Skip to main content

Graphene-Based Chemical and Biosensors

Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS,volume 14)

Abstract

Graphene is a novel and promising material for chemical and biosensing due to its extraordinary structural, electronic, and physiochemical properties. Recently, a large number of graphene-based chemical and biosensors with different structures and fabrication methods have been reported. In this chapter, graphene’s synthesis methods, properties, and applications in chemical and biosensing are extensively surveyed. Graphene-based chemical and biosensors may similarly be classified into three main groups including chemoresistive, electrochemical, and other sensing platforms. Chemoresistive graphene-based chemical sensors have been widely developed for ultrasensitive gas-phase chemical sensing with single molecule detection capability. Graphene-based electrochemical sensors for chemical and biosensing have shown excellent performances toward various non-bio and bio-analytes compared to most other carbon-based electrodes due to its very high electron transfer rate of highly dense edge-plane-like defective active sites, excellent direct electrochemical oxidation of small biomolecules and direct electrochemistry of enzyme while graphene FET chemoresistive biosensors for detections of DNA, protein/DNA mixture, and other antibody-specific biomolecules have been reported with high sensitivity and specificity. In addition, the graphene’s performance considerably depends on synthesis method and surface functionalized graphene oxides prepared by chemical, thermal, and particularly electrochemical reductions are demonstrated to be highly promising for both electrochemical and chemoresistive sensing platforms. However, large-scale economical production of graphene is still not generally attainable and graphene-based chemical and biosensors still suffer from poor reproducibility due to difficulty of controlling graphene sensor structures. Therefore, novel methods for well-controlled synthesis and processing of graphene must be further developed. Furthermore, effective doping methods should be developed and applied to enhance its sensing behaviors. Lastly, graphene’s chemical and biological interaction and related charge transport mechanisms are not well understood and should be further studied.

Keywords

  • Chemical and biosensors
  • Chemoresistive sensor
  • Electrochemical sensor
  • FET sensors
  • Graphene

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/5346_2012_47
  • Chapter length: 39 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36025-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306(5696):666–669

    CAS  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453

    CAS  Google Scholar 

  3. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    CAS  Google Scholar 

  4. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    CAS  Google Scholar 

  5. Service RF (2009) Carbon sheets an atom thick give rise to graphene dreams. Science 324(5929):875–877

    Google Scholar 

  6. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    CAS  Google Scholar 

  7. Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578

    CAS  Google Scholar 

  8. Eda G, Lin YY, Miller S et al (2008) Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92(23):233305

    Google Scholar 

  9. Mattevi C, Eda G, Agnoli S et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived craphene thin films. Adv Funct Mater 19(16):2577–2583

    CAS  Google Scholar 

  10. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    CAS  Google Scholar 

  11. Yu A, Ramesh P, Sun X et al (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet – carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744

    CAS  Google Scholar 

  12. Nomura K, MacDonald AH (2006) Quantum hall ferromagnetism in graphene. Phys Rev Lett 96(25):256602

    Google Scholar 

  13. Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum hall effect in graphene. Science 315(5817):1379

    CAS  Google Scholar 

  14. Novoselov KS, McCann E, Morozov SV et al (2006) Unconventional quantum hall effect and berry’s phase of 2pi in bilayer graphene. Nat Phys 2(3):177–180

    Google Scholar 

  15. Zhang Y, Tan YW, Stormer HL et al (2005) Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065):201–204

    CAS  Google Scholar 

  16. Cai D, Yusoh K, Song M (2009) The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20(8):085712

    Google Scholar 

  17. Rafiee MA, Rafiee J, Wang Z et al (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890

    CAS  Google Scholar 

  18. Vadukumpully S, Paul J, Mahanta N et al (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205

    CAS  Google Scholar 

  19. Park S, Mohanty N, Suk JW et al (2010) Biocompatible, robust free-standing paper composed of a tween/graphene composite. Adv Mater 22(15):1736–1740

