Skip to main content

Amperometric Sensors Based on Carbon Nanotubes in Layer-by-Layer Films

  • Chapter
  • First Online:
Label-Free Biosensing

Abstract

Electrochemical sensors have been among the main applications of carbon nanotubes (CNTs) over the last decade, as biocompatibility and possible conjugation with biomolecules afforded by nanotubes were exploited. Amperometric sensors are among the several electrochemical (bio)sensing systems with CNTs incorporated onto electrodes to detect substances of biological and clinical interest. The layer-by-layer (LbL) technique, in particular, has been used to arrange CNTs with many materials in nanostructured films, leading to sensors and biosensors with enhanced properties to be employed in the biomedical field. This chapter brings an overview of the use of CNTs-based LbL films as amperometric sensors and their advantages as sensing platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  3. Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem 5:1084–1104

    Article  CAS  PubMed  Google Scholar 

  4. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    Article  CAS  PubMed  Google Scholar 

  5. Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451

    Article  CAS  Google Scholar 

  6. Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19:3214–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Willner I, Willner B (2010) Biomolecule-based nanomaterials and nanostructures. Nano Lett 10:3805–3815

    Article  CAS  PubMed  Google Scholar 

  8. Oliveira Jr ON, Lost RM, Siqueira Jr JR, Crespilho FN, Caseli L (2014) Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 6:14745–14766

    Article  CAS  PubMed  Google Scholar 

  9. Siqueira Jr JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira Jr ON (2010) Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25:1254–1263

    Article  CAS  PubMed  Google Scholar 

  10. Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340

    Article  CAS  PubMed  Google Scholar 

  11. Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3:804–816

    Article  CAS  Google Scholar 

  12. Zhao W, Xu JJ, Chen HY (2006) Electrochemical biosensors based on layer-by-layer assemblies. Electroanalysis 18:1737–1748

    Article  CAS  Google Scholar 

  13. Hulanicki A, Glab S, Ingman F (1991) Chemical sensors: definitions and classification. Pure Appl Chem 63:1247–1250

    Article  Google Scholar 

  14. Siqueira Jr JR, Oliveira Jr ON (2017) Carbon-based nanomaterials. Nanostructures. Elsevier, Amsterdam, pp 233–249

    Chapter  Google Scholar 

  15. Littlejohn SD (2014) Background theory. Electrical properties of graphite nanoparticles in silicone. Springer, Berlin, pp 5–38

    Chapter  Google Scholar 

  16. Merkoçi A (2007) Nanobiomaterials in electroanalysis. Electroanalysis 19:739–741

    Article  Google Scholar 

  17. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060

    Article  CAS  Google Scholar 

  18. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  19. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  20. Charlier JC (2002) Defects in carbon nanotubes. Acc Chem Res 35:1063–1069

    Article  CAS  PubMed  Google Scholar 

  21. Maoz R, Sagiv J (1984) On the formation and structure of self-assembling monolayers. I. A comparative ATR-wettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads. J Coll Interface Sci 100:465–496

    Article  CAS  Google Scholar 

  22. Decher GHJD, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210:831–835

    Article  Google Scholar 

  23. Decher G, Lvov Y, Schmitt J (1994) Proof of multilayer structural organization in self-assembled polycation-polyanion molecular films. Thin Solid Films 244:772–777

    Article  CAS  Google Scholar 

  24. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  25. Zhang J, Chen Z, Wu H, Wu F, He C, Wang B, Wu Y, Ren Z (2016) An electrochemical bifunctional sensor for the detection of nitrite and hydrogen peroxide based on layer-by-layer multilayer films of cationic phthalocyanine cobalt (ii) and carbon nanotubes. J Mater Chem B 4:1310–1317

    Article  CAS  Google Scholar 

  26. Guo SY, Xu L, Xu B, Sun Z, Wang L (2015) A ternary nanocomposite electrode of polyoxometalate/carbon nanotubes/gold nanoparticles for electrochemical detection of hydrogen peroxide. Analyst 140:820–826

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Yao Y, Shiu KK (2010) Layer-by-layer assembly of Prussian blue and carbon nanotube composites with poly (diallyldimethylammonium chloride) for the sensitive detection of hydrogen peroxide. Anal Sci 26:431–435

