Skip to main content

SAW and Functional Polymers

  • Chapter
  • First Online:
Gas Sensing Fundamentals

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 15))

Abstract

In modern sensor design, researchers are focused to develop accurate, miniaturized, portable, and highly sensitive devices for online monitoring in different fields. Surface acoustic wave (SAW) resonators are center of interest for their excellent response, exceptional transducing ability, small size, ruggedness, and tunable frequency for getting superior sensitivity. Based on the dimensions of interdigital electrodes, type of substrate material, and coating interface, they can be tailored according to desired application and nature of working environment. The sensing interface of SAW devices can be fabricated with a variety of suitable materials ranging from metal oxide films, nanoparticles, supramolecular structures, molecular imprinted polymers, carbon nanotubes and their composites, self-assembled monolayers, and other polymeric hybrid materials. Their sensor applications cover a wide range, e.g. detection of toxic volatile organic compounds, explosive vapors, chemical warfare agents, humidity, NO x , and a variety of other gaseous analytes. SAW-based multisensor arrays are of utmost importance due to their outstanding recognition ability in complex mixtures and thus making them ideally suited for designing e-noses. This article deals with the potential sensor applications of SAW devices coated with different polymeric receptor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valentini L, Cantalini C, Armentano I, Kenny JM, Lozzi L, Santucci S (2004) Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond Relat Mater 13(4–8):1301–1305

    Article  CAS  Google Scholar 

  2. Rapp M, Reibel J, Voigt A, Balzer M, Bülow O (2000) New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators. Sens Actuators B Chem 65(1–3):169–172

    Article  CAS  Google Scholar 

  3. Hinrichsen V, Scholl G, Schubert M, Ostertag T (1999) Online monitoring of high-voltage metal-oxide surge arresters by wireless passive surface acoustic wave (SAW) temperature sensors. Paper presented at the high voltage engineering 1999. Eleventh international symposium on (Conf. Publ. No. 467) London, 23–27 August 1999

    Google Scholar 

  4. Wolff U, Dickert FL, Fischerauer GK, Greibl W, Ruppel CCW (2001) SAW sensors for harsh environments. IEEE Sens J 1:4–13

    Article  CAS  Google Scholar 

  5. Mujahid A, Lieberzeit PA, Dickert FL (2010) Chemical sensors based on molecularly imprinted sol–gel materials. Materials 3(4):2196–2217

    Article  CAS  Google Scholar 

  6. Ballantine DS (1997) Acoustic wave sensors theory, design, and physico-chemical applications. Academic. http://worldcat.org. http://www.engineeringvillage.com/controller/servlet/OpenURL?genre=book&isbn=9780120774609

  7. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528

    Article  CAS  Google Scholar 

  8. Länge K, Bender F, Voigt A, Gao H, Rapp M (2003) A Surface acoustic wave biosensor concept with low flow cell volumes for label-free detection. Anal Chem 75(20):5561–5566

    Article  Google Scholar 

  9. Smith JP, Hinson-Smith V (2006) The new era of SAW devices. Anal Chem 78(11):3505–3507

    Article  CAS  Google Scholar 

  10. Penza M, Cassano G, Aversa P, Antolini F, Cusano A, Consales M, Giordano M, Nicolais L (2005) Carbon nanotubes-coated multi-transducing sensors for VOCs detection. Sens Actuators B Chem 111–112:171–180

    Article  Google Scholar 

  11. Cattanach K, Kulkarni RD, Kozlov M, Manohar SK (2006) Flexible carbon nanotube sensors for nerve agent simulants. Nanotechnology 17(16):4123

    Article  CAS  Google Scholar 

  12. Nimal AT, Mittal U, Singh M, Khaneja M, Kannan GK, Kapoor JC, Dubey V, Gutch PK, Lal G, Vyas KD, Gupta DC (2009) Development of handheld SAW vapor sensors for explosives and CW agents. Sens Actuators B Chem 135(2):399–410

