Skip to main content

Resonant Silicon Microcantilevers for Particle and Gas Sensing

  • Chapter
  • First Online:
Piezoelectric Sensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 18))

  • 18 Accesses

Abstract

Resonant Silicon Microcantilevers (RSMCs) serve as highly suitable Mass-Sensitive Transducers (MSTs) for effective miniaturization, owing to their uncomplicated cantilever device structure and the inherent architectural adaptability of silicon. In comparison with conventional technologies, resonant microcantilevers offer several promising advantages: exceptional sensitivity, cost-effectiveness, robustness, scalability, minimal sample requirements, low energy consumption, rapid response times, and a label-free process devoid of hazards. The extensive research conducted on microcantilever sensors has underscored their versatile analytical capabilities, encompassing the detection of particulate matter in both air and liquids, humidity measurement, and gas sensing applications. This comprehensive chapter presents a thorough exploration of the cutting-edge advancements in microcantilever-based particle and gas sensors. It delves into their underlying working principles, design considerations, the functionalization and packaging of microcantilevers, and the manifold applications they serve, while also shedding light on the future potential in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

ALD:

Atomic-layer deposition

APTES:

(3-Aminopropyl)-trimethoxysilane

BAW:

Bulk acoustic wave

CFD:

Computational fluid dynamics

CMOS:

Complementary metal oxide semiconductor

C-MSN:

Carboxyl-group-functionalized mesoporous-silica nanoparticle

CPC:

Condensation particle counter

cryo-DRIE:

Deep reactive ion etching at cryogenic temperature

CSD:

Chemical-solution deposition

CSE:

Chemical-solution etching

CVD:

Chemical vapor deposition

CWA:

Chemical warfare agents

DFP:

Di-isopropyl fluorophosphate

DI:

De-ionized

DMA:

Differential mobility analyzer

DMMP:

Dimethyl methyl phosphonate

DPMS:

Differential mobility particle sizer

EAM:

Electromechanical amplitude modulation

FBAR:

Film bulk acoustic resonator

FMPS:

Fast mobility particle sizer

GND:

Ground

HEPA:

High-efficiency particulate air filter

HR:

Heating resistor

IDLH:

Immediately dangerous for life or health

LOD:

Limit of detection

LPCVD:

Low pressure chemical vapor deposition

MBE:

Molecular-beam epitaxy

MEMS:

Micro electro mechanical system

MOF:

Metal-organic framework

MOS:

Metal oxide semiconducting

MOX:

Metal oxide

MST:

Mass-sensitive transducer

MTF:

Mesoporous thin film

NF:

Nanofin

NPC:

Nanoporous carbon

NPL:

Nanopillar

NR:

Nanorod

OP:

Organophosphorus

OPC:

Optical particle counter

PAAM:

Poly-acryl amide

PCB:

Printed circuit board

PECH:

Polyepichlorohydrin

PECVD:

Plasma enhanced chemical vapor deposition

PEI:

Poly-ethylene imine

PETN:

Pentaerythritol tetranitrate

PLL:

Phase-locked loop

PM:

Particulate matter

PMMA:

Polymethyl methacrylate

PVA:

Poly-vinyl alcohol

PμC:

Piezoresistive microcantilever

μFC:

Microfluidic channel

PVC:

Poly-vinyl chloride

PVD:

Physical vapor deposition

PVP:

Poly-vinyl pyrrolidone

QCM:

Quartz crystal microbalance

RDX:

Hexahydro-1,3,5-triazine

RIE:

Reactive ion etching

RSMC:

Resonant silicon microcantilever

SAM:

Self-assembled monolayer

SAW:

Surface acoustic wave

SEM:

Scanning electron microscopy

TAE:

Tris(hydroxymethyl)aminomethane acetate ethylenediaminetetraacetic acid

TEACl:

Triethylamine hydrochloride

TEOM:

Tapered element oscillating microbalance

TL-FM AFM:

Tipless force modulation atomic force microscopy

TMAH:

Tetramethylammonium hydroxide

TPO:

Thermal-piezoresistive oscillator

TPoS:

Thin-film piezoelectric-on-silicon

TSMR:

Thickness shear mode resonator

TTIP:

Titanium tetraisopropoxide

UFP:

Ultrafine particle

UV:

Ultraviolet

4-MBA:

4-Mercaptobenzoic acid

VOC:

Volatile organic compound

WB:

Wheatstone bridge

WHO:

World Health Organization

ZIF:

Zeolitic-imidazolate-framework

References

  1. Fletcher PC, Xu Y, Gopinath P et al (2008) Piezoresistive geometry for maximizing microcantilever array sensitivity. Proceedings IEEE Sensors. pp 1580–1583.