    Article  PubMed  Google Scholar 

  28. Munge BS, Dowd RS, Krause CE, Millord LN (2009) Ultrasensitive hydrogen peroxide biosensor based on enzyme bound to layered nonoriented multiwall carbon nanotubes/polyelectrolyte electrodes. Electroanalysis 21:2241–2248

    Article  CAS  Google Scholar 

  29. Miao Y, Wang H, Shao Y, Tang Z, Wang J, Ling Y (2009) Layer-by-layer assembled hybrid film of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2. Sensors Actuators B Chem 138:182–188

    Article  CAS  Google Scholar 

  30. Pillay J, Ozoemena KI (2009) Layer-by-layer self-assembled nanostructured phthalocyaninatoiron (II) /SWCNT-poly (m-aminobenzenesulfonic acid) hybrid system on gold surface: electron transfer dynamics and amplification of H2O2 response. Electrochim Acta 54:5053–5059

    Article  CAS  Google Scholar 

  31. Bai Z, Zhou C, Gao N, Pang H, Ma H (2016) A chitosan–Pt nanoparticles/carbon nanotubes-doped phosphomolybdate nanocomposite as a platform for the sensitive detection of nitrite in tap water. RSC Adv 6:937–946

    Article  CAS  Google Scholar 

  32. Zhang L, Yi M (2009) Electrochemical nitrite biosensor based on the immobilization of hemoglobin on an electrode modified by multiwall carbon nanotubes and positively charged gold nanoparticle. Bioprocess Biosyst Eng 32:485–492

    Article  CAS  PubMed  Google Scholar 

  33. Zhang D, Ma H, Chen Y, Pang H, Yu Y (2013) Amperometric detection of nitrite based on Dawson-type vanodotungstophosphate and carbon nanotubes. Anal Chim Acta 792:35–44

    Article  CAS  PubMed  Google Scholar 

  34. Silveira CM, Pimpão M, Pedroso HA, Rodrigues PRS, Moura JJG, Pereira MFR, Almeida MG (2013) Probing the surface chemistry of different oxidized MWCNT for the improved electrical wiring of cytochrome c nitrite reductase. Electrochem Commun 35:17–21

    Article  CAS  Google Scholar 

  35. Sahin M, Ayrance E (2015) Electrooxidation of NADH on modified screen-printed electrodes: effects of conducting polymer and nanomaterials. Electrochim Acta 166:261–270

    Article  CAS  Google Scholar 

  36. Sun Y, Ren Q, Liu X, Zhao S, Qin Y (2013) A simple route to fabricate controllable and stable multilayered all-MWNTs films and their applications for the detection of NADH at low potentials. Biosens Bioelectron 39:289–295

    Article  CAS  PubMed  Google Scholar 

  37. Gao Q, Sun M, Peng P, Qi H, Zhang C (2010) Electro-oxidative polymerization of phenothiazine dyes into a multilayer-containing carbon nanotube on a glassy carbon electrode for the sensitive and low-potential detection of NADH. Microchim Acta 168:299–307

    Article  CAS  Google Scholar 

  38. Xi L, Zhang D, Wang F, Huang Z, Ni T (2016) Layer-by-layer assembly of poly (p-aminobenzene sulfonic acid)/quaternary amine functionalized carbon nanotube/p- aminobenzene sulfonic acid composite film on glassy carbon electrode for the determination of ascorbic acid. J Electroanal Chem 767:91–99

    Article  CAS  Google Scholar 

  39. Pan Y, Zhang YZ, Li Y (2013) Layer-by-layer self-assembled multilayer films of single-walled carbon nanotubes and tin disulfide nanoparticles with chitosan for the fabrication of biosensors. J Appl Polym Sci 128:647–652

    Article  CAS  Google Scholar 

  40. Raoof JB, Ojani R, Baghayeri M (2013) Fabrication of layer-by-layer deposited films containing carbon nanotubes and poly(malachite green) as a sensor for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Turk J Chem 37:36–50