    Article  CAS  Google Scholar 

  13. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139(1):1–23

    Google Scholar 

  14. Sadek AZ, Wlodarski W, Li YX, Yu W, Li X, Yu X, Kalantar-zadeh K (2007) A ZnO nanorod based layered ZnO/64° YX LiNbO3 SAW hydrogen gas sensor. Thin Solid Films 515(24):8705–8708

    Article  CAS  Google Scholar 

  15. Dickert FL, Geiger U, Keppler M, Reif M, Bulst WE, Knauer U, Fischerauer G (1995) Supramolecular receptors for SAW and QMB devices: solvent recognition evaluated by FT-IR spectroscopy and BET adsorption analysis. Sens Actuators B Chem 26(1–3):199–202

    CAS  Google Scholar 

  16. Penza M, Antolini F, Antisari MV (2004) Carbon nanotubes as SAW chemical sensors materials. Sens Actuators B 100:47–59

    Article  CAS  Google Scholar 

  17. Sellergren B (ed) (2001) Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry. Techniques and instrumentation in analytical chemistry, vol 23. Elsevier, Amsterdam

    Google Scholar 

  18. Hartmann-Thompson C, Hu J, Kaganove SN, Keinath SE, Keeley DL, Dvornic PR (2004) Hydrogen-bond acidic hyperbranched polymers for surface acoustic wave (SAW) sensors. Chem Mater 16(25):5357–5364

    Article  CAS  Google Scholar 

  19. Hartmann-Thompson C, Keeley DL, Gallagher S (2006) Hydrogen-bond basic siloxane phosphonate polymers for surface acoustic wave (SAW) sensors. Sens Actuators B Chem 115(2):697–699

    Article  CAS  Google Scholar 

  20. Garzella C, Comini E, Tempesti E, Frigeri C, Sberveglieri G (2000) TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sens Actuators B Chem 68(1–3):189–196

    Article  CAS  Google Scholar 

  21. Fang M, Vetelino K, Rothery M, Hines J, Frye GC (1999) Detection of organic chemicals by SAW sensor array. Sens Actuators B Chem 56(1–2):155–157

    Article  CAS  Google Scholar 

  22. Mujahid A, Dickert FL (2010) Surface nano-patterning of polymers for mass-sensitive. In: Carrara S (ed) Bio-detection, nano-bio-sensing. Springer, New York, Dordrecht, Heidelberg, London, pp 45–82. ISBN 978-1-4419-6168-6. doi:10.1007/978-1-4419-6169-3

  23. Dickert FL, Hayden O, Lieberzeit P, Haderspoeck C, Bindeus R, Palfinger C, Wirl B (2003) Nano- and micro-structuring of sensor materials – from molecule to cell detection. Synth Met 138(1–2):65–69

    Article  CAS  Google Scholar 

  24. Hoummady M, Campitelli A, Wlodarski W (1997) Acoustic wave sensors: design, sensing mechanisms and applications. Smart Mater Struct 6(6):647

    Article  CAS  Google Scholar 

  25. Gualtieri JG, Kosinski JA, Ballato A (1994) Piezoelectric materials for acoustic wave applications. IEEE Trans Ultrason Ferroelectr Freq Control 41(1):53–59

    Article  Google Scholar 

  26. Curie J, Curie P (1880) Contractions et dilatations produites par des tensions dans les cristaux hémièdres à faces inclines. C R Acad Sci Gen 93:1137–1140

    Google Scholar 

  27. Curie J, Curie P (1880) Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull Soc Min Paris 3:90–102

    Google Scholar 

  28. Lippmann G (1881) Principe de la conservation de l’électricité. An Chim Phys 24:145

    Google Scholar 

  29. Rayleigh L (1885) On waves propagated along the plane surface of an elastic solid. Proc Lond Mathemat Soc s1–17(1):4–11

    Google Scholar 

  30. Hesjedal T, Seidel W (2003) Near-field elastomeric mask photolithography fabrication of high-frequency surface acoustic wave transducers. Nanotechnology 14(1):91

    Article  CAS  Google Scholar 

  31. Steinem C, Janshoff A (2005) SENSORS piezoelectric resonators. In: Editors-in-Chief: Paul W, Alan T, Colin P (eds) Encyclopedia of analytical science, 2nd edn. Elsevier, Oxford, pp 269–276