    Google Scholar 

  2. Daryani MM, Manzaneque T, Wei J, Ghatkesar MK (2022) Measuring nanoparticles in liquid with attogram resolution using a microfabricated glass suspended microchannel resonator. Microsyst Nanoeng 8. https://doi.org/10.1038/s41378-022-00425-8

  3. Ezrre S, Reyna MA, Anguiano C et al (2022) Lab-on-a-chip platforms for airborne particulate matter applications: a review of current perspectives. Biosensors 12. https://doi.org/10.3390/bios12040191

  4. Muñoz-Galán H, Alemán C, Pérez-Madrigal MM (2023) Beyond biology: alternative uses of cantilever-based technologies. Lab Chip. https://doi.org/10.1039/d2lc00873d

  5. Pachkawade V, Tse Z (2022) MEMS sensor for detection and measurement of ultra-fine particles. Eng Res Express 4. https://doi.org/10.1088/2631-8695/ac743a

  6. Vasagiri S, Burra RK, Vankara J, Kumar Patnaik MSP (2022) A survey of MEMS cantilever applications in determining volatile organic compounds. AIP Adv 12. https://doi.org/10.1063/5.0075034

  7. Mouro J, Pinto R, Paoletti P, Tiribilli B (2021) Microcantilever: dynamical response for mass sensing and fluid characterization. Sensors 21:1–35. https://doi.org/10.3390/s21010115

    Article  CAS  Google Scholar 

  8. Bertke M, Kirsch I, Uhde E, Peiner E (2021) Ultrafine aerosol particle sizer based on piezoresistive microcantilever resonators with integrated air-flow channel. Sensors 21:3731. https://doi.org/10.3390/s21113731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu J, Peiner E (2022) Dimensional-nanopatterned piezoresistive silicon microcantilever for environmental sensing. In: Yang Z (ed) Advanced MEMS/NEMS fabrication and sensors1st edn. Springer, Cham, pp 19–47

    Chapter  Google Scholar 

  10. Nyang’au WO, Kahmann T, Viereck T, Peiner E (2021) MEMS-based cantilever sensor for simultaneous measurement of mass and magnetic moment of magnetic particles. Chemosensors 9. https://doi.org/10.3390/chemosensors9080207

  11. Fahrbach M, Friedrich S, Behle H et al (2021) Customized piezoresistive microprobes for combined imaging of topography and mechanical properties. Meas Sens 15:100042. https://doi.org/10.1016/j.measen.2021.100042

    Article  Google Scholar 

  12. Algamili AS, Khir MHM, Dennis JO et al (2021) A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res Lett 16. https://doi.org/10.1186/s11671-021-03481-7

  13. Boisen A, Dohn S, Keller SS et al (2011) Cantilever-like micromechanical sensors. Rep Prog Phys 74:036101. https://doi.org/10.1088/0034-4885/74/3/036101

    Article  CAS  Google Scholar 

  14. Schmid S, Kurek M, Adolphsen JQ, Boisen A (2013) detection with nanomechanical resonant, pp 3–7. https://doi.org/10.1038/srep01288

    Book  Google Scholar 

  15. Xu J, Bertke M, Wasisto HSHS, Peiner E (2019) Piezoresistive microcantilevers for humidity sensing. J Micromech Microeng 29:053003. https://doi.org/10.1088/1361-6439/ab0cf5

    Article  CAS  Google Scholar 

  16. Oprea A, Weimar U (2019) Gas sensors based on mass-sensitive transducers part 1: transducers and receptors – basic understanding. Anal Bioanal Chem:1761–1787. https://doi.org/10.1007/s00216-019-01630-7

  17. Brand O, Dufour I, Stephen Heinrich FJ (2015) Resonant MEMS-fundamentals, implementation and application. Wiley-VCH

    Book  Google Scholar 

  18. Bargatin I, Kozinsky I, Roukes ML (2007) Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators. Appl Phys Lett 90:88–91. https://doi.org/10.1063/1.2709620

    Article  CAS  Google Scholar 

  19. Dufour I, Lochon F, Josse F (2007) Effect of coating viscoelasticity on quality factor and limit of detection of microcantilever chemical sensors. IEEE Sens J 7:230–236. https://doi.org/10.1109/JSEN.2006.888600

    Article  Google Scholar 

  20. Schultz JA, Heinrich SM, Josse F et al (2015) Lateral-mode vibration of microcantilever-based sensors in viscous fluids using Timoshenko beam theory. J Microelectromech Syst 24:848–860. https://doi.org/10.1109/JMEMS.2014.2354596

    Article  Google Scholar 

  21. Johnson BN, Mutharasan R (2012) Biosensing using dynamic-mode cantilever sensors: a review. Biosens Bioelectron 32:1–18. https://doi.org/10.1016/j.bios.2011.10.054

    Article  CAS  PubMed  Google Scholar 

  22. Ren S, Ren M, Xu H (2023) A readout circuit for MEMS gas sensor. Micromachines 14:150. https://doi.org/10.3390/mi14010150

