Skip to main content

A Survey of Graphene-Based Field Effect Transistors for Bio-sensing

  • Chapter
  • First Online:
Book cover Carbon-Based Nanosensor Technology

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 17))

Abstract

There have been numerous investigations to implement graphene’s unique electronic and physical characteristics in devices ranging from batteries to reinforced structures. This chapter surveys the significant effort that has been made to successfully integrate graphene into a practical, cheap, highly sensitive biosensor. The biologically active field effect transistor (BioFET) is a class of biosensors based on ion selective FET (ISFET) technology which operates on the detection of charged molecules; when a charged molecule is present, changes in the electrostatic field at the BioFET transducing surface result in a measurable change in current through the transistor (Schoning and Poghossian, Analyst 127:1137–1151, 2002). The chapter titled “Graphene-Based Chemical and Biosensors,” in Volume 14 of the Springer Series on Chemical Sensors and Biosensors, provided a comprehensive look at the chemical and electrochemical aspects of graphene-based chemical sensors (Wisitsoraat A and Tuantranont A, Graphene-based chemical and biosensors. In: Tuantranont A (ed) Applications of nanomaterials in sensors and diagnostics. Springer, Berlin Heidelberg, pp. 103–141, 2013). In the present chapter of the same series, we supplement that excellent work with the current state of graphene-based field effect transistors (FET), and concentrate on graphene’s high sensitivity to changes in electric fields for sensing biomolecules such as DNA, proteins, and neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schoning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127:1137–1151

    Article  PubMed  Google Scholar 

  2. Wisitsoraat A, Tuantranont A (2013) Graphene-based chemical and biosensors. In: Tuantranont A (ed) Applications of nanomaterials in sensors and diagnostics. Springer, Berlin Heidelberg, pp 103–141

    Chapter  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi:10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. doi:10.1038/nature04233

    Article  CAS  PubMed  Google Scholar 

  5. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453. doi:10.1073/pnas.0502848102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boehm H-P, Stumpp E (2007) Citation errors concerning the first report on exfoliated graphite. Carbon 45:1381–1383. doi:10.1016/j.carbon.2006.12.016

    Article  CAS  Google Scholar 

  7. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63. doi:10.1038/nature05545

    Article  CAS  PubMed  Google Scholar 

  8. The 2010 Nobel Prize in physics. Press Release. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html. Accessed 5 Oct 2010

  9. Dreyer DR, Ruoff RS, Bielawski CW (2010) From conception to realization: an historial account of graphene and some perspectives for its future. Angew Chem Int Ed 49:9336–9344. doi:10.1002/anie.201003024

    Article  CAS  Google Scholar 

  10. Burnett TL, Yakimova R, Kazakova O (2012) Identification of epitaxial graphene domains and adsorbed species in ambient conditions using quantified topography measurements. J Appl Phys 112:054308. doi:10.1063/1.4748957

    Article  CAS  Google Scholar 

  11. Hass J, Millán-Otoya JE, First PN, Conrad EH (2008) Interface structure of epitaxial graphene grown on 4H-SiC(0001). Phys Rev B 78:205424. doi:10.1103/PhysRevB.78.205424

    Article  CAS  Google Scholar 

  12. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. doi:10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  13. Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209. doi:10.1038/nnano.2008.58

    Article  CAS  PubMed  Google Scholar 

  14. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355. doi:10.1016/j.ssc.2008.02.024

    Article  CAS  Google Scholar 

  15. Hu Z, Sinha DP, Lee JU, Liehr M (2014) Substrate dielectric effects on graphene field effect transistors. J Appl Phys 115:194507. doi:10.1063/1.4879236

    Article  CAS  Google Scholar 

  16. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71. doi:10.1080/10408430903505036

    Article  CAS  Google Scholar 

  17. Elias DC, Gorbachev RV, Mayorov AS, Morozov SV, Zhukov AA, Blake P, Ponomarenko LA, Grigorieva IV, Novoselov KS, Guinea F, Geim AK (2011) Dirac cones reshaped by interaction effects in suspended graphene. Nat Phys 7:701–704. doi:10.1038/nphys2049

    Article  CAS  Google Scholar 

  18. Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805. doi:10.1103/PhysRevLett.98.206805

    Article  CAS  PubMed  Google Scholar 

  19. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. doi:10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  20. Frank IW, Tanenbaum DM, van der Zande AM, McEuen PL (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol B 25:2558–2561. doi:10.1116/1.2789446

    Article  CAS  Google Scholar 

  21. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. doi:10.1021/nl0731872

    Article  CAS  PubMed  Google Scholar 

  22. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308. doi:10.1126/science.1156965

    Article  CAS  PubMed  Google Scholar 

  23. Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya PE, Liu Z, Gong Y, Zhang J, Zhang X, Ajayan PM, Zhu T, Lou J (2014) Fracture toughness of graphene. Nat Commun 5:3782. doi:10.1038/ncomms4782