    Google Scholar 

  32. Gautschi G (2002) Piezoelectric sensorics : force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers. Springer, Berlin

    Book  Google Scholar 

  33. Da Cunha MP, De Azevedo FS (1999) Investigation on recent quartz-like materials for SAW applications. IEEE Trans Ultrason Ferroelectr Freq Control 46(6):1583–1590

    Article  Google Scholar 

  34. Krempl P, Schleinzer G, Wallnofer W (1997) Gallium phosphate, GaPO4: a new piezoelectric crystal material for high-temperature sensorics. Sens Actuators A Phys 61 (1–3):361–363

    Google Scholar 

  35. Dubovik MF, Andreyev IA, Shmaly YS (1994) Langasite (La3Ga5SiO14) an optical piezoelectric: growth and properties. In: Proceedings of the 48th IEEE international frequency control symposium, Boston, MA. 1–3 June 1994, pp 43–47

    Google Scholar 

  36. Hashimoto KY, Yamaguchi M, Mineyoshi S, Kawachi O, Ueda M, Endoh G (1997) Optimum leaky-SAW cut of LiTaO3 for minimised insertion loss devices. In: Proceedings of the IEEE ultrasonics symposium, vol 241. Toronto, Ont. 5–8 October 1997, pp 245–254

    Google Scholar 

  37. Calabrese GS, Wohltjen H, Roy MK (1987) Surface acoustic wave devices as chemical sensors in liquids. Evidence disputing the importance of Rayleigh wave propagation. Anal Chem 59(6):833–837

    Article  CAS  Google Scholar 

  38. Mujahid A, Afzal A, Glanzing G, Leidl A, Lieberzeit PA, Dickert FL (2010) Imprinted sol–gel materials for monitoring degradation products in automotive oils by shear transverse wave. Anal Chim Acta 675(1):53–57

    Article  CAS  Google Scholar 

  39. Cai Q-Y, Park J, Heldsinger D, Hsieh M-D, Zellers ET (2000) Vapor recognition with an integrated array of polymer-coated flexural plate wave sensors. Sens Actuators B Chem 62(2):121–130

    Article  CAS  Google Scholar 

  40. Kovacs G, Vellekoop MJ, Haueis R, Lubking GW, Venema A (1994) A love wave sensor for (bio)chemical sensing in liquids. Sens Actuators A Phys 43(1–3):38–43

    Article  CAS  Google Scholar 

  41. Sauerbrey G (1959) Verwendung von schwingquarzen zur waegung dunner schichten und zur mikrowaegung. Zeitschrift für Physik 155(2):206–222

    Article  CAS  Google Scholar 

  42. Afzal A, Dickert FL, (2011) Surface acoustic wave (SAW) sensors for chemical applications. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technology, vol 4. Solid State Sensors. Chap. 10, Momentum, New Jersey, ISBN: 978-1-60650-233-4.

    Google Scholar 

  43. Dickert FL, Forth P, Bulst W-E, Fischerauer G, Knauer U (1998) SAW devices-sensitivity enhancement in going from 80 MHz to 1 GHz. Sens Actuators B Chem 46(2):120–125

    Article  CAS  Google Scholar 

  44. Liron Z, Greenblatt J, Frishman G, Gratziani N, Biran A (1993) Temperature effect and chemical response of surface acoustic wave (SAW) single-delay-line chemosensors. Sens Actuators B Chem 12(2):115–122

    Article  CAS  Google Scholar 

  45. Wu T-T, Chen Y-Y, Chou T-H (2008) A high sensitivity nanomaterial based SAW humidity sensor. J Phys D Appl Phys 41(8):085101

    Article  Google Scholar 

  46. Penza M, Cassano G (2000) Relative humidity sensing by PVA-coated dual resonator SAW oscillator. Sens Actuators B Chem 68(1–3):300–306

    Article  CAS  Google Scholar 

  47. Shen C-Y, Hsu C-L, Hwang R-C, Jeng J-S (2007) The interference of humidity on a shear horizontal surface acoustic wave ammonia sensor. Sens Actuators B Chem 122(2):457–460