    CAS  Google Scholar 

  20. Wang K, Ruan J, Song H et al (2010) Biocompatibility of graphene oxide. Nanoscale Res Lett 6(1):1–8

    Google Scholar 

  21. Yan X, Chen J, Yang J et al (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces 2(9):2521–2529

    CAS  Google Scholar 

  22. Chang H, Sun Z, Yuan Q et al (2010) Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films. Adv Mater 22(43):4872–4876

    CAS  Google Scholar 

  23. Joung D, Chunder A, Zhai L et al (2010) High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis. Nanotechnology 21(16):165202

    Google Scholar 

  24. Kedzierski J, Hsu PL, Healey P et al (2008) Epitaxial graphene transistors on SiC substrates. IEEE Trans Electron Dev 55(8):2078–2085

    CAS  Google Scholar 

  25. Lee CG, Park S, Ruoff RS et al (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95(2):023304

    Google Scholar 

  26. Liao L, Bai J, Cheng R et al (2010) Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett 10(5):1917–1921

    CAS  Google Scholar 

  27. Lin YM, Dimitrakopoulos C, Jenkins KA et al (2010) 100-ghz transistors from wafer-scale epitaxial graphene. Science 327(5966):662

    CAS  Google Scholar 

  28. Lin YM, Jenkins KA, Alberto VG et al (2009) Operation of graphene transistors at giqahertz frequencies. Nano Lett 9(1):422–426

    CAS  Google Scholar 

  29. Xia F, Farmer DB, Lin YM et al (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718

    CAS  Google Scholar 

  30. Ponomarenko LA, Schedin F, Katsnelson MI et al (2008) Chaotic dirac billiard in graphene quantum dots. Science 320(5874):356–358

    CAS  Google Scholar 

  31. Myung S, Park J, Lee H et al (2010) Ambipolar memory devices based on reduced graphene oxide and nanoparticles. Adv Mater 22(18):2045–2049

    CAS  Google Scholar 

  32. Stoller MD, Park S, Yanwu Z et al (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    CAS  Google Scholar 

  33. Vivekchand SRC, Rout CS, Subrahmanyam KS et al (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120(1):9–13

    CAS  Google Scholar 

  34. Wang H, Hao Q, Yang X et al (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11(6):1158–1161

    CAS  Google Scholar 

  35. Wang Y, Shi Z, Huang Y et al (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107

    CAS  Google Scholar 

  36. Guo P, Song H, Chen X (2009) Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun 11(6):1320–1324

    CAS  Google Scholar 

  37. Liang M, Zhi L (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19(33):5871–5878

    CAS  Google Scholar 

  38. Wang C, Li D, Too CO et al (2009) Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater 21(13):2604–2606

    CAS  Google Scholar 

  39. Yang S, Cui G, Pang S et al (2009) Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. ChemSusChem 3(2):236–239

    Google Scholar 

  40. Yoo EJ, Kim J, Hosono E et al (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282

    CAS  Google Scholar 

  41. Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-d carbon support in pem fuel cells. J Phys Chem C 113(19):7990–7995

    CAS  Google Scholar 

  42. Shao Y, Liu J, Wang Y et al (2009) Novel catalyst support materials for pem fuel cells: current status and future prospects. J Mater Chem 19(1):46–59

    CAS  Google Scholar 

  43. Shao Y, Sui J, Yin G et al (2008) Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal Environ 79(1):89–99

    CAS  Google Scholar 

  44. Wu J, Becerril HA, Bao Z et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92(26):263302

    Google Scholar 

  45. Liu Q, Liu Z, Zhang X et al (2009) Polymer photovoltaic cells based on solution-processable graphene and p3ht. Adv Funct Mater 19(6):894–904

    CAS  Google Scholar 

  46. Liu Q, Liu Z, Zhang X et al (2008) Organic photovoltaic cells based on an acceptor of soluble graphene. Appl Phys Lett 92(22):223303

    Google Scholar 

  47. Yin Z, Sun S, Salim T et al (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4(9):5263–5268

    CAS  Google Scholar 

  48. Yang K, Wan J, Zhang S et al (2011) In vivo pharmacokinetics, long-term biodistribution, and toxicology of pegylated graphene in mice. ACS Nano 5(1):516–522