    Article  CAS  PubMed  Google Scholar 

  24. Lee J-H, Loya PE, Lou J, Thomas EL (2014) Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science 346:1092–1096. doi:10.1126/science.1258544

    Article  CAS  PubMed  Google Scholar 

  25. Hu S, Lozada-Hidalgo M, Wang FC, Mishchenko A, Schedin F, Nair RR, Hill EW, Boukhvalov DW, Katsnelson MI, Dryfe RAW, Grigorieva IV, Wu HA, Geim AK (2014) Proton transport through one-atom-thick crystals. Nature 516:227–230. doi:10.1038/nature14015

    Article  CAS  PubMed  Google Scholar 

  26. Gaska R, Yang JW, Osinsky A, Chen Q, Khan MA, Orlov AO, Snider GL, Shur MS (1998) Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates. Appl Phys Lett 72:707–709. doi:10.1063/1.120852

    Article  CAS  Google Scholar 

  27. Balandin AA (2013) Low-frequency 1/f noise in graphene devices. Nat Nanotechnol 8:549–555. doi:10.1038/nnano.2013.144

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Tang T-T, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823. doi:10.1038/nature08105

    Article  CAS  PubMed  Google Scholar 

  29. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496. doi:10.1038/nnano.2010.89

    Article  CAS  PubMed  Google Scholar 

  30. Rickhaus P, Makk P, Liu M-H, Tóvári E, Weiss M, Maurand R, Richter K, Schönenberger C (2015) Snake trajectories in ultraclean graphene p–n junctions. Nat Commun 6:6470. doi:10.1038/ncomms7470

    Article  CAS  PubMed  Google Scholar 

  31. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458. doi:10.3390/s8031400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271. doi:10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  33. Martin J, Akerman N, Ulbricht G, Lohmann T, Smet JH, von Klitzing K, Yacoby A (2008) Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat Phys 4:144–148. doi:10.1038/nphys781

    Article  CAS  Google Scholar 

  34. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726. doi:10.1038/nnano.2010.172

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Brar VW, Girit C, Zettl A, Crommie MF (2009) Origin of spatial charge inhomogeneity in graphene. Nat Phys 5:722–726. doi:10.1038/nphys1365

    Article  CAS  Google Scholar 

  36. Chen S-Y, Ho P-H, Shiue R-J, Chen C-W, Wang W-H (2012) Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates. Nano Lett 12:964–969. doi:10.1021/nl204036d

    Article  CAS  PubMed  Google Scholar 

  37. Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 12:5082–5090. doi:10.1021/nl301714x

    Article  CAS  PubMed  Google Scholar 

  38. Shin D-W, Lee HM, Yu SM, Lim K-S, Jung JH, Kim M-K, Kim S-W, Han J-H, Ruoff RS, Yoo J-B (2012) A facile route to recover intrinsic graphene over large scale. ACS Nano 6:7781–7788. doi:10.1021/nn3017603

    Article  CAS  PubMed  Google Scholar 

  39. Lee W-K, Robinson JT, Gunlycke D, Stine RR, Tamanaha CR, King WP, Sheehan PE (2011) Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks. Nano Lett 11:5461–5464. doi:10.1021/nl203225w

    Article  CAS  PubMed  Google Scholar 

  40. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  41. Mass production of high quality graphene: an analysis of worldwide patents. http://www.nanowerk.com/spotlight/spotid=25744.php. Accessed 18 Mar 2015

  42. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155. doi:10.1039/b512799h

    Article  CAS  Google Scholar 

  43. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314. doi:10.1126/science.1171245

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42:2867–2872. doi:10.1016/j.carbon.2004.06.035

    Article  CAS  Google Scholar 

  45. Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L-P, Zhang Z, Fu Q, Peng L-M, Bao X, Cheng H-M (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699. doi:10.1038/ncomms1702

    Article  CAS  PubMed  Google Scholar 

  46. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196. doi:10.1126/science.1125925

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Zhi L, Mullen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327. doi:10.1021/nl072838r

    Article  CAS  PubMed  Google Scholar 

  48. Cano-Márquez AG, Rodríguez-Macías FJ, Campos-Delgado J, Espinosa-González CG, Tristán-López F, Ramírez-González D, Cullen DA, Smith DJ, Terrones M, Vega-Cantú YI (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9:1527–1533. doi:10.1021/nl803585s

    Article  CAS  PubMed  Google Scholar 

  49. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876. doi:10.1038/nature07872

    Article  CAS  PubMed  Google Scholar 

  50. Su C-Y, Fu D, Lu A-Y, Liu K-K, Xu Y, Juang Z-Y, Li L-J (2011) Transfer printing of graphene strip from the graphene grown on copper wires. Nanotechnology 22:185309. doi:10.1088/0957-4484/22/18/185309

