Advertisement

Heart Rate Variability and Arrhythmic Burden in Pulmonary Hypertension

  • C. Witte
  • J. U. Meyer zur Heide genannt Meyer-Arend
  • R. Andrié
  • J. W. Schrickel
  • C. Hammerstingl
  • J. O. Schwab
  • G. Nickenig
  • D. Skowasch
  • C. PizarroEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 934)

Abstract

A growing body of evidence indicates that sudden cardiac death constitutes a major cause of mortality in pulmonary hypertension (PH). As validated method to evaluate cardiac autonomic system dysfunction, alterations in heart rate variability (HRV) are predictive of arrhythmic events, particularly in left ventricular disease. Here, we sought to determine the clinical value of HRV assessment in PH. Sixty-four patients were allocated to different PH-subgroups in this prospectively conducted trial: 25 patients with pulmonary arterial hypertension (PAH), 11 patients with chronic thromboembolic PH (CTEPH), and 28 patients with COPD-induced PH. All patients underwent 24-h Holter electrocardiogram for HRV assessment by time- and frequency-domain analysis. Arrhythmic burden was evaluated by manual analysis and complementary automatic measurement of premature atrial and ventricular contractions. The results were compared to 31 healthy controls. The PAH patients offered a significantly higher mean heart rate (78.6 ± 10.4 bpm vs. 70.1 ± 10.3 bpm, p = 0.04), a higher burden of premature ventricular contractions (p < 0.01), and decreases in HRV (SDNN: p < 0.01; SDANN: p < 0.01; very low frequency: p < 0.01; low frequency/high frequency ratio: p < 0.01; total power: p = 0.02). In CTEPH patients, only the amount of premature ventricular contractions differed from controls (p < 0.01), whereas in COPD both premature atrial contraction count and frequency-domain-based HRV manifested significant differences. In conclusion, PAH appears to be primarily affected by HRV alterations and ventricular arrhythmic burden, indicating a high risk for malignant arrhythmic events.

Keywords

Atrial fibrillation Echocardiography Frequency-domain analysis Right heart catheterization Sudden cardiac death Systolic pulmonary arterial pressure Time-domain analysis 

Notes

Acknowledgements

We gratefully acknowledge the help of Ms. Leonie Weinhold of the Department of Medical Biometry, Computer Science and Epidemiology, University Hospital Bonn for her excellent statistical support. We thank Actelion Pharmaceuticals (Freiburg, Germany) for research funding, as well as Sorin Group (Milan, Italy) for providing us free of charge with the SpiderView™ Ambulatory Electrocardiographic Recorder.