    Article  CAS  Google Scholar 

  48. Greibl W, Hayden O, Achatz P, Fischerauer G, Scholl G, Dickert FL (2002) Surface phenomena with organic coatings for chemical sensing. In: Vo-Dinh T, Buettgenbach S (eds) Proceedings of the SPIE, vol 4576. Advanced Environmental Sensing Technology II, Boston, MA. 22 February 2002, pp 160–168. doi:10.1117/12.456953

  49. García M, Fernández MJ, Fontecha JL, Lozano J, Santos JP, Aleixandre M, Sayago I, Gutiérrez J, Horrillo MC (2006) Differentiation of red wines using an electronic nose based on surface acoustic wave devices. Talanta 68(4):1162–1165

    Article  Google Scholar 

  50. Abraham MH, Fuchs R (1988) Correlation and prediction of gas-liquid partition coefficients in hexadecane and olive oil. J Chem Soc Perkin Trans 2(4):523–527

    Google Scholar 

  51. Grate JW, Abraham MH, Du CM, McGill RA, Shuely WJ (1995) Examination of vapor sorption by fullerene, fullerene-coated surface acoustic wave sensors, graphite, and low-polarity polymers using linear solvation energy relationships. Langmuir 11(6):2125–2130

    Article  CAS  Google Scholar 

  52. Grate JW, Patrash SJ, Kaganove SN, Abraham MH, Wise BM, Gallagher NB (2001) Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses. Anal Chem 73(21):5247–5259

    Article  CAS  Google Scholar 

  53. Hartmann-Thompson C, Keeley DL, Dvornic PR, Keinath SE, McCrea KR (2007) Hydrogen-bond acidic polyhedral oligosilsesquioxane filled polymer coatings for surface acoustic wave sensors. J Appl Polym Sci 104(5):3171–3182

    Article  CAS  Google Scholar 

  54. Levit N, Pestov D, Tepper G (2002) High surface area polymer coatings for SAW-based chemical sensor applications. Sens Actuators B Chem 82(2–3):241–249

    Article  CAS  Google Scholar 

  55. Grate JW, Klusty M, McGill RA, Abraham MH, Whiting G, Andonian-Haftvan J (1992) The predominant role of swelling-induced modulus changes of the sorbent phase in determining the responses of polymer-coated surface acoustic wave vapor sensors. Anal Chem 64(6):610–624

    Article  CAS  Google Scholar 

  56. Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies. Angewandte Chemie Int Edn English 34(17):1812–1832

    Article  CAS  Google Scholar 

  57. Pauling L (1940) A theory of the structure and process of formation of antibodies. J Am Chem Soc 62:2643–2657

    Article  CAS  Google Scholar 

  58. Pauling L, Campbell DH (1942) The production of antibodies in vitro. Science 95:440–441

    Article  CAS  Google Scholar 

  59. Wulff G, Sarhan A (1972) Uber die Anwendung von Enzymanalog gebauten Polymeren zur Racemattrennung. Angew Chem 84:364

    Article  Google Scholar 

  60. Klaus M (1994) Molecular imprinting. Trends Biochem Sci 19(1):9–14

    Article  Google Scholar 

  61. Dickert FL, Hayden O (1999) Molecular imprinting in chemical sensing. TrAC Trends Anal Chem 18(3):192–199

    Article  CAS  Google Scholar 

  62. Dickert FL, Lieberzeit P, Tortschanoff M (2000) Molecular imprints as artificial antibodies – a new generation of chemical sensors. Sens Actuators B Chem 65(1–3):186–189

    Article  CAS  Google Scholar 

  63. Seidler K, Polreichová M, Lieberzeit P, Dickert F (2009) Biomimetic yeast cell typing—application of QCMs. Sensors 9(10):8146–8157

    Article  CAS  Google Scholar 

  64. Hayden O, Mann K-J, Krassnig S, Dickert FL (2006) Biomimetic ABO blood-group typing. Angew Chem Int Ed 45(16):2626–2629