    Article  CAS  PubMed  Google Scholar 

  51. Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, Yacaman MJ, Yakobson BI, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714. doi:10.1038/ncomms6714

    Article  CAS  PubMed  Google Scholar 

  52. Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113:4257–4259. doi:10.1021/jp900791y

    Article  CAS  Google Scholar 

  53. Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48:255–259. doi:10.1016/j.carbon.2009.09.013

    Article  CAS  Google Scholar 

  54. Seifert M, Drieschner S, Blaschke BM, Hess LH, Garrido JA (2014) Induction heating-assisted repeated growth and electrochemical transfer of graphene on millimeter-thick metal substrates. Diam Relat Mater 47:46–52. doi:10.1016/j.diamond.2014.05.007

    Article  CAS  Google Scholar 

  55. Han P, Akagi K, Federici Canova F, Mutoh H, Shiraki S, Iwaya K, Weiss PS, Asao N, Hitosugi T (2014) Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8:9181–9187. doi:10.1021/nn5028642

    Article  CAS  PubMed  Google Scholar 

  56. Van Noorden R (2012) Production: beyond sticky tape. Nature 483:S32–S33. doi:10.1038/483S32a

    Article  CAS  PubMed  Google Scholar 

  57. Kovtyukhova NI, Wang Y, Berkdemir A, Cruz-Silva R, Terrones M, Crespi VH, Mallouk TE (2014) Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat Chem 6:957–963. doi:10.1038/nchem.2054

    Article  CAS  PubMed  Google Scholar 

  58. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. doi:10.1038/nnano.2008.215

    Article  CAS  PubMed  Google Scholar 

  59. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620. doi:10.1021/ja807449u

    Article  CAS  PubMed  Google Scholar 

  60. Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9:4031–4036. doi:10.1021/nl902200b

    Article  CAS  PubMed  Google Scholar 

  61. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998. doi:10.1016/j.carbon.2008.08.013

    Article  CAS  Google Scholar 

  62. Jia J, Kan C-M, Lin X, Shen X, Kim J-K (2014) Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. Carbon 77:244–254. doi:10.1016/j.carbon.2014.05.027

    Article  CAS  Google Scholar 

  63. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. doi:10.1038/nnano.2007.451

    Article  CAS  PubMed  Google Scholar 

  64. Pan S, Aksay IA (2011) Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 5:4073–4083. doi:10.1021/nn200666r

    Article  CAS  PubMed  Google Scholar 

  65. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476. doi:10.1021/nl802412n

    Article  CAS  PubMed  Google Scholar 

  66. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  67. Heller I, Chatoor S, Männik J, Zevenbergen MAG, Oostinga JB, Morpurgo AF, Dekker C, Lemay SG (2010) Charge noise in graphene transistors. Nano Lett 10:1563–1567. doi:10.1021/nl903665g

    Article  CAS  PubMed  Google Scholar 

  68. Kim E, An H, Jang H, Cho W-J, Lee N, Lee W-G, Jung J (2011) Growth of few-layer graphene on a thin cobalt film on a Si/SiO2 substrate. Chem Vap Depos 17:9–14. doi:10.1002/cvde.201004296

    Article  CAS  Google Scholar 

  69. Losurdo M, Giangregorio MM, Capezzuto P, Bruno G (2011) Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys 13:20836–20843. doi:10.1039/C1CP22347J

    Article  CAS  PubMed  Google Scholar 

  70. Batzill M (2012) The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf Sci Rep 67:83–115. doi:10.1016/j.surfrep.2011.12.001

    Article  CAS  Google Scholar 

  71. Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang Y-W, Kim P, Hone J, Colombo L, Ruoff RS (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723. doi:10.1126/science.1243879

    Article  CAS  PubMed  Google Scholar 

  72. Lee J-H, Lee EK, Joo W-J, Jang Y, Kim B-S, Lim JY, Choi S-H, Ahn SJ, Ahn JR, Park M-H, Yang C-W, Choi BL, Hwang S-W, Whang D (2014) Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344:286–289. doi:10.1126/science.1252268

    Article  CAS  PubMed  Google Scholar 

  73. Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816–2819. doi:10.1021/ja109793s

    Article  CAS  PubMed  Google Scholar 

  74. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8:3137–3140. doi:10.1021/nl8013007

    Article  CAS  PubMed  Google Scholar 

  75. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398. doi:10.1021/nl0717715

    Article  CAS  PubMed  Google Scholar 

  76. Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem 122:2200–2203. doi:10.1002/ange.200905089

    Article  Google Scholar 

  77. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274. doi:10.1038/nnano.2008.83

    Article  CAS  PubMed  Google Scholar 

  78. Wei Z, Barlow DE, Sheehan PE (2008) The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett 8:3141–3145. doi:10.1021/nl801301a

    Article  CAS  PubMed  Google Scholar 

  79. Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim Y-J, Kim KS, Özyilmaz B, Ahn J-H, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578. doi:10.1038/nnano.2010.132