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bertke M, Hamdana G, Wu W et al (2017) Analysis of asymmetric resonance response of thermally excited silicon micro-cantilevers for mass-sensitive nanoparticle detection. J Micromech Microeng 27:064001. https://doi.org/10.1088/1361-6439/aa6b0d

    Article  CAS  Google Scholar 

  24. Lavrik NV, Sepaniak MJ, Datskos PG, Lavrik NV (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 2229:2229–2253. https://doi.org/10.1063/1.1763252

    Article  CAS  Google Scholar 

  25. Bertke M, Xu J, Setiono A et al (2020) Fabrication of a microcantilever-based aerosol detector with integrated electrostatic on-chip ultrafine particle separation and collection. J Micromech Microeng 30:014001. https://doi.org/10.1088/1361-6439/ab4e56

    Article  CAS  Google Scholar 

  26. Seo JH, Brand O (2008) High Q-factor in-plane-mode resonant microsensor platform for gaseous/ liquid environment. J Microelectromech Syst 17:483–493. https://doi.org/10.1109/JMEMS.2008.916328

    Article  CAS  Google Scholar 

  27. Beardslee LA, Truax S, Lee JH et al (2011) Selectivity enhancement strategy for cantilever-based gas-phase VOC sensors through use of peptide-functionalized carbon nanotubes. In: Proceedings of the IEEE international conference on micro electro mechanical systems (MEMS). IEEE, pp 964–967

    Google Scholar 

  28. Lang HP, Hegner M, Gerber C (2005) Cantilever array sensors. Mater Today 8:30–36. https://doi.org/10.1016/S1369-7021(05)00792-3

    Article  CAS  Google Scholar 

  29. Boisen A, Thundat T (2009) Design & fabrication of cantilever array biosensors surface immobilization of functional receptors on microfabricated. Mater Today 12:32–38. https://doi.org/10.1016/S1369-7021(09)70249-4

    Article  Google Scholar 

  30. Xu J (2020) Three-dimensional-nanopatterned resonant silicon microcantilevers for gas detection. Technische Universität, Braunschweig

    Google Scholar 

  31. Xu J, Setiono A, Peiner E (2020) Piezoresistive microcantilever with SAM-modified ZnO-Nanorods@Silicon-nanopillars for room-temperature parts-per-billion NO2 detection. ACS Appl Nano Mater 3:6609–6620. https://doi.org/10.1021/acsanm.0c01055

    Article  CAS  Google Scholar 

  32. Possas-Abreu M, Ghassemi F, Rousseau L et al (2017) Development of diamond and silicon MEMS sensor arrays with integrated readout for vapor detection. Sensors 17:1–15. https://doi.org/10.3390/s17061163

    Article  CAS  Google Scholar 

  33. Lange D, Hagleitner C, Hierlemann A et al (2002) Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds. Anal Chem 74:3084–3095. https://doi.org/10.1021/ac011269j

    Article  CAS  PubMed  Google Scholar 

  34. Gates BD, Xu Q, Stewart M et al (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196. https://doi.org/10.1021/cr030076o

    Article  CAS  PubMed  Google Scholar 

  35. Cai S, Li W, Xu P et al (2019) In situ construction of metal-organic framework (MOF) UiO-66 film on parylene-patterned resonant microcantilever for trace organophosphorus molecules detection. Analyst 144:3729–3735. https://doi.org/10.1039/c8an02508h

    Article  CAS  PubMed  Google Scholar 

  36. Liu M, Guo S, Xu P et al (2018) Revealing humidity-enhanced NH3 sensing effect by using resonant microcantilever. Sens Actuators B Chem 257:488–495. https://doi.org/10.1016/j.snb.2017.10.179

    Article  CAS  Google Scholar 

  37. Xu J, Bertke M, Li X et al (2018) Fabrication of ZnO nanorods and Chitosan@ZnO nanorods on MEMS piezoresistive self-actuating silicon microcantilever for humidity sensing. Sens Actuators B Chem 273:276–287. https://doi.org/10.1016/j.snb.2018.06.017

    Article  CAS  Google Scholar 

  38. Bogue R (2014) Nanomaterials for gas sensing: a review of recent research. Sens Rev 34:1–8. https://doi.org/10.1108/SR-03-2013-637

    Article  Google Scholar 

  39. Schlur L, Hofer M, Ahmad A et al (2018) Cu(OH)2 and CuO nanorod synthesis on piezoresistive cantilevers for the selective detection of nitrogen dioxide. Sensors 18:1108. https://doi.org/10.3390/s18041108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biapo U, Ghisolfi A, Gerer G et al (2019) Functionalized TiO2 nanorods on a microcantilever for the detection of organophosphorus chemical agents in air. ACS Appl Mater Interfaces 11:35122–35131. https://doi.org/10.1021/acsami.9b11504

    Article  CAS  PubMed  Google Scholar 

  41. Thomas G, Gerer G, Schlur L et al (2020) Double side nanostructuring of microcantilever sensors with TiO2-NTs as a route to enhance their sensitivity. Nanoscale 12:13338–13345. https://doi.org/10.1039/d0nr01596b