    CAS  Google Scholar 

  49. Nair RR, Blake P, Blake JR et al (2010) Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl Phys Lett 97(15):153102

    Google Scholar 

  50. Ang PK, Chen W, Wee ATS et al (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130(44):14392–14393

    CAS  Google Scholar 

  51. Kang X, Wang J, Wu H et al (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25(4):901–905

    CAS  Google Scholar 

  52. Shan C, Yang H, Han D et al (2009) Graphene/aunps/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074

    Google Scholar 

  53. Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

    CAS  Google Scholar 

  54. Baby TT, Aravind SSJ, Arockiadoss T et al (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens Actuators B Chem 145(1):71–77

    CAS  Google Scholar 

  55. Choi BG, Park H, Park TJ et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5):2910–2918

    CAS  Google Scholar 

  56. Dong H, Gao W, Yan F et al (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511–5517

    CAS  Google Scholar 

  57. Feng L, Chen Y, Ren J et al (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32(11):2930–2937

    CAS  Google Scholar 

  58. Lu CH, Yang HH, Zhu CL et al (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48(26):4785–4787

    CAS  Google Scholar 

  59. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8(12):4469–4476

    CAS  Google Scholar 

  60. Zeng Q, Cheng J, Tang L et al (2010) Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv Funct Mater 20(19):3366–3372

    CAS  Google Scholar 

  61. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613

    CAS  Google Scholar 

  62. Pumera M, Ambrosi A, Bonanni A et al (2011) Graphene for electrochemical sensing and biosensing. Trends Analyt Chem 29(9):954–965

    Google Scholar 

  63. Ratinac KR, Yang W, Gooding JJ et al (2011) Graphene and related materials in electrochemical sensing. Electroanalysis 23(4):803–826

    CAS  Google Scholar 

  64. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385(3):452–468

    CAS  Google Scholar 

  65. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14

    CAS  Google Scholar 

  66. Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    CAS  Google Scholar 

  67. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  Google Scholar 

  68. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Google Scholar 

  69. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150

    CAS  Google Scholar 

  70. Chen JH, Cullen WG, Jang C et al (2009) Defect scattering in graphene. Phys Rev Lett 102(23):236805

    Google Scholar 

  71. Meyer JC, Kisielowski C, Erni R et al (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8(11):3582–3586

    CAS  Google Scholar 

  72. Bagri A, Mattevi C, Acik M et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587

    CAS  Google Scholar 

  73. Szabo T, Berkesi O, Forgo P et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749

    CAS  Google Scholar 

  74. Fowler JD, Allen MJ, Tung VC et al (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306

    CAS  Google Scholar 

  75. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22(22):2392–2415

    CAS  Google Scholar 

  76. Kou R, Shao Y, Wang D et al (2009) Enhanced activity and stability of pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11(5):954–957

    CAS  Google Scholar 

  77. Qi X, Pu KY, Zhou X et al (2010) Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small 6(5):663–669

    CAS  Google Scholar 

  78. Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    CAS  Google Scholar 

  79. Schniepp HC, Li JL, McAllister MJ et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539

    CAS  Google Scholar 

  80. Veca LM, Lu F, Meziani MJ et al (2009) Polymer functionalization and solubilization of carbon nanosheets. Chem Commun 18:2565–2567

    Google Scholar 

  81. Xu LQ, Yang WJ, Neoh KG et al (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43(20):8336–8339

    CAS  Google Scholar 

  82. Xu Y, Liu Z, Zhang X et al (2009) A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv Mater 21(12):1275–1279

    CAS  Google Scholar 

  83. Zhang Y, Small JP, Pontius WV et al (2005) Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl Phys Lett 86(7):1–3

    Google Scholar 

  84. Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    CAS  Google Scholar 

  85. Lotya M, Hernandez Y, King PJ et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620

    CAS  Google Scholar 

  86. Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036

    CAS  Google Scholar 

  87. Kang F, Leng Y, Zhang TY (1996) Influences of H2O2 on synthesis of H2SO4-gics. J Phys Chem Solid 57(6–8):889–892

    CAS  Google Scholar 

  88. Kang F, Zhang TY, Leng Y (1997) Electrochemical behavior of graphite in electrolyte of sulfuric and acetic acid. Carbon 35(8):1167–1173

