scholar 

  • Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci 97:4885–4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rather PN (2005) Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol 7:1065–1073

    Article  CAS  PubMed  Google Scholar 

  • Roberts JA, Fussell EN, Kaack MB (1990) Bacterial adherence to urethral catheters. J Urol 144:264–269

    CAS  PubMed  Google Scholar 

  • Rokita E, Makristathis A, Presterl E et al (1998) Helicobacter pylori urease significantly reduces opsonization by human complement. J Infect Dis 178:1521–1525

    Article  CAS  PubMed  Google Scholar 

  • Rózalski A, Sidorczyk Z, Kotelko K (1997) Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev 61:65–89

    PubMed  PubMed Central  Google Scholar 

  • Sabbuba NA, Mahenthiralingam E, Stickler DJ (2003) Molecular epidemiology of Proteus mirabilis infections of the catheterized urinary tract. J Clin Microbiol 41:4961–4965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabbuba NA, Stickler DJ, Mahenthiralingam E et al (2004) Genotyping demonstrates that the strains of Proteus mirabilis from bladder stones and catheter encrustations of patients undergoing long-term bladder catheterization are identical. J Urol 171:1925–1928

    Article  CAS  PubMed  Google Scholar 

  • Soboh F, Khoury AE, Zamboni AC et al (1995) Effects of ciprofloxacin and protamine sulfate combinations against catheter-associated Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 39:1281–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stickler DJ, Hughes G (1999) Ability of Proteus mirabilis to swarm over urethral catheters. Eur J Clin Microbiol Infect Dis 18:206–208

    Article  CAS  PubMed  Google Scholar 

  • Stickler DJ, Sabbuba NA (2007) In: Manivannan G (ed) Antimicrobial catheters in disinfection and decontamination principles, applications and related issues. CRC Press, Boca Raton, pp 415–458

    Google Scholar 

  • Tanaka T, Kawase M, Tani S (2003) Urease inhibitory activity of simple alpha, beta-unsaturated ketones. Life Sci 73:2985–2990

    Article  CAS  PubMed  Google Scholar 

  • Todd MJ, Hausinger RPJ (1989) Competitive inhibitors of Klebsiella aerogenes urease mechanisms of interaction with the nickel active site. Biol Chem 264:15835–15842

    CAS  Google Scholar 

  • Ulrey RK, Barksdale SM, Zhou W et al (2014) Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complement Altern Med 14:499

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlamakis H (2011) The world of biofilms. Virulence 2:431–434

    Article  PubMed  Google Scholar 

  • Weatherburn MW (1967) Phenol hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  • Wei GX, Campagna AN, Bokek LA (2006) Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Agent 57:1100–1109

    CAS  Google Scholar 

  • Williams FD, Schwarzhoff RH (1978) Nature of the swarming phenomenon in Proteus. Annu Rev Microbiol 32:101–122

    Article  CAS  PubMed  Google Scholar 

  • Xiao ZP, Wang XD, Peng ZY et al (2012) Molecular docking, kinetics study, and structure-activity relationship analysis of quercetin and its analogous as Helicobacter pylori urease inhibitors. J Agric Food Chem 60(42):10572–10577

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the authors themselves.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neveen AbdelAziz .

Editor information

Editors and Affiliations

Additional information

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdel-Baky, R.M., Ali, M.A., Abuo-Rahma, G.ED.A.A., AbdelAziz, N. (2017). Inhibition of Urease Enzyme Production and some Other Virulence Factors Expression in Proteus mirabilis by N-Acetyl Cysteine and Dipropyl Disulphide. In: Donelli, G. (eds) Advances in Microbiology, Infectious Diseases and Public Health. Advances in Experimental Medicine and Biology(), vol 973. Springer, Cham. https://doi.org/10.1007/5584_2016_197

Download citation

Publish with us

Policies and ethics