    Article  CAS  PubMed  Google Scholar 

  80. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35. doi:10.1021/nl801827v

    Article  CAS  PubMed  Google Scholar 

  81. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103. doi:10.1063/1.2982585

    Article  CAS  Google Scholar 

  82. Ambrosi A, Pumera M (2013) The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 6:472–476. doi:10.1039/C3NR05230C

    Article  PubMed  Google Scholar 

  83. Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson CW, McDonnell S, Colombo L, Vogel EM, Ruoff RS, Wallace RM (2011) The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett 99:122108. doi:10.1063/1.3643444

    Article  CAS  Google Scholar 

  84. Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y (2011) Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett 11:767–771. doi:10.1021/nl103977d

    Article  CAS  PubMed  Google Scholar 

  85. Dong X, Shi Y, Huang W, Chen P, Li L-J (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22:1649–1653. doi:10.1002/adma.200903645

    Article  CAS  PubMed  Google Scholar 

  86. Baraket M, Stine R, Lee WK, Robinson JT, Tamanaha CR, Sheehan PE, Walton SG (2012) Aminated graphene for DNA attachment produced via plasma functionalization. Appl Phys Lett 100:233123. doi:10.1063/1.4711771

    Article  CAS  Google Scholar 

  87. Zhang D, Jin Z, Shi J, Wang X, Peng S, Wang S (2015) The electrochemical transfer of CVD-graphene using agarose gel as solid electrolyte and mechanical support layer. Chem Commun 51:2987–2990. doi:10.1039/C4CC09404B

    Article  CAS  Google Scholar 

  88. Lu A-Y, Wei S-Y, Wu C-Y, Hernandez Y, Chen T-Y, Liu T-H, Pao C-W, Chen F-R, Li L-J, Juang Z-Y (2012) Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Adv 2:3008–3013. doi:10.1039/C2RA01281B

    Article  CAS  Google Scholar 

  89. Tian J, Cao H, Wu W, Yu Q, Chen YP (2011) Direct imaging of graphene edges: atomic structure and electronic scattering. Nano Lett 11:3663–3668. doi:10.1021/nl201590f

    Article  CAS  PubMed  Google Scholar 

  90. Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8:235–242. doi:10.1038/nmat2378

    Article  CAS  PubMed  Google Scholar 

  91. Liu Y, Dobrinsky A, Yakobson BI (2010) Graphene edge from armchair to zigzag: the origins of nanotube chirality? Phys Rev Lett 105:235502. doi:10.1103/PhysRevLett.105.235502

    Article  CAS  PubMed  Google Scholar 

  92. Shao L, Chen G, Ye H, Niu H, Wu Y, Zhu Y, Ding B (2014) Sulfur dioxide molecule sensors based on zigzag graphene nanoribbons with and without Cr dopant. Phys Lett A 378:667–671. doi:10.1016/j.physleta.2013.12.042

    Article  CAS  Google Scholar 

  93. Rezapour MR, Rajan AC, Kim KS (2014) Molecular sensing using armchair graphene nanoribbon. J Comput Chem 35:1916–1920. doi:10.1002/jcc.23705

    Article  CAS  PubMed  Google Scholar 

  94. Owens FJ (2008) Electronic and magnetic properties of armchair and zigzag graphene nanoribbons. J Chem Phys 128:194701. doi:10.1063/1.2905215

    Article  CAS  PubMed  Google Scholar 

  95. Lee H, Qi Y, Kwon S, Salmeron M, Park JY (2015) Large changes of graphene conductance as a function of lattice orientation between stacked layers. Nanotechnology 26:015702. doi:10.1088/0957-4484/26/1/015702

    Article  CAS  PubMed  Google Scholar 

  96. Zhang B, Cui T (2013) Suspended graphene nanoribbon ion-sensitive field-effect transistors formed by shrink lithography for pH/cancer biomarker sensing. J Microelectromech Syst 22:1140–1146. doi:10.1109/JMEMS.2013.2254701

    Article  CAS  Google Scholar 

  97. Ohno Y, Maehashi K, Matsumoto K (2010) Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc 132:18012–18013. doi:10.1021/ja108127r

    Article  CAS  PubMed  Google Scholar 

  98. Stine R, Robinson JT, Sheehan PE, Tamanaha CR (2010) Real-time DNA detection using reduced graphene oxide field effect transistors. Adv Mater 22:5297–5300. doi:10.1002/adma.201002121

    Article  CAS  PubMed  Google Scholar 

  99. Dankerl M, Hauf MV, Lippert A, Hess LH, Birner S, Sharp ID, Mahmood A, Mallet P, Veuillen J-Y, Stutzmann M, Garrido JA (2010) Graphene solution-gated field-effect transistor array for sensing applications. Adv Funct Mater 20:3117–3124. doi:10.1002/adfm.201000724