    CAS  Google Scholar 

  89. Pan YX, Yu ZZ, Ou YC et al (2000) New process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. J Polym Sci B Polym Phys 38(12):1626–1633

    CAS  Google Scholar 

  90. Li X, Zhang G, Bai X et al (2008) Highly conducting graphene sheets and langmuir-blodgett films. Nat Nanotechnol 3(9):538–542

    CAS  Google Scholar 

  91. Dreyer DR, Park S, Bielawski CW et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    CAS  Google Scholar 

  92. Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59:466–472

    Google Scholar 

  93. Staudenmaier L (1898) Verfahren zur darstellung der graphitsaure. Ber Dtsch Chem Ges 31:1481–1487

    CAS  Google Scholar 

  94. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    CAS  Google Scholar 

  95. Parades JI, Villar-Rodil S, Martínez-Alonso A et al (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

    Google Scholar 

  96. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274

    CAS  Google Scholar 

  97. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682

    CAS  Google Scholar 

  98. Shin HJ, Kim KK, Benayad A et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992

    CAS  Google Scholar 

  99. Wu ZS, Ren W, Gao L et al (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499

    CAS  Google Scholar 

  100. Wang S, Chia PJ, Chua LL et al (2008) Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv Mater 20(18):3440–3446

    CAS  Google Scholar 

  101. Fan X, Peng W, Li Y et al (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20(23):4490–4493

    CAS  Google Scholar 

  102. McAllister MJ, Li JL, Adamson DH et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404

    CAS  Google Scholar 

  103. Zhu Y, Stoller MD, Cai W et al (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4(2):1227–1233

    CAS  Google Scholar 

  104. Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater 21(21):5004–5006

    CAS  Google Scholar 

  105. Dubin S, Gilje S, Wang K et al (2010) A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7):3845–3852

    CAS  Google Scholar 

  106. Zhou M, Wang Y, Zhai Y et al (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15(25):6116–6120

    CAS  Google Scholar 

  107. Ansari S, Giannelis EP (2009) Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci B Polym Phys 47(9):888–897

    CAS  Google Scholar 

  108. Fang M, Wang K, Lu H et al (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105

    CAS  Google Scholar 

  109. Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5):806–817

    CAS  Google Scholar 

  110. Geng J, Jung HT (2010) Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films. J Phys Chem C 114(18):8227–8234

    CAS  Google Scholar 

  111. Liu ZB, Xu YF, Zhang XY et al (2009) Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B 113(29):9681–9686

    CAS  Google Scholar 

  112. Nguyen DA, Lee YR, Raghu AV et al (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58(4):412–417

    CAS  Google Scholar 

  113. Yang H, Shan C, Li F et al (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 26:3880–3882

    Google Scholar 

  114. Liu Z, Robinson JT, Sun X et al (2008) Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    CAS  Google Scholar 

  115. Lee SH, Dreyer DR, An J et al (2009) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (atrp) from graphene oxide. Macromol Rapid Commun 31(3):281–288

    Google Scholar 

  116. Stankovich S, Piner RD, Chen X et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158

    CAS  Google Scholar 

  117. Bai H, Xu Y, Zhao L et al (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669

    Google Scholar 

  118. Chunder A, Liu J, Zhai L (2010) Reduced graphene oxide/poly(3-hexylthiophene) supramolecular composites. Macromol Rapid Commun 31(4):380–384

    CAS  Google Scholar 

  119. Hao R, Qian W, Zhang L et al (2008) Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem Commun 48:6576–6578

    Google Scholar 

  120. Chunder A, Pal T, Khondaker SI et al (2010) Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J Phys Chem C 114(35):15129–15135

    CAS  Google Scholar 

  121. Wojcik A, Kamat PV (2010) Reduced graphene oxide and porphyrin. An interactive affair in 2-D. ACS Nano 4(11):6697–6706