    Article  CAS  PubMed  Google Scholar 

  42. Thomas G, Spitzer D (2021) 3D core-shell TiO2@MnO2 nanorod arrays on microcantilevers for enhancing the detection sensitivity of chemical warfare agents. ACS Appl Mater Interfaces 13:47185–47197. https://doi.org/10.1021/acsami.1c07994

    Article  CAS  PubMed  Google Scholar 

  43. Jalil AR, Chang H, Bandari VK et al (2016) Fully integrated organic nanocrystal diode as high performance room temperature NO2 sensor. Adv Mater 28:2971–2977. https://doi.org/10.1002/adma.201506293

    Article  CAS  PubMed  Google Scholar 

  44. Yu H, Xu P, Xia X et al (2012) Micro-/nanocombined gas sensors with functionalized mesoporous thin film self-assembled in batches onto resonant cantilevers. IEEE Trans Ind Electron 59:4881–4887. https://doi.org/10.1109/TIE.2011.2173094

    Article  Google Scholar 

  45. Xu J, Bertke M, Bornemann S et al (2019) Silicon nanopillars with ZnO nanorods by nanosphere lithography on a piezoresistive microcantilever. 2019 20th international conference solid-state sensors, actuators microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII), pp 2420–2423. https://doi.org/10.1109/TRANSDUCERS.2019.8808435

  46. Xu J, Setiono A, Bertke M et al (2019) Piezoresistive microcantilevers 3D-patterned using ZnO-Nanorods@Silicon-nanopillars for room-temperature ethanol detection. 2019 20th International conference solid-state sensors, actuators microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII), pp 1211–1214. https://doi.org/10.1109/TRANSDUCERS.2019.8808821

  47. Lambert S, Wagner M (2016) Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145:265–268. https://doi.org/10.1016/j.chemosphere.2015.11.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wieland S, Balmes A, Bender J et al (2022) From properties to toxicity: comparing microplastics to other airborne microparticles. J Hazard Mater 428:128151. https://doi.org/10.1016/j.jhazmat.2021.128151

    Article  CAS  PubMed  Google Scholar 

  49. Lelieveld J, Klingmüller K, Pozzer A et al (2019) Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40:1590–1596. https://doi.org/10.1093/eurheartj/ehz135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moreno-Ríos AL, Tejeda-Benítez LP, Bustillo-Lecompte CF (2022) Sources, characteristics, toxicity, and control of ultrafine particles: an overview. Geosci Front 13. https://doi.org/10.1016/j.gsf.2021.101147

  51. Baron YM (2022) Are there medium to short-term multifaceted effects of the airborne pollutant PM2.5 determining the emergence of SARS-CoV-2 variants? Med Hypotheses 158:110718. https://doi.org/10.1016/j.mehy.2021.110718

    Article  CAS  Google Scholar 

  52. Marquès M, Domingo JL (2022) Positive association between outdoor air pollution and the incidence and severity of COVID-19. A review of the recent scientific evidences. Environ Res 203. https://doi.org/10.1016/j.envres.2021.111930

  53. Nor NSM, Yip CW, Ibrahim N et al (2021) Particulate matter (PM2.5) as a potential SARS-CoV-2 carrier. Sci Rep 11:1–6. https://doi.org/10.1038/s41598-021-81935-9

    Article  CAS  Google Scholar 

  54. Pozzer A, Dominici F, Haines A et al (2020) Regional and global contributions of air pollution to risk of death from COVID-19. Cardiovasc Res 116:2247–2253. https://doi.org/10.1093/cvr/cvaa288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stakenborg T, Raymenants J, Taher A et al (2022) Molecular detection of SARS-COV-2 in exhaled breath at the point-of-need. Biosens Bioelectron 217:114663. Contents. https://doi.org/10.1016/j.bios.2022.114663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ye YY, Ou Q, Chen W et al (2022) Detection of airborne nanoparticles through enhanced light scattering images. Sensors 22:1–11. https://doi.org/10.3390/s22052038

    Article  CAS  Google Scholar 

  57. Schilt U, Barahona B, Buck R et al (2023) Low-cost sensor node for air quality monitoring: field tests and validation of particulate matter measurements. Sensors 23:794. https://doi.org/10.3390/s23020794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee SM, Kim HL, Kwon HB et al (2019) MEMS based particle size analyzer using electrostatic measuring techniques. 2019 20th international conference solid-state sensors, actuators microsystems Eurosensors XXXIII, TRANSDUCERS 2019 EUROSENSORS XXXIII, pp1289–1292. https://doi.org/10.1109/TRANSDUCERS.2019.8808773

  59. Kwon HB, Song WY, Lee TH et al (2021) Monitoring the effective density of airborne nanoparticles in real time using a microfluidic nanoparticle analysis chip. ACS Sens 6:137–147. https://doi.org/10.1021/acssensors.0c01986