    Article  CAS  Google Scholar 

  100. Wang QH, Hersam MC (2009) Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat Chem 1:206–211. doi:10.1038/nchem.212

    Article  CAS  PubMed  Google Scholar 

  101. Hurch S, Nolan H, Hallam T, Berner NC, McEvoy N, Duesberg GS (2014) Inkjet-defined field-effect transistors from chemical vapour deposited graphene. Carbon 71:332–337. doi:10.1016/j.carbon.2014.01.063

    Article  CAS  Google Scholar 

  102. Mao HY, Lu YH, Lin JD, Zhong S, Wee ATS, Chen W (2013) Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog Surf Sci 88:132–159. doi:10.1016/j.progsurf.2013.02.001

    Article  CAS  Google Scholar 

  103. Huang Y, Dong X, Shi Y, Li CM, Li L-J, Chen P (2010) Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2:1485–1488. doi:10.1039/C0NR00142B

    Article  CAS  PubMed  Google Scholar 

  104. Ohno Y, Maehashi K, Inoue K, Matsumoto K (2011) Label-free aptamer-based immunoglobulin sensors using graphene field-effect transistors. Jpn J Appl Phys 50:070120. doi:10.1143/JJAP.50.070120

    Article  CAS  Google Scholar 

  105. Akca S, Foroughi A, Frochtzwajg D, Postma HWC (2011) Competing interactions in DNA assembly on graphene. PLoS One 6:e18442. doi:10.1371/journal.pone.0018442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mao S, Lu G, Yu K, Bo Z, Chen J (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22:3521–3526. doi:10.1002/adma.201000520

    Article  CAS  PubMed  Google Scholar 

  107. Mao S, Yu K, Chang J, Steeber DA, Ocola LE, Chen J (2013) Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci Rep 3:1696. doi:10.1038/srep01696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hirtz M, Oikonomou A, Georgiou T, Fuchs H, Vijayaraghavan A (2013) Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nat Commun 4:2591. doi:10.1038/ncomms3591

    Article  CAS  PubMed  Google Scholar 

  109. Mulvaney SP, Stine R, Long NC, Tamanaha CR, Sheehan PE (2014) Graphene veils: a versatile surface chemistry for sensors. BioTechniques 57:21–30. doi:10.2144/000114188

    Article  CAS  PubMed  Google Scholar 

  110. Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA (2007) Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett 7:3405–3409. doi:10.1021/nl071792z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kurkina T, Sundaram S, Sundaram RS, Re F, Masserini M, Kern K, Balasubramanian K (2012) Self-assembled electrical biodetector based on reduced graphene oxide. ACS Nano 6:5514–5520. doi:10.1021/nn301429k

    Article  CAS  PubMed  Google Scholar 

  112. Bekyarova E, Itkis ME, Ramesh P, Berger C, Sprinkle M, de Heer WA, Haddon RC (2009) Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J Am Chem Soc 131:1336–1337. doi:10.1021/ja8057327

    Article  CAS  PubMed  Google Scholar 

  113. Farmer DB, Golizadeh-Mojarad R, Perebeinos V, Lin Y-M, Tulevski GS, Tsang JC, Avouris P (2009) Chemical doping and electron−hole conduction asymmetry in graphene devices. Nano Lett 9:388–392. doi:10.1021/nl803214a

    Article  CAS  PubMed  Google Scholar 

  114. Lomeda JR, Doyle CD, Kosynkin DV, Hwang W-F, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201–16206. doi:10.1021/ja806499w

    Article  CAS  PubMed  Google Scholar 

  115. Kasry A, Afzali AA, Oida S, Han S-J, Menges B, Tulevski GS (2011) Detection of biomolecules via benign surface modification of graphene. Chem Mater 23:4879–4881. doi:10.1021/cm201577k

    Article  CAS  Google Scholar 

  116. Steenackers M, Gigler AM, Zhang N, Deubel F, Seifert M, Hess LH, Lim CHYX, Loh KP, Garrido JA, Jordan R, Stutzmann M, Sharp ID (2011) Polymer brushes on graphene. J Am Chem Soc 133:10490–10498. doi:10.1021/ja201052q

    Article  CAS  PubMed  Google Scholar 

  117. Hess LH, Lyuleeva A, Blaschke BM, Sachsenhauser M, Seifert M, Garrido JA, Deubel F (2014) Graphene transistors with multifunctional polymer brushes for biosensing applications. ACS Appl Mater Interfaces 6:9705–9710. doi:10.1021/am502112x

    Article  CAS  PubMed  Google Scholar 

  118. Blaszykowski C, Sheikh S, Thompson M (2012) Surface chemistry to minimize fouling from blood-based fluids. Chem Soc Rev 41:5599–5612. doi:10.1039/C2CS35170F

    Article  CAS  PubMed  Google Scholar 

  119. Liu B, Sun Z, Zhang X, Liu J (2013) Mechanisms of DNA sensing on graphene oxide. Anal Chem 85:7987–7993. doi:10.1021/ac401845p