    Article  CAS  Google Scholar 

  65. Hayden O, Bindeus R, Haderspöck C, Mann K-J, Wirl B, Dickert FL (2003) Mass-sensitive detection of cells, viruses and enzymes with artificial receptors. Sens Actuators B Chem 91(1–3):316–319

    Article  CAS  Google Scholar 

  66. Ricco AJ, Martin SJ, Zipperian TE (1985) Surface acoustic wave gas sensor based on film conductivity changes. Sens Actuators 8(4):319–333

    Article  CAS  Google Scholar 

  67. Ricco AJ, Crooks RM, Osbourn GC (1998) Surface acoustic wave chemical sensor arrays: new chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures. Accounts Chem Res 31(5):289–296

    Article  CAS  Google Scholar 

  68. Sadek AZ, Baker CO, Powell DA, Wlodarski W, Kaner R, Kalantar-zadeh K (2007) Polyaniline nanofiber based surface acoustic wave gas sensors – effect of nanofiber diameter on H2 response. IEEE Sens J 7(2):213–218

    Google Scholar 

  69. Al-Mashat L, Tran HD, Wlodarski W, Kaner RB, Kalantar-zadeh K (2007) Hydrogen gas sensor fabricated from polyanisidine nanofibers deposited on 36°YX LiTaO3 layered surface acoustic wave transducer. SPIE BioMEMS Nanotechnol III 6799:67991B–67998B

    Article  Google Scholar 

  70. Al-Mashat L, Tran HD, Wlodarski W, Kaner RB, Kalantar-zadeh K (2008) Polypyrrole nanofiber surface acoustic wave gas sensors. Sens Actuators B Chem 134(2):826–831

    Article  CAS  Google Scholar 

  71. Penza M, Antolini F, Vittori-Antisari M (2005) Carbon nanotubes-based surface acoustic waves oscillating sensor for vapour detection. Thin Solid Films 472(1–2):246–252

    Article  CAS  Google Scholar 

  72. Sayago I, Fernández MJ, Fontecha JL, Horrillo MC, Vera C, Obieta I, Bustero I (2011) Surface acoustic wave gas sensors based on polyisobutylene and carbon nanotube composites. Sens Actuators B Chem 156(1):1–5

    Article  CAS  Google Scholar 

  73. Nicolae I, Viespe C, Grigoriu C (2011) Nanocomposite sensitive polymeric films for SAW sensors deposited by the MAPLE direct write technique. Sens Actuators B Chem 158(1):418–422

    Article  CAS  Google Scholar 

  74. Wohltjen H, Dessy R (1979) Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description. Anal Chem 51(9):1458–1464

    Article  CAS  Google Scholar 

  75. Grate JW (2008) Hydrogen-bond acidic polymers for chemical vapor sensing. Chem Rev 108(2):726–745

    Article  CAS  Google Scholar 

  76. McGill RA, Chung R, Chrisey DB, Dorsey PC, Matthews P, Pique A, Mlsna TE, Stepnowski JL (1998) Performance optimization of surface acoustic wave chemical sensors. IEEE Trans Ultrason Ferroelectr Freq Control 45(5):1370–1380

    Article  Google Scholar 

  77. Dominguez DD, Chung R, Nguyen V, Tevault D, McGill RA (1998) Evaluation of SAW chemical sensors for air filter lifetime and performance monitoring. Sensors and Actuators B: Chemical 53(3):186–190

    Article  CAS  Google Scholar 

  78. Wen W, Shitang H, Shunzhou L, Minghua L, Yong P (2007) Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sens Actuators B Chem 125(2):422–427

    Article  Google Scholar 

  79. Du X, Ying Z, Jiang Y, Liu Z, Yang T, Xie G (2008) Synthesis and evaluation of a new polysiloxane as SAW sensor coatings for DMMP detection. Sens Actuators B Chem 134(2):409–413

    Article  CAS  Google Scholar 

  80. Nimal AT, Mittal U, Singh M, Khaneja M, Kannan GK, Kapoor JC, Dubey V, Gutch PK, Lal G, Vyas KD, Gupta DC (2009) Development of handheld SAW vapor sensors for explosives and CW agents. Sens Actuators B Chem 135(2):399–410