    Article  CAS  PubMed  Google Scholar 

  60. Lee TH, Kwon HB, Song WY et al (2021) Microfluidic ultrafine particle dosimeter using an electrical detection method with a machine-learning-aided algorithm for real-time monitoring of particle density and size distribution. Lab Chip 21:1503–1516. https://doi.org/10.1039/d0lc01240h

    Article  CAS  PubMed  Google Scholar 

  61. Lee I, Jeon E, Lee J (2023) On-site bioaerosol sampling and detection in microfluidic platforms. Trends Anal Chem 158:116880. https://doi.org/10.1016/j.trac.2022.116880

    Article  CAS  Google Scholar 

  62. Liu TY, Sung CA, Weng CH et al (2018) Gated CMOS-MEMS thermal-piezoresistive oscillator-based PM2.5 sensor with enhanced particle. In: 2018 IEEE micro electro mechanical systems (MEMS). IEEE, Belfast, UK, pp 75–78.

    Google Scholar 

  63. Weng CH, Pillai G, Li SS (2020) A PM2.5 sensor module based on a TPoS MEMS oscillator and an aerosol impactor. IEEE Sens J 20:14722–14731. https://doi.org/10.1109/JSEN.2020.3010283

    Article  CAS  Google Scholar 

  64. Maldonado-Garcia M, Mahdavi M, Pourkamali S, Wilson JC (2016) Miniaturized aerosol impactor with integrated piezoelectric thin film resonant mass balance. 2016 IEEE International Frequency Control Symposium IFCS 2016 – Proceedings, pp 22–25. https://doi.org/10.1109/FCS.2016.7563575

  65. Maldonado-Garcia M, Kumar V, Wilson JC, Pourkamali S (2017) Chip-scale implementation and cascade assembly of particulate matter collectors with embedded resonant mass balances. IEEE Sens J 17:1617–1625. https://doi.org/10.1109/JSEN.2016.2638964

    Article  CAS  Google Scholar 

  66. Bertke M, Wu W, Wasisto HS et al (2017) Size-selective electrostatic sampling and removal of nanoparticles on silicon cantilever sensors for air-quality monitoring. TRANSDUCERS 2017 – 19th international conference solid-state sensors, actuators microsystems, vol 1, pp 1493–1496. https://doi.org/10.1109/TRANSDUCERS.2017.7994342

  67. Chen Z, Lu C (2005) Humidity sensors: a review of materials and mechanisms. Sens Lett 3:274–295. https://doi.org/10.1166/sl.2005.045

    Article  CAS  Google Scholar 

  68. Setiono A, Bertke M, Nyang’au WO et al (2020) In-plane and out-of-plane MEMS piezoresistive cantilever sensors for nanoparticle mass detection. Sensors 20:618. https://doi.org/10.3390/s20030618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Setiono A, Fahrbach M, Deutschinger A et al (2021) Performance of an electrothermal mems cantilever resonator with fano-resonance annoyance under cigarette smoke exposure. Sensors 21. https://doi.org/10.3390/s21124088

  70. Bao Y, Cai S, Yu H et al (2018) A resonant cantilever based particle sensor with particle-size selection function. J Micromech Microeng 28:085019. https://doi.org/10.1088/1361-6439/aabdac

    Article  CAS  Google Scholar 

  71. Fahimi D, Mahdavipour O, Sabino J et al (2019) Vertically-stacked MEMS PM2.5 sensor for wearable applications. Sens Actuators A Phys 299:111569. https://doi.org/10.1016/j.sna.2019.111569

    Article  CAS  Google Scholar 

  72. Bertke M, Xu J, Fahrbach M et al (2019) Strategy toward miniaturized, self-out-readable resonant cantilever and integrated electrostatic microchannel separator for highly sensitive airborne nanoparticle detection. Sensors 19:901. https://doi.org/10.3390/s19040901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yadav S, Tripathy S, Sarkar D (2022) NEMS sensors based on novel nanomaterials. In: Yang Z (ed) Advanced MEMS/NEMS fabrication and sensors1st edn. Springer, Cham, pp 133–185

    Chapter  Google Scholar 

  74. Simones MP, Loyalka SK, Duffy C et al (2014) Measurement of the size and charge distribution of sodium chloride particles generated by an Aeroneb Pro® pharmaceutical nebulizer. Eur J Nanomed 6:29–36. https://doi.org/10.1515/ejnm-2013-0018

    Article  CAS  Google Scholar 

  75. Maierhofer P, Röhrer G, Bainschab M, Bergmann A (2020) On the inherent variability of particulate matter concentrations on small scales and the consequences for miniaturized particle sensors. Aerosol Air Qual Res 20:271–280. https://doi.org/10.4209/aaqr.2019.01.0048

    Article  CAS  Google Scholar 

  76. Naeli K, Brand O (2009) Dimensional considerations in achieving large quality factors for resonant silicon cantilevers in air. J Appl Phys 105. https://doi.org/10.1063/1.3062204

