Skip to main content

Different Patterns in Changes of Exhaled Breath Condensate pH and Exhaled Nitric Oxide After Ozone Exposure

  • Chapter
  • First Online:
Environment Exposure to Pollutants

Abstract

Study objective was the evaluation of pH in exhaled breath condensate (EBC-pH) and nitric oxide in exhaled breath (FeNO) as biomarkers of ozone induced inflammation. We recently demonstrated that an ozone exposure of 240 ppb is sufficient to reduce lung function indices. We enrolled ten healthy subjects exposed in an intermittent exercise protocol to ozone concentrations of 240 ppb and 40 ppb (sham exposure). EBC-pH and FeNO were assessed before (pre), immediately post (post), and 16 h after exposure (16 h). Findings are that compared to baseline, EBC-pH was significantly higher immediately after sham and ozone exposures, but not 16 h later. There was a negative net change in EBC-pH after adjusting for effects after sham exposure (net-ΔpHpost −0.38 %, net-ΔpH16h −0.23 %). Concerning FeNO, we observed no changes of values after sham exposure compared to baseline, but measured a significant lower net response at the end of exposure (net-ΔFeNOpost −17.5 %) which was transient within 16 h (net-ΔFeNO16h −9.4 %). We conclude that exercise known to enhance EBC-pH may compensate for EBC acidification associated with inflammation resulting in diminished change of this biomarker. Ozone imposes an oxidative burden and reactions between reactive oxygen species and NO might be an explanation for reduced FeNO levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro MF, Walby WF, Adams WC, Schelegle ES (2007) Breath condensate levels of 8-isoprostane and leukotriene B4 after ozone inhalation are greater in sensitive versus nonsensitive subjects. Exp Lung Res 33:115–133

    Article  CAS  PubMed  Google Scholar 

  • American Thoracic Society (1995) Standardization of spirometry, 1994 update. Am J Respir Crit Care Med 152:1107–1136

    Article  Google Scholar 

  • American Thoracic Society, European Respiratory Society (2005) ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med 171:912–930

    Article  Google Scholar 

  • Antosova M, Bencova A, Psenkova A, Herle D, Rozborilova E (2009) Exhaled nitric oxide – circadian variations in healthy subjects. Eur J Med Res 14:6–8

    PubMed Central  PubMed  Google Scholar 

  • Balmes JR, Chen LL, Scannell C, Tager I, Christian D, Hearne PQ, Kelly T, Aris RM (1996) Ozone-induced decrements in FEV1 and FVC do not correlate with measures of inflammation. Am J Respir Crit Care Med 15:904–909

    Article  Google Scholar 

  • Bartoli ML, Vagaggini B, Malagrinò L, Bacci E, Cianchetti S, Dente FL, Novelli F, Costa F, Paggiaro P (2013) Baseline airway inflammation may be a determinant of the response to ozone exposure in asthmatic patients. Inhal Toxicol 25:127–133

    Article  CAS  PubMed  Google Scholar 

  • Baur X, Huber H, Degens PO, Allmers H, Ammon J (1998) Relation between occupational asthma case history, bronchial methacholine challenge, and specific challenge test in patients with suspected occupational asthma. Am J Ind Med 33:114–122

    Article  CAS  PubMed  Google Scholar 

  • Bhalla DK (1999) Ozone-induced lung inflammation and mucosal barrier disruption: toxicology, mechanisms, and implications. J Toxicol Environ Health Part B Crit Rev 2:31–86

    Article  CAS  Google Scholar 

  • Blomberg A, Mudway IS, Nordenhäll C, Hedenström H, Kelly FJ, Frew AJ, Holgate ST, Sandström T (1999) Ozone-induced lung function decrements do not correlate with early airway inflammatory or antioxidant responses. Eur Respir J 13:1418–1428

    Article  CAS  PubMed  Google Scholar 

  • Corradi M, Alinovi R, Goldoni M, Vettori M, Folesani G, Mozzoni P, Cavazzini S, Bergamaschi E, Rossi L, Mutti A (2002) Biomarkers of oxidative stress after controlled human exposure to ozone. Toxicol Lett 134:219–225

    Article  CAS  PubMed  Google Scholar 

  • Freeman BA, Crapo JD (1981) Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem 256:10986–10992

    CAS  PubMed  Google Scholar 

  • Hoffmeyer F, Raulf-Heimsoth M, Brüning T (2009) Exhaled breath condensate and airway inflammation. Curr Opin Allergy Clin Immunol 9:16–22

    Article  PubMed  Google Scholar 

  • Hoffmeyer F, Sucker K, Monsé C, Berresheim H, Rosenkranz N, Jettkant B, Beine A, Brüning T, Bünger J (2013a) Relationship of pulmonary function response to ozone exposure and capsaicin cough sensitivity. Inhal Toxicol 25:569–576

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeyer F, Sucker K, Rosenkranz N, Berresheim H, Monse C, Brüning T, Bünger J (2013b) Reproducibility of sensitivity to capsaicin assessed by single breath inhalation methodology. Adv Exp Med Biol 755:71–78