    Article  CAS  PubMed  Google Scholar 

  120. Yan L, Zheng YB, Zhao F, Li S, Gao X, Xu B, Weiss PS, Zhao Y (2011) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41:97–114. doi:10.1039/C1CS15193B

    Article  PubMed  Google Scholar 

  121. Park JS, Goo N-I, Kim D-E (2014) Mechanism of DNA adsorption and desorption on graphene oxide. Langmuir 30:12587–12595. doi:10.1021/la503401d

    Article  CAS  PubMed  Google Scholar 

  122. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323. doi:10.1021/nn101097v

    Article  CAS  PubMed  Google Scholar 

  123. He J, Zhu X, Qi Z, Wang C, Mao X, Zhu C, He Z, Li M, Tang Z (2015) Killing dental pathogens using antibacterial graphene oxide. ACS Appl Mater Interfaces 7:5605–5611. doi:10.1021/acsami.5b01069

    Article  CAS  PubMed  Google Scholar 

  124. Mao S, Yu K, Lu G, Chen J (2011) Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res 4:921–930. doi:10.1007/s12274-011-0148-3

    Article  Google Scholar 

  125. Guo S, Dong S (2011) Graphene and its derivative-based sensing materials for analytical devices. J Mater Chem 21:18503–18516. doi:10.1039/C1JM13228H

    Article  CAS  Google Scholar 

  126. Huang Y, Dong X, Liu Y, Li L-J, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21:12358–12362. doi:10.1039/C1JM11436K

    Article  CAS  Google Scholar 

  127. Ameri SK, Singh PK, Sonkusale SR (2014) Liquid gated three dimensional graphene network transistor. Carbon 79:572–577. doi:10.1016/j.carbon.2014.08.018

    Article  CAS  Google Scholar 

  128. Chen T-Y, Loan PTK, Hsu C-L, Lee Y-H, Tse-Wei Wang J, Wei K-H, Lin C-T, Li L-J (2013) Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosens Bioelectron 41:103–109. doi:10.1016/j.bios.2012.07.059

    Article  CAS  PubMed  Google Scholar 

  129. Chang J, Mao S, Zhang Y, Cui S, Zhou G, Wu X, Yang C-H, Chen J (2013) Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale 5:3620–3626. doi:10.1039/C3NR00141E

    Article  CAS  PubMed  Google Scholar 

  130. Chen Y, Michael ZP, Kotchey GP, Zhao Y, Star A (2014) Electronic detection of bacteria using holey reduced graphene oxide. ACS Appl Mater Interfaces 6:3805–3810. doi:10.1021/am500364f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hasegawa M, Hirayama Y, Ohno Y, Maehashi K, Matsumoto K (2014) Characterization of reduced graphene oxide field-effect transistor and its application to biosensor. Jpn J Appl Phys 53:05FD05. doi:10.7567/JJAP.53.05FD05

    Article  CAS  Google Scholar 

  132. Inaba A, Yoo K, Takei Y, Matsumoto K, Shimoyama I (2014) Ammonia gas sensing using a graphene field–effect transistor gated by ionic liquid. Sens Actuators B Chem 195:15–21. doi:10.1016/j.snb.2013.12.118

    Article  CAS  Google Scholar 

  133. Jiang S, Cheng R, Wang X, Xue T, Liu Y, Nel A, Huang Y, Duan X (2013) Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat Commun 4:2225. doi:10.1038/ncomms3225

    Article  CAS  PubMed  Google Scholar 

  134. Jung JH, Sohn IY, Kim DJ, Kim BY, Jang M, Lee N-E (2013) Enhancement of protein detection performance in field-effect transistors with polymer residue-free graphene channel. Carbon 62:312–321. doi:10.1016/j.carbon.2013.05.069

    Article  CAS  Google Scholar 

  135. Kakatkar A, Abhilash TS, Alba RD, Parpia JM, Craighead HG (2015) Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors. Nanotechnology 26:125502. doi:10.1088/0957-4484/26/12/125502

    Article  CAS  PubMed  Google Scholar 

  136. Khatayevich D, Page T, Gresswell C, Hayamizu Y, Grady W, Sarikaya M (2014) Selective detection of target proteins by peptide-enabled graphene biosensor. Small 10:1505–1513. doi:10.1002/smll.201302188

    Article  CAS  PubMed  Google Scholar 

  137. Kim D-J, Park H-C, Sohn IY, Jung J-H, Yoon OJ, Park J-S, Yoon M-Y, Lee N-E (2013) Electrical graphene aptasensor for ultra-sensitive detection of anthrax toxin with amplified signal transduction. Small 9:3352–3360. doi:10.1002/smll.201203245

    Article  CAS  PubMed  Google Scholar 

  138. Kim D-J, Sohn IY, Jung J-H, Yoon OJ, Lee N-E, Park J-S (2013) Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens Bioelectron 41:621–626. doi:10.1016/j.bios.2012.09.040