  77. Vančura C, Li Y, Lichtenberg J et al (2007) Liquid-phase chemical and biochemical detection using fully integrated magnetically actuated complementary metal oxide semiconductor resonant cantilever sensor systems. Anal Chem 79:1646–1654. https://doi.org/10.1021/ac061795g

    Article  CAS  PubMed  Google Scholar 

  78. Tao Y, Li X, Xu T et al (2011) Resonant cantilever sensors operated in a high-Q in-plane mode for real-time bio/chemical detection in liquids. Sens Actuators B Chem 157:606–614. https://doi.org/10.1016/j.snb.2011.05.030

    Article  CAS  Google Scholar 

  79. Beardslee LA, Josse F, Heinrich SM et al (2012) Geometrical considerations for the design of liquid-phase biochemical sensors using a cantilever’s fundamental in-plane mode. Sens Actuators B Chem 164:7–14. https://doi.org/10.1016/j.snb.2012.01.035

    Article  CAS  Google Scholar 

  80. Wei L, You Z, Kuai X et al (2022) MEMS thermal-piezoresistive resonators, thermal-piezoresistive oscillators, and sensors. Microsyst Technol 29:1–17. https://doi.org/10.1007/s00542-022-05391-9

    Article  Google Scholar 

  81. Setiono A, Fahrbach M, Bertke M et al (2020) Phase characteristic optimization of resonant MEMS environmental sensors. In: Sensoren und Messsysteme – Beitrage der 19. ITG/GMA-Fachtagung

    Google Scholar 

  82. Xu J, Cao E, Fahrbach M et al (2023) Real-time operation of microcantilever-based in-plane resonators partially immersed in a microfluidic sampler. In: Proceedings of the IEEE international conference on micro electro mechanical systems (MEMS). IEEE, pp 1037–1040

    Google Scholar 

  83. Kirby C, Fox M, Drye T (2001) Influence of environmental parameters on the accuracy of nitrogen dioxide passive diffusion tubes for ambient measurement. Environ Sci Process Impacts:150–158. https://doi.org/10.1039/b007839p

  84. Xiao B, Wang D, Wang F et al (2017) Preparation of hierarchical WO3 dendrites and their applications in NO2 sensing. Ceram Int 43:8183–8189. https://doi.org/10.1016/j.ceramint.2017.03.144

    Article  CAS  Google Scholar 

  85. Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101. https://doi.org/10.1016/S1352-2310(99)00460-4

    Article  CAS  Google Scholar 

  86. Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383:1581–1592. https://doi.org/10.1016/S0140-6736(14)60617-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang Y, Jiao W, Chu Z et al (2019) Gas sensors based on SnS2/rGO nanohybrids with P–N transition and optoelectronic visible light enhancement performance. J Mater Chem C 7:8616–8625. https://doi.org/10.1039/c9tc02436k

    Article  CAS  Google Scholar 

  88. Vineis P, Forastiere F, Hoek G, Lipsett M (2004) Outdoor air pollution and lung cancer: recent epidemiologic evidence. Int J Cancer 111:647–652. https://doi.org/10.1002/ijc.20292

    Article  CAS  PubMed  Google Scholar 

  89. Han D, Zhai L, Gu F, Wang Z (2018) Sensors and actuators B: chemical highly sensitive NO 2 gas sensor of ppb-level detection based on In 2 O 3 nanobricks at low temperature. Sens Actuators B Chem 262:655–663. https://doi.org/10.1016/j.snb.2018.02.052

    Article  CAS  Google Scholar 

  90. Tamaekong N, Liewhiran C, Wisitsoraat A et al (2014) NO2 sensing properties of flame-made MnOx-loaded ZnO-nanoparticle thick film. Sens Actuators B Chem 204:239–249. https://doi.org/10.1016/j.snb.2014.07.089

    Article  CAS  Google Scholar 

  91. World Health Organization (2006) WHO air quality guidelines-global update 2005. Copenhagen

    Google Scholar 

  92. Zhou YCG, Guo Y (2018) UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet–ZnO nanowire heterojunctions at room temperature. J Mater Chem A 6:10286–10296. https://doi.org/10.1039/c8ta02679c

    Article  CAS  Google Scholar 

  93. Andringa AM, Meijboom JR, Smits ECP et al (2011) Gate-bias controlled charge trapping as a mechanism for NO2 detection with field-effect transistors. Adv Funct Mater 21:100–107. https://doi.org/10.1002/adfm.201001560

    Article  CAS  Google Scholar 

  94. Hu J, Liang Y, Sun Y et al (2017) Highly sensitive NO 2 detection on ppb level by devices based on Pd-loaded In 2 O 3 hierarchical microstructures. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2017.05.113

  95. Wang Z, Zhang T, Han T et al (2018) Oxygen vacancy engineering for enhanced sensing performances: a case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sens Actuators B Chem 266:812–822. https://doi.org/10.1016/j.snb.2018.03.169