    Article  CAS  PubMed  Google Scholar 

  • Horváth I, Hunt J, Barnes PJ, Alving K, Antczak A, Baraldi E, Becher G, van Beurden WJ, Corradi M, Dekhuijzen R, Dweik RA, Dwyer T, Effros R, Erzurum S, Gaston B, Gessner C, Greening A, Ho LP, Hohlfeld J, Jöbsis Q, Laskowski D, Loukides S, Marlin D, Montuschi P, Olin AC, Redington AE, Reinhold P, van Rensen EL, Rubinstein I, Silkoff P, Toren K, Vass G, Vogelberg C, Wirtz H, ATS/ERS Task Force on Exhaled Breath Condensate (2005) Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26:523–548

    Article  PubMed  Google Scholar 

  • Kafoury RM, Pryor WA, Squadrito GL, Salgo MG, Zou X, Friedman M (1999) Induction of inflammatory mediators in human airway epithelial cells by lipid ozonation products. Am J Respir Crit Care Med 160:1934–1942

    Article  CAS  PubMed  Google Scholar 

  • Kharitonov SA, Robbins RA, Yates D, Keatings V, Barnes PJ (1995) Acute and chronic effects of cigarette smoking on exhaled nitric oxide. Am J Respir Crit Care Med 152:609–612

    Article  CAS  PubMed  Google Scholar 

  • Koczulla AR, Noeske S, Herr C, Jörres RA, Römmelt H, Vogelmeier C, Bals R (2010) Acute and chronic effects of smoking on inflammation markers in exhaled breath condensate in current smokers. Respiration 79:61–67

    Article  CAS  PubMed  Google Scholar 

  • Kostikas K, Papatheodorou G, Ganas K, Psathakis K, Panagou P, Loukides S (2002) pH in expired breath condensate of patients with inflammatory airway diseases. Am J Respir Crit Care Med 165:1364–1370

    Article  PubMed  Google Scholar 

  • Kullmann T, Barta I, Lázár Z, Szili B, Barát E, Valyon M, Kollai M, Horváth I (2007) Exhaled breath condensate pH standardised for CO2 partial pressure. Eur Respir J 29:496–501

    Article  CAS  PubMed  Google Scholar 

  • Lippmann M (1989) Health effects of ozone. A critical review. J Air Pollut Control Assoc 39:672–695

    CAS  Google Scholar 

  • Malinovschi A, Backer V, Harving H, Porsbjerg C (2012) The value of exhaled nitric oxide to identify asthma in smoking patients with asthma-like symptoms. Respir Med 106:794–801

    Article  PubMed  Google Scholar 

  • McDonnell WF, Stewart PW, Smith MV (2010) Prediction of ozone-induced lung function responses in humans. Inhal Toxicol 22:160–168

    Article  CAS  PubMed  Google Scholar 

  • Monsé C, Sucker K, van Thriel C, Broding HC, Jettkant B, Berresheim H, Wiethege T, Käfferlein H, Merget R, Bünger J, Brüning T (2012) Considerations for the design and technical setup of a human whole-body exposure chamber. Inhal Toxicol 24:99–108

    Article  PubMed  Google Scholar 

  • Morice AH, Fontana GA, Belvisi MG, Birring SS, Chung KF, Dicpinigaitis PV, Kastelik JA, McGarvey LP, Smith JA, Tatar M, Widdicombe J, European Respiratory Society (ERS) (2007) ERS guidelines on the assessment of cough. Eur Respir J 29:1256–1276

    Article  CAS  PubMed  Google Scholar 

  • Olin AC, Stenfors N, Torén K, Blomberg A, Helleday R, Ledin MC, Ljungkvist G, Ekman A, Sandström T (2001) Nitric oxide (NO) in exhaled air after experimental ozone exposure in humans. Respir Med 95:491–495

    Article  CAS  PubMed  Google Scholar 

  • Pryor WA, Squadrito GL, Friedman M (1995) The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products. Free Radic Biol Med 19:935–941

    Article  CAS  PubMed  Google Scholar 

  • Raulf-Heimsoth M, Hoffmeyer F, van Thriel C, Blaszkewicz M, Bünger J, Brüning T (2010) Assessment of low dose effects of acute sulphur dioxide exposure on the airways using non-invasive methods. Arch Toxicol 84:121–127

    Article  CAS  PubMed  Google Scholar 

  • Riediker M, Danuser B (2007) Exhaled breath condensate pH is increased after moderate exercise. J Aerosol Med 20:13–18

    Article  PubMed  Google Scholar 

  • Taraldsøy T, Bolann BJ, Thorsen E (2007) Reduced nitric oxide concentration in exhaled gas after exposure to hyperbaric hyperoxia. Undersea Hyperb Med 34:321–327

    PubMed  Google Scholar 

  • Vagaggini B, Bartoli ML, Cianchetti S, Costa F, Bacci E, Dente FL, Di Franco A, Malagrinò L, Paggiaro P (2010) Increase in markers of airway inflammation after ozone exposure can be observed also in stable treated asthmatics with minimal functional response to ozone. Respir Res 11:5

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technicians of IPA Anja Molkenthin, Roswitha Nioduschewski and Renate Maier. Assistance provided by Bernd Naurath was greatly appreciated.

Conflicts of Interest

The authors declare no competing interests that might be perceived to influence the results and discussion reported in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hoffmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoffmeyer, F. et al. (2014). Different Patterns in Changes of Exhaled Breath Condensate pH and Exhaled Nitric Oxide After Ozone Exposure. In: Pokorski, M. (eds) Environment Exposure to Pollutants. Advances in Experimental Medicine and Biology(), vol 834. Springer, Cham. https://doi.org/10.1007/5584_2014_63

Download citation

Publish with us

Policies and ethics