    Article  CAS  PubMed  Google Scholar 

  139. Lerner MB, Matsunaga F, Han GH, Hong SJ, Xi J, Crook A, Perez-Aguilar JM, Park YW, Saven JG, Liu R, Johnson ATC (2014) Scalable production of highly sensitive nanosensors based on graphene functionalized with a designed G protein-coupled receptor. Nano Lett 14:2709–2714. doi:10.1021/nl5006349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu F, Kim YH, Cheon DS, Seo TS (2013) Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sens Actuators B Chem 186:252–257. doi:10.1016/j.snb.2013.05.097

    Article  CAS  Google Scholar 

  141. Maehashi K, Sofue Y, Okamoto S, Ohno Y, Inoue K, Matsumoto K (2013) Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sens Actuators B Chem 187:45–49. doi:10.1016/j.snb.2012.09.033

    Article  CAS  Google Scholar 

  142. Park JW, Park SJ, Kwon OS, Lee C, Jang J (2014) High-performance Hg2+ FET-type sensors based on reduced graphene oxide–polyfuran nanohybrids. Analyst 139:3852–3855. doi:10.1039/C4AN00403E

    Article  CAS  PubMed  Google Scholar 

  143. Park JW, Lee C, Jang J (2015) High-performance field-effect transistor-type glucose biosensor based on nanohybrids of carboxylated polypyrrole nanotube wrapped graphene sheet transducer. Sens Actuators B Chem 208:532–537. doi:10.1016/j.snb.2014.11.085

    Article  CAS  Google Scholar 

  144. Saltzgaber G, Wojcik P, Sharf T, Leyden MR, Wardini JL, Heist CA, Adenuga AA, Remcho VT, Minot ED (2013) Scalable graphene field-effect sensors for specific protein detection. Nanotechnology 24:355502. doi:10.1088/0957-4484/24/35/355502

    Article  CAS  PubMed  Google Scholar 

  145. Sohn I-Y, Kim D-J, Jung J-H, Yoon OJ, Nguyen Thanh T, Tran Quang T, Lee N-E (2013) pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors. Biosens Bioelectron 45:70–76. doi:10.1016/j.bios.2013.01.051

    Article  CAS  PubMed  Google Scholar 

  146. Traversi F, Raillon C, Benameur SM, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A (2013) Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat Nanotechnol 8:939–945. doi:10.1038/nnano.2013.240

    Article  CAS  PubMed  Google Scholar 

  147. Woszczyna M, Winter A, Grothe M, Willunat A, Wundrack S, Stosch R, Weimann T, Ahlers F, Turchanin A (2014) All-carbon vertical van der Waals heterostructures: non-destructive functionalization of graphene for electronic applications. Adv Mater 26:4831–4837. doi:10.1002/adma.201400948

    Article  CAS  PubMed  Google Scholar 

  148. Xie T, Xie G, Zhou Y, Huang J, Wu M, Jiang Y, Tai H (2014) Thin film transistors gas sensors based on reduced graphene oxide poly(3-hexylthiophene) bilayer film for nitrogen dioxide detection. Chem Phys Lett 614:275–281. doi:10.1016/j.cplett.2014.09.028

    Article  CAS  Google Scholar 

  149. Xu G, Abbott J, Qin L, Yeung KYM, Song Y, Yoon H, Kong J, Ham D (2014) Electrophoretic and field-effect graphene for all-electrical DNA array technology. Nat Commun 5:4866. doi:10.1038/ncomms5866

    Article  CAS  PubMed  Google Scholar 

  150. Zhang X, Zhang Y, Liao Q, Song Y, Ma S (2013) Reduced graphene oxide-functionalized high electron mobility transistors for novel recognition pattern label-free DNA sensors. Small 9:4045–4050. doi:10.1002/smll.201300793

    Article  CAS  PubMed  Google Scholar 

  151. Zhou G, Chang J, Cui S, Pu H, Wen Z, Chen J (2014) Real-time, selective detection of Pb2+ in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Appl Mater Interfaces 6:19235–19241. doi:10.1021/am505275a

    Article  CAS  PubMed  Google Scholar 

  152. Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787. doi:10.1002/anie.200901479

    Article  CAS  Google Scholar 

  153. Karimi H, Yusof R, Rahmani R, Hosseinpour H, Ahmadi MT (2014) Development of solution-gated graphene transistor model for biosensors. Nanoscale Res Lett 9:71. doi:10.1186/1556-276X-9-71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  155. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, Minasian LM, Ford LG, Lippman SM, Crawford ED, Crowley JJ, Coltman CA (2004) Prevalence of prostate cancer among men with a prostate-specific antigen level ≤4.0 ng per milliliter. N Engl J Med 350:2239–2246. doi:10.1056/NEJMoa031918