    Article  CAS  Google Scholar 

  81. Houser EJ, Mlsna TE, Nguyen VK, Chung R, Mowery RL, Andrew McGill R (2001) Rational materials design of sorbent coatings for explosives: applications with chemical sensors. Talanta 54(3):469–485

    Article  CAS  Google Scholar 

  82. Kannan GK, Nimal AT, Mittal U, Yadava RDS, Kapoor JC (2004) Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitro toluene (DNT) vapour detection. Sens Actuators B Chem 101(3):328–334

    Article  CAS  Google Scholar 

  83. Lieberzeit P, Greibl W, Jenik M, Dickert F, Fischerauer G, Bulst W-E (2007) Cavities generated by self-organised monolayers as sensitive coatings for surface acoustic wave resonators. Anal Bioanal Chem 387(2):561–566

    Article  CAS  Google Scholar 

  84. Dickert FL, Bäumler UPA, Stathopulos H (1997) Mass-sensitive solvent vapor detection with calix[4]resorcinarenes: tuning sensitivity and predicting sensor effects. Anal Chem 69(6):1000–1005

    Article  CAS  Google Scholar 

  85. Liu S, Sun H, Nagarajan R, Kumar J, Gu Z, Cho J, Kurup P (2011) Dynamic chemical vapor sensing with nanofibrous film based surface acoustic wave sensors. Sens Actuators A Phys 167(1):8–13

    Article  CAS  Google Scholar 

  86. Ballantine DS, Rose SL, Grate JW, Wohltjen H (1986) Correlation of surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition. Anal Chem 58(14):3058–3066

    Article  CAS  Google Scholar 

  87. Grate JW, Abraham MH (1991) Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sens Actuators B Chem 3(2):85–111

    Article  CAS  Google Scholar 

  88. Patrash SJ, Zellers ET (1993) Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors. Anal Chem 65:2055–2066

    Article  CAS  Google Scholar 

  89. Julian WG (1991) Detection of vapours and odours from a multisensor array using pattern recognition. Part 1. Principal component and cluster analysis. Sens Actuators B Chem 4(1–2):109–115

    Google Scholar 

  90. Nakamoto T, Fukunishi K, Moriizumi T (1990) Identification capability of odor sensor using quartz-resonator array and neural-network pattern recognition. Sens Actuators B Chem 1(1–6):473–476

    Article  CAS  Google Scholar 

  91. Penza M, Cassano G (2003) Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW multi-sensor array. Sens Actuators B Chem 89(3):269–284

    Article  CAS  Google Scholar 

  92. García-González DL, Barie N, Rapp M, Aparicio R (2004) Analysis of virgin olive oil volatiles by a novel electronic nose based on a miniaturized SAW sensor array coupled with spme enhanced headspace enrichment. J Agric Food Chem 52(25):7475–7479

    Article  Google Scholar 

  93. Barié N, Bücking M, Rapp M (2006) A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring. Sens Actuators B Chem 114(1):482–488

    Article  Google Scholar 

  94. Lozano J, Fernández MJ, Fontecha JL, Aleixandre M, Santos JP, Sayago I, Arroyo T, Cabellos JM, Gutiérrez FJ, Horrillo MC (2006) Wine classification with a zinc oxide SAW sensor array. Sens Actuators B Chem 120(1):166–171

    Article  CAS  Google Scholar 

  95. Horrillo MC, Fernández MJ, Fontecha JL, Sayago I, García M, Aleixandre M, Gutiérrez J, Gràcia I, Cané C (2006) Optimization of SAW sensors with a structure ZnO–SiO2–Si to detect volatile organic compounds. Sens Actuators B Chem 118(1–2):356–361

    Article  CAS  Google Scholar 

  96. Fernández MJ, Fontecha JL, Sayago I, Aleixandre M, Lozano J, Gutiérrez J, Gràcia I, Cané C, MdC H (2007) Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors. Sens Actuators B Chem 127(1):277–283