    CAS  Google Scholar 

  122. Su Q, Pang S, Alijani V et al (2009) Composites of craphene with large aromatic molecules. Adv Mater 21(31):3191–3195

    CAS  Google Scholar 

  123. Yang Q, Pan X, Huang F et al (2010) Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J Phys Chem C 114(9):3811–3816

    CAS  Google Scholar 

  124. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    CAS  Google Scholar 

  125. Becerril HA, Mao J, Liu Z et al (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470

    CAS  Google Scholar 

  126. Wang G, Wang B, Park J et al (2009) Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47(14):3242–3246

    CAS  Google Scholar 

  127. Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430(1–3):56–59

    CAS  Google Scholar 

  128. Kotov NA (2006) Materials science: carbon sheet solutions. Nature 442(7100):254–255

    Google Scholar 

  129. Cao H, Yu Q, Colby R et al (2010) Large-scale graphitic thin films synthesized on Ni and transferred to insulators: structural and electronic properties. J Appl Phys 107(4):044310

    Google Scholar 

  130. Lee S, Lee K, Zhong Z (2010) Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett 10(11):4702–4707

    CAS  Google Scholar 

  131. Bhaviripudi S, Jia X, Dresselhaus MS et al (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10(10):4128–4133

    CAS  Google Scholar 

  132. Gomez De Arco L, Zhang Y, Kumar A et al (2009) Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans Nanotechnol 8(2):135–138

    Google Scholar 

  133. Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35

    CAS  Google Scholar 

  134. Chae SJ, Güneş F, Kim KK et al (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21(22):2328–2333

    CAS  Google Scholar 

  135. Yu Q, Lian J, Siriponglert S et al (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93(11):113103

    Google Scholar 

  136. Li X, Cai W, Colombo L et al (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9(12):4268–4272

    CAS  Google Scholar 

  137. Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    CAS  Google Scholar 

  138. Cai W, Moore AL, Zhu Y et al (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651

    CAS  Google Scholar 

  139. Lee Y, Bae S, Jang H et al (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett 10(2):490–493

    CAS  Google Scholar 

  140. Wei D, Liu Y, Wang Y et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    CAS  Google Scholar 

  141. Qu L, Liu Y, Baek JB et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    CAS  Google Scholar 

  142. Reddy ALM, Srivastava A, Gowda SR et al (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11):6337–6342

    CAS  Google Scholar 

  143. Wang JJ, Zhu MY, Outlaw RA et al (2004) Free-standing subnanometer graphite sheets. Appl Phys Lett 85(7):1265–1267

    CAS  Google Scholar 

  144. Wang J, Zhu M, Outlaw RA et al (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42(14):2867–2872

    CAS  Google Scholar 

  145. Dato A, Radmilovic V, Lee Z et al (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016

    CAS  Google Scholar 

  146. Vitchev R, Malesevic A, Petrov RH et al (2010) Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition. Nanotechnology 21(9):095602

    Google Scholar 

  147. Malesevic A, Vitchev R, Schouteden K et al (2008) Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30):305604

    Google Scholar 

  148. Zhu M, Wang J, Holloway BC et al (2007) A mechanism for carbon nanosheet formation. Carbon 45(11):2229–2234

    CAS  Google Scholar 

  149. Penuelas J, Ouerghi A, Lucot D et al (2009) Surface morphology and characterization of thin graphene films on SiC vicinal substrate. Phys Rev B Condens Matter Mater Phys 79(3):033408

    Google Scholar 

  150. Berger C, Song Z, Li T et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108(52):19912–19916

    CAS  Google Scholar 

  151. de Heer WA, Berger C, Wu X et al (2007) Epitaxial graphene. Solid State Commun 143(1–2):92–100

    Google Scholar 

  152. Hass J, De Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Matter 20(32):016602

    Google Scholar 

  153. Ni ZH, Chen W, Fan XF et al (2008) Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys Rev B Condens Matter Mater Phys 77(11):115416