    Article  Google Scholar 

  96. Patil VL, Vanalakar SA, Patil PS, Kim JH (2017) Chemical fabrication of nanostructured ZnO thin films based NO 2 gas sensor via SILAR technique. Sens Actuators B Chem 239:1185–1193. https://doi.org/10.1016/j.snb.2016.08.130

    Article  CAS  Google Scholar 

  97. Öztürk S, Kılınç N, Ta N, Öztürk ZZ (2011) A comparative study on the NO2 gas sensing properties of ZnO thin films, nanowires and nanorods. Thin Solid Films 520:932–938. https://doi.org/10.1016/j.tsf.2011.04.177

    Article  CAS  Google Scholar 

  98. Wang Z, Fan X, Han D, Gu F (2016) Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance. Nanoscale 8:10622–10631. https://doi.org/10.1039/c6nr00858e

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Z, Wen Z, Ye Z, Zhu L (2018) Applied surface science ultrasensitive ppb-level NO 2 gas sensor based on WO 3 hollow nanospheres doped with Fe. Appl Surf Sci 434:891–897. https://doi.org/10.1016/j.apsusc.2017.10.074

    Article  CAS  Google Scholar 

  100. Wang Z, Men G, Zhang R et al (2018) Pd loading induced excellent NO2 gas sensing of 3DOM In2O3 at room temperature. Sens Actuators B Chem 263:218–228. https://doi.org/10.1016/j.snb.2018.02.105

    Article  CAS  Google Scholar 

  101. Ilin A, Martyshov M, Forsh E et al (2016) UV effect on NO 2 sensing properties of nanocrystalline In 2 O 3. Sens Actuators B Chem 231:491–496. https://doi.org/10.1016/j.snb.2016.03.051

    Article  CAS  Google Scholar 

  102. Park S, An S, Mun Y, Lee C (2013) UV-enhanced NO2 gas sensing properties of SnO2 -Core/ZnO-shell nanowires at room temperature. ACS Appl Mater Interfaces 5:4285–4292. https://doi.org/10.1021/am400500a

    Article  CAS  PubMed  Google Scholar 

  103. Saboor FH, Ueda T, Kamada K et al (2016) Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sens Actuators B Chem 223:429–439. https://doi.org/10.1016/j.snb.2015.09.075

    Article  CAS  Google Scholar 

  104. Wei Y, Chen C, Yuan G, Gao S (2016) SnO2 nanocrystals with abundant oxygen vacancies: preparation and room temperature NO2 sensing. J Alloys Compd 681:43–49. https://doi.org/10.1016/j.jallcom.2016.04.220

    Article  CAS  Google Scholar 

  105. Wu T, Wang Z, Tian M et al (2018) UV excitation NO2 gas sensor Sensitized by ZnO quantum dots at room temperature. Sens Actuators B Chem 259:526–531. https://doi.org/10.1016/j.snb.2017.12.101

    Article  CAS  Google Scholar 

  106. Hoffmann MWG, Prades JD, Mayrhofer L et al (2014) Highly selective SAM-nanowire hybrid NO2sensor: insight into charge transfer dynamics and alignment of frontier molecular orbitals. Adv Funct Mater 24:595–602. https://doi.org/10.1002/adfm.201301478

    Article  CAS  Google Scholar 

  107. Kilinc N, Cakmak O, Kosemen A et al (2014) Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens Actuators B Chem 202:357–364. https://doi.org/10.1016/j.snb.2014.05.078

    Article  CAS  Google Scholar 

  108. Wasisto HS, Merzsch S, Stranz A et al (2013) Femtogram aerosol nanoparticle mass sensing utilising vertical silicon nanowire resonators. Micro Nano Lett 8:554–558. https://doi.org/10.1049/mnl.2013.0208

    Article  CAS  Google Scholar 

  109. Wasisto HS, Merzsch S, Uhde E et al (2015) Handheld personal airborne nanoparticle detector based on microelectromechanical silicon resonant cantilever. Microelectron Eng 145:96–103. https://doi.org/10.1016/j.mee.2015.03.037

    Article  CAS  Google Scholar 

  110. Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959. https://doi.org/10.1007/s00216-004-2694-y

    Article  CAS  PubMed  Google Scholar 

  111. Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108:522–542. https://doi.org/10.1021/cr0681041

    Article  CAS  PubMed  Google Scholar 

  112. Vashist SK (2007) A review of microcantilevers for sensing applications. J Nanotechnol 3:1–18. https://doi.org/10.2240/azojono0115

    Article  Google Scholar 

  113. Vashist SK, Holthöfer H (2010) Microcantilevers for sensing applications. Meas Control 43:84–88. https://doi.org/10.1177/002029401004300305

    Article  Google Scholar 

  114. Farahani H, Wagiran R, Hamidon MN (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881–7939. https://doi.org/10.3390/s140507881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fenner R, Zdankiewicz E (2001) Micromachined water vapor sensors: a review of sensing technologies. IEEE Sens J 1:309–317. https://doi.org/10.1109/7361.983470