    CAS  Google Scholar 

  41. Wayu MB, DiPasquale LT, Schwarzmann MA, Gillespie SD, Leopold MC (2016) Electropolymerization of β-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid. J Electroanal Chem 783:192–200

    Article  CAS  Google Scholar 

  42. Pan Y, Li Y, Jia J, Chen H (2015) Selective determination of uric acid in the presence of ascorbic acid using layer-by-layer gold nanoparticles, tin oxide nanoparticles and multi-walled carbon nanotubes assembled multilayer films. Electrochemistry 83:956–961

    Article  CAS  Google Scholar 

  43. Zhang Y, Arugula MA, Kirsch JS, Yang X, Olsen E, Simonian AL (2015) Layer-by-layer assembled carbon nanotube-acetylcholinesterase/biopolymer renewable interfaces: SPR and electrochemical characterization. Langmuir 31:1462–1468

    Article  CAS  PubMed  Google Scholar 

  44. Lee D, Cui T (2012) Carbon nanotube thin film pH electrode for potentiometric enzymatic acetylcholine biosensing. Microelectron Eng 93:39–42

    Article  CAS  Google Scholar 

  45. Cai X, Gao X, Wang L, Wu Q, Lin X (2013) A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sensors Actuators B Chem 181:575–583

    Article  CAS  Google Scholar 

  46. Karimi S, Ghourchian H, Rahimi P, Rafiee-Pour HA (2012) A nanocomposite based biosensor for cholesterol determination. Anal Methods 4:3225–3231

    Article  CAS  Google Scholar 

  47. Rivas GA, Miscoria SA, Desbrieres J, Barrera GD (2007) New biosensing platforms based on the layer-by-layer self-assembling of polyelectrolytes on Nafion/carbon nanotubes-coated glassy carbon electrodes. Talanta 71:270–275

    Article  CAS  PubMed  Google Scholar 

  48. Deiminiat B, Rounaghi GH, Arbab-Zavar MH (2017) Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol–gel and multiwall carbon nanotubes for determination of tramadol. Sensors Actuators B Chem 238:651–659

    Article  CAS  Google Scholar 

  49. Wang Q, Zhao R, Wang S, Guo H, Li J, Zhou H, Wang X, Wu X, Wang Y, Chen W, Zhang W (2016) A highly selective electrochemical sensor for nifedipine based on layer-by-layer assembly films from polyaniline and multiwalled carbon nanotube. J Appl Polym Sci 133:43452–43460

    Google Scholar 

  50. Silva JS, de Barros A, Constantino CJL, Simoes FR, Ferreira M (2014) Layer-by-layer films based on carbon nanotubes and polyaniline for detecting 2-chlorophenol. J Nanosci Nanotechnol 14:6586–6592

    Article  CAS  PubMed  Google Scholar 

  51. Qu F, Yang M, Jiang J, Shen G, Yu R (2005) Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Anal Biochem 344:108–114

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Liu X, Li L, Guo Z, Xue Z, Lu X (2016) An electrochemical paracetamol sensor based on layer-by-layer covalent attachment of MWCNTs and a G4.0 PAMAM modified GCE. Anal Methods 8:2218–2225

    Article  CAS  Google Scholar 

  53. Li Y, Feng S, Li S, Zhang Y, Zhong Y (2014) A high effect polymer-free covalent layer by layer self-assemble carboxylated MWCNTs films modified GCE for the detection of paracetamol. Sensors Actuators B Chem 190:999–1005

    Article  CAS  Google Scholar 

  54. Pavinatto A, Mercante LA, Leandro CS, Mattoso LHC, Correa DS (2015) Layer-by-layer assembled films of chitosan and multi-walled carbon nanotubes for the electrochemical detection of 17α-ethinylestradiol. J Electroanal Chem 755:215–220

    Article  CAS  Google Scholar 

  55. Zhai H, Liu Z, Chen Z, Liang Z, Su Z, Wang S (2015) A sensitive electrochemical sensor with sulfonated graphene sheets/oxygen-functionalized multi-walled carbon nanotubes modified electrode for the detection of clenbuterol. Sensors Actuators B Chem 210:483–490