    Article  CAS  PubMed  Google Scholar 

  156. Jensen-Jarolim E, Achatz G, Turner MC, Karagiannis S, Legrand F, Capron M, Penichet ML, Rodríguez JA, Siccardi AG, Vangelista L, Riemer AB, Gould H (2008) AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy 63:1255–1266. doi:10.1111/j.1398-9995.2008.01768.x

    Article  CAS  PubMed  Google Scholar 

  157. Winter WE, Hardt NS, Fuhrman S (2000) Immunoglobulin E. Arch Pathol Lab Med 124:1382–1385. doi:10.1043/0003-9985(2000)124<1382:IE>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  158. Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1:199–207. doi:10.1038/35044563

    Article  CAS  PubMed  Google Scholar 

  159. Kim J-H, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee S-H, Nguyen J, Sánchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56. doi:10.1038/nature00900

    Article  CAS  PubMed  Google Scholar 

  160. Howes ODKJ (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment: meta-analysis of imaging studies. Arch Gen Psychiatry 69:776–786. doi:10.1001/archgenpsychiatry.2012.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Catecholamines in blood (2010) Cigna. http://www.cigna.com/individualandfamilies/health-and-well-being/hw/medical-tests/catecholamines-in-blood-tw12861.html. Accessed 25 Oct 2012

  162. He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H (2010) Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4:3201–3208. doi:10.1021/nn100780v

    Article  CAS  PubMed  Google Scholar 

  163. Rhoads DD, Wolcott RD, Sun Y, Dowd SE (2012) Comparison of culture and molecular identification of bacteria in chronic wounds. Int J Mol Sci 13:2535–2550. doi:10.3390/ijms13032535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wolcott RD (2012) Methods for microbial identification in chronic wounds. Wounds Int 3:10–13

    Google Scholar 

  165. Nakagami G (2012) Innovations in wound infection management. Wounds Int 3:13–15

    Google Scholar 

  166. Asada M, Nakagami G, Minematsu T, Nagase T, Akase T, Huang L, Yoshimura K, Sanada H (2012) Novel biomarkers for the detection of wound infection by wound fluid RT-PCR in rats. Exp Dermatol 21:118–122. doi:10.1111/j.1600-0625.2011.01404.x

    Article  CAS  PubMed  Google Scholar 

  167. Desborough JP (2000) The stress response to trauma and surgery. Br J Anaesth 85:109–117. doi:10.1093/bja/85.1.109

    Article  CAS  PubMed  Google Scholar 

  168. Ouattara A, Lecomte P, Le Manach Y, Landi M, Jacqueminet S, Platonov I, Bonnet N, Riou B, Coriat P (2005) Poor intraoperative blood glucose control is associated with a worsened hospital outcome after cardiac surgery in diabetic patients. Anesthesiology 103:687–694

    Article  CAS  PubMed  Google Scholar 

  169. Pearton SJ, Ren F (2012) Gallium nitride-based gas, chemical and biomedical sensors. IEEE Instrum Meas Mag 15:16–21. doi:10.1109/MIM.2012.6145256

    Article  Google Scholar 

  170. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367. doi:10.1056/NEJMoa011300

    Article  PubMed  Google Scholar 

  171. Rice MJ, Pitkin AD, Coursin DB (2010) Glucose measurement in the operating room: more complicated than it seems. Anesth Analg 110:1056–1065. doi:10.1213/ANE.0b013e3181cc07de

    Article  PubMed  Google Scholar 

  172. Kwak YH, Choi DS, Kim YN, Kim H, Yoon DH, Ahn S-S, Yang J-W, Yang WS, Seo S (2012) Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens Bioelectron 37:82–87. doi:10.1016/j.bios.2012.04.042

    Article  CAS  PubMed  Google Scholar 

  173. Baker EH, Clark N, Brennan AL, Fisher DA, Gyi KM, Hodson ME, Philips BJ, Baines DL, Wood DM (2007) Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. J Appl Physiol 102:1969–1975. doi:10.1152/japplphysiol.01425.2006

    Article  CAS  PubMed  Google Scholar 

  174. Chu BH, Kang BS, Hung SC, Chen KH, Ren F, Sciullo A, Gilla BP, Pearton SJ (2010) Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate. J Diabetes Sci Technol 4:171–179

    Article  PubMed  PubMed Central  Google Scholar 

  175. Minh TDC, Oliver SR, Ngo J, Flores R, Midyett J, Meinardi S, Carlson MK, Rowland FS, Blake DR, Galassetti PR (2011) Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects. Am J Physiol Endocrinol Metab 300:E1166–E1175. doi:10.1152/ajpendo.00634.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cy R. Tamanaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tamanaha, C.R. (2017). A Survey of Graphene-Based Field Effect Transistors for Bio-sensing. In: Kranz, C. (eds) Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, vol 17. Springer, Cham. https://doi.org/10.1007/5346_2017_12

Download citation

Publish with us

Policies and ethics