    Google Scholar 

  154. Peng X, Ahuja R (2008) Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett 8(12):4464–4468

    CAS  Google Scholar 

  155. Zhou SY, Gweon GH, Fedorov AV et al (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 6(10):770–775

    CAS  Google Scholar 

  156. Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207

    CAS  Google Scholar 

  157. Tedesco JL, Jernigan GG, Culbertson JC et al (2010) Morphology characterization of argon-mediated epitaxial graphene on C-face SiC. Appl Phys Lett 96(22):222103

    Google Scholar 

  158. Wu X, Sprinkle M, Li X et al (2008) Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys Rev Lett 101(2):026801

    Google Scholar 

  159. Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196

    CAS  Google Scholar 

  160. Kim S, Ihm J, Choi HJ et al (2008) Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys Rev Lett 100(17):176802

    Google Scholar 

  161. Varchon F, Feng R, Hass J et al (2007) Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. Phys Rev Lett 99(12):125007

    Google Scholar 

  162. Sutter PW, Flege JI, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7(5):406–411

    CAS  Google Scholar 

  163. Vozquez De Parga AL, Calleja F, Borca B et al (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100(5):056807

    Google Scholar 

  164. Wintterlin J, Bocquet ML (2009) Graphene on metal surfaces. Surf Sci 603(10–12):1841–1852

    CAS  Google Scholar 

  165. Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107(3):718–747

    CAS  Google Scholar 

  166. Yang X, Dou X, Rouhanipour A et al (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130(13):4216–4217

    CAS  Google Scholar 

  167. Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305):470–473

    CAS  Google Scholar 

  168. Jiao L, Zhang L, Wang X et al (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880

    CAS  Google Scholar 

  169. Xie L, Jiao L, Dai H (2010) Selective etching of graphene edges by hydrogen plasma. J Am Chem Soc 132(42):14751–14753

    CAS  Google Scholar 

  170. Jiao L, Wang X, Diankov G et al (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5(5):321–325

    CAS  Google Scholar 

  171. Shimizu T, Haruyama J, Marcano DC et al (2010) Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons. Nat Nanotechnol 6(1):45–50

    Google Scholar 

  172. Sinitskii A, Dimiev A, Corley DA et al (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4):1949–1954

    CAS  Google Scholar 

  173. Sinitskii A, Dimiev A, Kosynkin DV et al (2010) Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes. ACS Nano 4(9):5405–5413

    CAS  Google Scholar 

  174. Kosynkin DV, Higginbotham AL, Sinitskii A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876

    CAS  Google Scholar 

  175. Elias AL, Botello-Méndez AR, Meneses-Rodríguez D et al (2010) Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett 10(2):366–372

    CAS  Google Scholar 

  176. Stolyarova E, Kwang TR, Ryu S et al (2007) High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc Natl Acad Sci USA 104(22):9209–9212

    CAS  Google Scholar 

  177. Hashimoto A, Suenaga K, Gloter A et al (2004) Direct evidence for atomic defects in graphene layers. Nature 430(7002):870–873

    CAS  Google Scholar 

  178. Xu K, Cao P, Heath JR (2009) Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett 9(12):4446–4451

    CAS  Google Scholar 

  179. Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065):197–200

    CAS  Google Scholar 

  180. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    CAS  Google Scholar 

  181. Morozov SV, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602

    Google Scholar 

  182. Gokus T, Nair RR, Bonetti A et al (2009) Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12):3963–3968

    CAS  Google Scholar 

  183. Luo Z, Vora PM, Mele EJ et al (2009) Photoluminescence and band gap modulation in graphene oxide. Appl Phys Lett 94(11):111909

    Google Scholar 

  184. Han MY, Ozyilmaz B, Zhang Y et al (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98(20):206805

    Google Scholar 

  185. Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6(12):2748–2754

    CAS  Google Scholar 

  186. Evaldsson M, Zozoulenko IV, Xu H et al (2008) Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys Rev B Condens Matter Mater Phys 78(16):161407

    Google Scholar 

  187. Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97(21)

    Google Scholar 

  188. Yan Q, Huang B, Yu J et al (2007) Intrinsic current–voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett 7(6):1469–1473