    Article  CAS  Google Scholar 

  56. Shaik M, Rao VK, Gupta M, Pandey P (2012) Layer-by-layer self-assembling copper tetrasulfonated phthalocyanine on carbon nanotube modified glassy carbon electrode for electro-oxidation of 2-mercaptoethanol. Thin Solid Films 526:256–260

    Article  CAS  Google Scholar 

  57. Shahrokhian S, Kamalzadeh Z, Saberi RS (2011) Glassy carbon electrode modified with a bilayer of multi-walled carbon nanotube and polypyrrole doped with new coccine: application to the sensitive electrochemical determination of Sumatriptan. Electrochim Acta 56:10032–10038

    Article  CAS  Google Scholar 

  58. Zhang Z, Hu Y, Zhang H, Yao S (2010) Novel layer-by-layer assembly molecularly imprinted sol–gel sensor for selective recognition of clindamycin based on Au electrode decorated by multi-wall carbon nanotube. J Coll Interface Sci 344:158–164

    Article  CAS  Google Scholar 

  59. Zheng Y, Fu L, Wang A, Cai W (2015) Electrochemical detection of quinoline yellow in soft drinks based on layer-by-layer fabricated multi-walled carbon nanotube. Int J Electrochem Sci 10:3530–3538

    CAS  Google Scholar 

  60. Tang L, Zhu Y, Xu L, Yang X, Li C (2007) Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes. Talanta 73:438–443

    Article  CAS  PubMed  Google Scholar 

  61. Du Y, Chend C, Li B, Zhou M, Wang E, Dong S (2010) Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination. Biosens Bioelectron 25:1902–1907

    Article  CAS  PubMed  Google Scholar 

  62. Lee D, Chander Y, Goyal SM, Cui T (2011) Carbon nanotube electric immunoassay for the detection of swine influenza virus H1N1. Biosens Bioelectron 26:3482–3487

    Article  CAS  PubMed  Google Scholar 

  63. Liu J, Qin Y, Li D, Wang T, Liu Y, Wang J, Wang E (2013) Highly sensitive and selective detection of cancer cell with a label-free electrochemical cytosensor. Biosens Bioelectron 41:436–441

    Article  CAS  PubMed  Google Scholar 

  64. Siqueira Jr JR, Abouzar MH, Bäcker M, Zucolotto V, Poghossian A, Oliveira ON, Schöning MJ (2009) Carbon nanotubes in nanostructured films: potential application as amperometric and potentiometric field-effect (bio-) chemical sensors. Phys Status Solidi A 206:462–467

    Article  CAS  Google Scholar 

  65. Siqueira Jr JR, Gasparotto LHS, Oliveira Jr ON, Zucolotto V (2008) Processing of electroactive nanostructured films incorporating carbon nanotubes and phthalocyanines for sensing. J Phys Chem C 112:9050–9055

    Article  CAS  Google Scholar 

  66. Siqueira Jr JR, Abouzar MH, Poghossian A, Zucolotto V, Oliveira Jr ON, Schöning MJ (2009) Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosens Bioelectron 25:497–501

    Article  CAS  PubMed  Google Scholar 

  67. Dong XY, Mi XN, Zhang L, Liang TM, Xu JJ, Chen HY (2012) DNAzyme-functionalized Pt nanoparticles/carbon nanotubes for amplified sandwich electrochemical DNA analysis. Biosens Bioelectron 38:337–341

    Article  CAS  PubMed  Google Scholar 

  68. Du M, Yang T, Zhang Y, Jiao K (2009) Sensitively electrochemical sensing for sequence-specific detection of phosphinothricin acetyltransferase gene: layer-by-layer films of poly-L-lysine and Au-carbon nanotube hybrid. Electroanalysis 21:2521–2526

    Article  CAS  Google Scholar 

  69. Ziyatdinova G, Galandova J, Labuda J (2008) Impedimetric nanostructured disposable DNA-based biosensors for the detection of deep DNA damage and effect of antioxidants. Int J Electrochem Sci 3:223–235

    CAS  Google Scholar 

  70. Du M, Yang T, Jiao K (2010) Carbon nanotubes/(pLys/dsDNA) n layer-by-layer multilayer films for electrochemical studies of DNA damage. J Solid State Electrochem 14:2261–2266