    Article  CAS  Google Scholar 

  116. Lee C-Y, Lee G-B (2005) Humidity sensors: a review. Sens Lett 3:1–15. https://doi.org/10.1166/sl.2005.001

    Article  CAS  Google Scholar 

  117. Huang JQ, Li F, Zhao M, Wang K (2015) A surface micromachined CMOS MEMS humidity sensor. Micromachines 6:1569–1576. https://doi.org/10.3390/mi6101440

    Article  Google Scholar 

  118. Kim JH, Hong SM, Moon BM, Kim K (2010) High-performance capacitive humidity sensor with novel electrode and polyimide layer based on MEMS technology. Microsyst Technol 16:2017–2021. https://doi.org/10.1007/s00542-010-1139-0

    Article  CAS  Google Scholar 

  119. Wang Y, Park S, Yeow JTWW et al (2010) A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens Actuators B Chem 149:136–142. https://doi.org/10.1016/j.snb.2010.06.010

    Article  CAS  Google Scholar 

  120. Balasubramanian S, Polaki SR, Prabakar K (2020) Ultrahigh sensitive and ultrafast relative humidity sensing using surface enhanced microcantilevers. Smart Mater Struct 29:095006. 13 p. https://doi.org/10.1088/1361-665x/ab9f1a

    Article  CAS  Google Scholar 

  121. Xu J, Peiner E (2021) Micromachined silicon cantilever resonator-based humidity sensors for multifunctional applications. Proceedings IEEE international conference micro electro mechanical systems, pp 326–329. https://doi.org/10.1109/MEMS51782.2021.9375323

  122. Thundat T, Wachter EA, Sharp SL, Warmack RJ (1995) Detection of mercury vapor using resonating microcantilevers. Appl Phys Lett 1695:1695. https://doi.org/10.1063/1.113896

    Article  Google Scholar 

  123. Thundat T, Maya L (1999) Monitoring chemical and physical changes on sub-nanogram quantities of platinum dioxide. Surf Sci 430. https://doi.org/10.1016/S0039-6028(99)00422-7

  124. Di CA, Zhang F, Zhu D (2013) Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives. Adv Mater 25:313–330. https://doi.org/10.1002/adma.201201502

    Article  CAS  PubMed  Google Scholar 

  125. Zhang C, Chen P, Hu W (2015) Organic field-effect transistor-based gas sensors. Chem Soc Rev 44:2087–2107. https://doi.org/10.1039/c4cs00326h

    Article  CAS  PubMed  Google Scholar 

  126. Jensenius H, Thaysen J, Rasmussen AA et al (2000) A microcantilever-based alcohol vapor sensor-application and response model. Appl Phys Lett 76:2615–2617. https://doi.org/10.1063/1.126426

    Article  CAS  Google Scholar 

  127. Pinnaduwage LA, Hedden DL, Gehl A et al (2004) A sensitive, handheld vapor sensor based on microcantilevers. Rev Sci Instrum 75:4554–4557. https://doi.org/10.1063/1.1804998

    Article  CAS  Google Scholar 

  128. Yoshikawa G, Lang H-P, Akiyama T et al (2009) Sub-ppm detection of vapors using piezoresistive microcantilever array sensors. Nanotechnology 20:015501. https://doi.org/10.1088/0957-4484/20/1/015501

    Article  CAS  PubMed  Google Scholar 

  129. Ji S, Wang H, Wang T, Yan D (2013) A high-performance room-temperature NO2 sensor based on an ultrathin heterojunction film. Adv Mater 25:1755–1760. https://doi.org/10.1002/adma.201204134

    Article  CAS  PubMed  Google Scholar 

  130. Ji S, Wang X, Liu C et al (2013) Controllable organic nanofiber network crystal room temperature NO 2 sensor. Org Electron Phys Mater Appl 14:821–826. https://doi.org/10.1016/j.orgel.2013.01.006

    Article  CAS  Google Scholar 

  131. Battiston FM, Ramseyer J, Lang HP et al (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens Actuators B 77:122–131

    Article  CAS  Google Scholar 

  132. Tang L, Xu P, Li M et al (2020) H2S gas sensor based on integrated resonant dual-microcantilevers with high sensitivity and identification capability. Chin Chem Lett 31:2155–2158. https://doi.org/10.1016/j.cclet.2020.01.018

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project has received funding from the EMPIR program co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation program under No. 19ENG05 Nanowires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Peiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Peiner, E. (2023). Resonant Silicon Microcantilevers for Particle and Gas Sensing. In: Lieberzeit, P. (eds) Piezoelectric Sensors. Springer Series on Chemical Sensors and Biosensors, vol 18. Springer, Cham. https://doi.org/10.1007/5346_2023_33

Download citation

Publish with us

Policies and ethics