    Article  Google Scholar 

  97. Xie H, Yang Q, Sun X, Yang J, Huang Y (2006) Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration. Sens Actuators B Chem 113(2):887–891

    Article  CAS  Google Scholar 

  98. Yadava RDS, Chaudhary R (2006) Solvation, transduction and independent component analysis for pattern recognition in SAW electronic nose. Sens Actuators B Chem 113(1):1–21

    Article  CAS  Google Scholar 

  99. Joo B-S, Huh J-S, Lee D-D (2007) Fabrication of polymer SAW sensor array to classify chemical warfare agents. Sens Actuators B Chem 121(1):47–53

    Article  CAS  Google Scholar 

  100. Alizadeh T, Zeynali S (2008) Electronic nose based on the polymer coated SAW sensors array for the warfare agent simulants classification. Sens Actuators B Chem 129(1):412–423

    Article  CAS  Google Scholar 

  101. Hao HC, Tang KT, Ku PH, Chao JS, Li CH, Yang CM, Yao DJ (2010) Development of a portable electronic nose based on chemical surface acoustic wave array with multiplexed oscillator and readout electronics. Sens Actuators B Chem 146(2):545–553

    Article  CAS  Google Scholar 

  102. Matatagui D, Martí J, Fernández MJ, Fontecha JL, Gutiérrez J, Gràcia I, Cané C, Horrillo MC (2011) Chemical warfare agents simulants detection with an optimized SAW sensor array. Sens Actuators B Chem 154(2):199–205

    Article  CAS  Google Scholar 

  103. Chen X, Cao M, Li Y, Hu W, Wang P, Ying K, Pan H (2005) A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Measure Sci Technol 16(8):1535

    Article  CAS  Google Scholar 

  104. Hoyt AE, Ricco AJ, Bartholomew JW, Osbourn GC (1998) SAW Sensors for the room-temperature measurement of CO2 and relative humidity. Anal Chem 70(10):2137–2145

    Article  CAS  Google Scholar 

  105. Shen C-Y, Liou S-Y (2008) Surface acoustic wave gas monitor for ppm ammonia detection. Sens Actuators B Chem 131(2):673–679

    Article  CAS  Google Scholar 

  106. Baer RL, Flory CA, Tom-Moy M, Solomon D (1992) STW chemical sensors. In: Proceedings of the IEEE ultrasonics symposium, 1992, vol 291. 20–23 October 1992, pp 293–298

    Google Scholar 

  107. Avramov ID, Rapp M, Voigt A, Stahl U, Dirschka M (2000) Comparative studies on polymer coated SAW and STW resonators for chemical gas sensor applications. In: Proceedings of the 2000 IEEE/EIA international frequency control symposium and exhibition, Kansas City, MO 2000. pp 58–65

    Google Scholar 

  108. Dickert FL, Tortschanoff M, Bulst WE, Fischerauer G (1999) Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water. Anal Chem 71(20):4559–4563

    Article  CAS  Google Scholar 

  109. Lieberzeit P, Halikias K, Afzal A, Dickert F (2008) Polymers imprinted with PAH mixtures – comparing fluorescence and QCM sensors. Anal Bioanal Chem 392(7):1405–1410

    Article  CAS  Google Scholar 

  110. Dickert FL, Hayden O (2002) Bioimprinting of polymers and Sol–Gel phases. Selective detection of yeasts with imprinted polymers. Anal Chem 74:1302–1306

    Article  CAS  Google Scholar 

  111. Josse F, Bender F, Cernosek RW (2001) Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Anal Chem 73(24):5937–5944

    Article  CAS  Google Scholar 

  112. Latif U, Mujahid A, Afzal A, Sikorski R, Lieberzeit P, Dickert F (2011) Dual and tetraelectrode QCMs using imprinted polymers as receptors for ions and neutral analytes. Anal Bioanal Chem 400(8):2507–2515

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz L. Dickert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mujahid, A., Dickert, F.L. (2013). SAW and Functional Polymers. In: Kohl, CD., Wagner, T. (eds) Gas Sensing Fundamentals. Springer Series on Chemical Sensors and Biosensors, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2013_55

Download citation

Publish with us

Policies and ethics