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

References

  1. American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American College of Chest Physicians, Douglas PS, Garcia MJ, Haines DE, Lai WW, Manning WJ, Patel AR, Picard MH, Polk DM, Ragosta M, Parker Ward R, Weiner RB (2011) ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians. J Am Soc Echocardiogr 24(3):229–267CrossRefGoogle Scholar
  2. Bandorski D, Erkapic D, Stempfl J, Höltgen R, Grünig E, Schmitt J, Chasan R, Grimminger J, Neumann T, Hamm CW, Seeger W, Ghofrani HA, Gall H (2015) Ventricular tachycardias in patients with pulmonary hypertension: an underestimated prevalence? A prospective clinical study. Herzschrittmacherther Elektrophysiol 26(2):155–162CrossRefPubMedGoogle Scholar
  3. Bienias P, Ciurzynski M, Kostrubiec M, Rymarczyk Z, Kurzyna M, Korczak D, Roik M, Torbicki A, Fijalkowska A, Pruszczyk P (2015) Functional class and type of pulmonary hypertension determinate severity of cardiac autonomic dysfunction assessed by heart rate variability and turbulence. Acta Cardiol 70(3):286–296PubMedGoogle Scholar
  4. Chung WJ, Park YB, Jeon CH, Jung JW, Ko KP, Choi SJ, Seo HS, Lee JS, Jung HO (2015) Baseline characteristics of the Korean registry of pulmonary arterial hypertension. J Korean Med Sci 10:1429–1438CrossRefGoogle Scholar
  5. Fauchier L, Babuty D, Melin A, Bonnet P, Cosnay P, Fauchier JP (2004) Heart rate variability in severe right or left heart failure: the role of pulmonary hypertension and resistances. Eur J Heart Fail 6(2):181–185CrossRefPubMedGoogle Scholar
  6. Fauchier L, Melin A, Eder V, Antier D, Bonnet P (2006) Heart rate variability in rats with chronic hypoxic pulmonary hypertension. Ann Cardiol Angeiol (Paris) 55(5):249–254CrossRefGoogle Scholar
  7. Folino AF, Bobbo F, Schiraldi C, Tona F, Romano S, Buja G, Bellotto F (2003) Ventricular arrhythmias and autonomic profile in patients with primary pulmonary hypertension. Lung 181(6):321–328CrossRefPubMedGoogle Scholar
  8. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37(1):67–119CrossRefPubMedGoogle Scholar
  9. Hoeper MM, Galiè N, Murali S, Olschewski H, Rubenfire M, Robbins IM, Farber HW, McLaughlin V, Shapiro S, Pepke-Zaba J, Winkler J, Ewert R, Opitz C, Westerkamp V, Vachiéry JL, Torbicki A, Behr J, Barst RJ (2002) Outcome after cardiopulmonary resuscitation in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 165(3):341–344CrossRefPubMedGoogle Scholar
  10. McGowan CL, Swiston JS, Notarius CF, Mak S, Morris BL, Picton PE, Granton JT, Floras JS (2009) Discordance between microneurographic and heart-rate spectral indices of sympathetic activity in pulmonary arterial hypertension. Heart 95(9):754–758CrossRefPubMedGoogle Scholar
  11. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, Baig W, Flapan AD, Cowley A, Prescott RJ, Neilson JM, Fox KAA (1998) prospective study of heart rate variability and mortality in chronic heart failure results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-Heart). Circulation 98(15):1510–1516CrossRefPubMedGoogle Scholar
  12. Notarius CF, Butler GC, Ando S, Pollard MJ, Senn BL, Floras JS (1999) Dissociation between microneurographic and heart rate variability estimates of sympathetic tone in normal subjects and patients with heart failure. Clin Sci 96(6):557–565CrossRefPubMedGoogle Scholar
  13. Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol Heart Circ Physiol 248(1):H151–H153Google Scholar
  14. Rajdev A, Garan H, Biviano A (2012) Arrhythmias in pulmonary arterial hypertension. Prog Cardiovasc Dis 55(2):180–186CrossRefPubMedGoogle Scholar
  15. Seeger W, Adir Y, Barberà JA, Champion H, Coghlan JG, Cottin V, De Marco T, Galiè N, Ghio S, Gibbs S, Martinez FJ, Semigran MJ, Simonneau G, Wells AU, Vachiéy JL (2013) Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol 62(25 Supplement):D109–D116CrossRefPubMedGoogle Scholar
  16. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Kumar RK, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62(25 Supplement):D34–D41CrossRefPubMedGoogle Scholar
  17. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability standards of measurement, physiological interpretation, and clinical use. Circulation 93(5):1043–1065CrossRefGoogle Scholar
  18. Taylor JA, Carr DL, Myers CW, Eckberg DL (1998) mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation 98(6):547–555CrossRefPubMedGoogle Scholar
  19. Valencia JF, Vallverdú M, Porta A, Voss A, Schroeder R, Vázquez R, Bayés de Luna A, Caminal P (2013) Ischemic risk stratification by means of multivariate analysis of the heart rate variability. Physiol Meas 34(3):325–338CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • C. Witte
    • 1
  • J. U. Meyer zur Heide genannt Meyer-Arend
    • 1
  • R. Andrié
    • 1
  • J. W. Schrickel
    • 1
  • C. Hammerstingl
    • 1
  • J. O. Schwab
    • 2
  • G. Nickenig
    • 1
  • D. Skowasch
    • 1
  • C. Pizarro
    • 1
    Email author
  1. 1.Department of Internal Medicine II, Cardiology, Pneumology and AngiologyUniversity Hospital BonnBonnGermany
  2. 2.Department of CardiologyBeta ClinicBonnGermany

Personalised recommendations