    Article  CAS  Google Scholar 

  71. Liu Y, Lan D, Wei W (2009) Layer-by-layer assembled DNA-functionalized single-walled carbon nanotube hybrids-modified electrodes for 2, 4, 6-trinitrotoluene detection. J Electroanal Chem 637:1–5

    Article  CAS  Google Scholar 

  72. Jia LY, Gan N, Zheng L, Wang Q (2011) A novel amperometric immunosensor based on thionine/DNA self-assembled multilayers on carbon nanotubes modified glass carbon electrode. Mater Sci Eng Appl 160:1170–1175

    Google Scholar 

  73. Wang Y, Zhang S, Bai W, Zheng J (2016) Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: a new nonenzymatic electrochemical sensor for glucose. Talanta 149:211–216

    Article  CAS  PubMed  Google Scholar 

  74. Primo EN, Gutierrez FA, Rubianes MD, Rivas GA (2015) Bamboo-like multiwalled carbon nanotubes dispersed in double stranded calf-thymus DNA as a new analytical platform for building layer-by-layer based biosensors. Electrochim Acta 182:391–397

    Article  CAS  Google Scholar 

  75. Ma M, Miao Z, Zhang D, Du X, Zhang Y, Zhang C, Lin J, Chen Q (2015) Highly-ordered perpendicularly immobilized FWCNTs on the thionine monolayer-modified electrode for hydrogen peroxide and glucose sensors. Biosens Bioelectron 64:477–484

    Article  CAS  PubMed  Google Scholar 

  76. Yu Y, Chen Z, He S, Zhang B, Li X, Yaho M (2014) Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron 52:147–152

    Article  CAS  PubMed  Google Scholar 

  77. Dalmasso PR, Pedano ML, Rivas GA (2013) Supramolecular architecture based on the self-assembling of multiwall carbon nanotubes dispersed in polyhistidine and glucose oxidase: characterization and analytical applications for glucose biosensing. Biosens Bioelectron 39:76–81

    Article  CAS  PubMed  Google Scholar 

  78. Wang Y, Wang X, Wu B, Zhao Z, Yin F, Li S, Qin X, Chen Q (2008) Dispersion of single-walled carbon nanotubes in poly (diallyldimethylammonium chloride) for preparation of a glucose biosensor. Sensors Actuators B Chem 130:809–815

    Article  CAS  Google Scholar 

  79. Shirsat MD, Too CO, Wallace GG (2008) Amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film. Electroanalysis 20:150–156

    Article  CAS  Google Scholar 

  80. Li W, Yuan R, Chai Y, Zhong H, Wang Y (2011) Study of the biosensor based on platinum nanoparticles supported on carbon nanotubes and sugar–lectin biospecific interactions for the determination of glucose. Electrochim Acta 56:4203–4208

    Article  CAS  Google Scholar 

  81. Yan XB, Chen XJ, Tay BK, Khor KA (2007) Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase. Electrochem Commun 9:1269–1275

    Article  CAS  Google Scholar 

  82. Liu Y, Wu S, Ju H, Xu L (2007) Amperometric glucose biosensing of gold nanoparticles and carbon nanotube multilayer membranes. Electroanalysis 19:986–992

    Article  CAS  Google Scholar 

  83. Xu L, Zhu Y, Tang L, Yang X, Li C (2007) Biosensor based on self-assembling glucose oxidase and dendrimer-encapsulated Pt nanoparticles on carbon nanotubes for glucose detection. Electroanalysis 19:717–722

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian funding agencies CAPES, CNPq (477668/2013-5), FAPEMIG (APQ-01358-13 and APQ-00756-16), and FAPESP (2013/14262-7) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Osvaldo N. Oliveira Jr. or José R. Siqueira Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oliveira, D.A., Oliveira, O.N., Siqueira, J.R. (2017). Amperometric Sensors Based on Carbon Nanotubes in Layer-by-Layer Films. In: Schöning, M., Poghossian, A. (eds) Label-Free Biosensing. Springer Series on Chemical Sensors and Biosensors, vol 16. Springer, Cham. https://doi.org/10.1007/5346_2017_14

Download citation

Publish with us

Policies and ethics