    CAS  Google Scholar 

  189. Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8(3):235–242

    CAS  Google Scholar 

  190. Nilsson J, Castro Neto AH, Guinea F et al (2008) Electronic properties of bilayer and multilayer graphene. Phys Rev B Condens Matter Mater Phys 78(4):045405

    Google Scholar 

  191. Zhang Y, Tang TT, Girit C et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248):820–823

    CAS  Google Scholar 

  192. Cervantes-Sodi F, Csányi G, Piscanec S et al (2008) Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys Rev B Condens Matter Mater Phys 77(16):165427

    Google Scholar 

  193. Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63

    CAS  Google Scholar 

  194. Hwang EH, Adam S, Sarma SD (2007) Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98(18):186806

    Google Scholar 

  195. Chen JH, Jang C, Xiao S et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3(4):206–209

    CAS  Google Scholar 

  196. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14(23):1609–1613

    CAS  Google Scholar 

  197. Shao Y, Yin G, Gao Y et al (2006) Durability study of PtC and PtCNTs catalysts under simulated pem fuel cell conditions. J Electrochem Soc 153(6):A1093–A1097

    CAS  Google Scholar 

  198. Wang Y, Li Y, Tang L et al (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11(4):889–892

    CAS  Google Scholar 

  199. Lin Y, Cui X, Ye X (2005) Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochem Commun 7(3):267–274

    CAS  Google Scholar 

  200. Alwarappan S, Erdem A, Liu C et al (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113(20):8853–8857

    CAS  Google Scholar 

  201. Groves MN, Chan ASW, Malardier-Jugroot C et al (2009) Improving platinum catalyst binding energy to graphene through nitrogen doping. Chem Phys Lett 481(4–6):214–219

    CAS  Google Scholar 

  202. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308

    CAS  Google Scholar 

  203. Kravets VG, Grigorenko AN, Nair RR et al (2010) Spectroscopic ellipsometry of graphene and an exciton-shifted van hove peak in absorption. Phys Rev B Condens Matter Mater Phys 81(15):155413

    Google Scholar 

  204. Bonaccorso F, Sun Z, Hasan T et al (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622

    CAS  Google Scholar 

  205. Eda G, Lin YY, Mattevi C et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509

    CAS  Google Scholar 

  206. Tsoukleri G, Parthenios J, Papagelis K et al (2009) Subjecting a graphene monolayer to tension and compression. Small 5(21):2397–2402

    CAS  Google Scholar 

  207. Ni ZH, Yu T, Lu YH et al (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11):2301–2305

    CAS  Google Scholar 

  208. Pop E, Mann D, Wang Q et al (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100

    CAS  Google Scholar 

  209. Nika DL, Pokatilov EP, Askerov AS et al (2009) Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering. Phys Rev B Condens Matter Mater Phys 79(15):155413

    Google Scholar 

  210. Jiang JW, Lan J, Wang JS et al (2011) Isotopic effects on the thermal conductivity of graphene nanoribbons: localization mechanism. J Appl Phys 107(5):054314

    Google Scholar 

  211. Jung I, Dikin D, Park S et al (2008) Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J Phys Chem C 112(51):20264–20268

    CAS  Google Scholar 

  212. Lu G, Ocola LE, Chen J (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94(8):083111

    Google Scholar 

  213. Lu G, Ocola LE, Chen J (2009) Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44):445502–445510

    Google Scholar 

  214. Robinson JT, Perkins FK, Snow ES et al (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140

    CAS  Google Scholar 

  215. Dua V, Surwade SP, Ammu S et al (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49(12):2154–2157

    CAS  Google Scholar 

  216. Dan Y, Lu Y, Kybert NJ et al (2009) Intrinsic response of graphene vapor sensors. Nano Lett 9(4):1472–1475

    CAS  Google Scholar 

  217. Ganhua L, Leonidas EO, Junhong C (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94:083111

    Google Scholar 

  218. Sundaram RS, Gomez-Navarro C, Balasubramanian K et al (2008) Electrochemical modification of grapheme. Adv Mater 20(16):3050–3053

    CAS  Google Scholar 

  219. Lu G, Yu K, Ocola LE et al (2011) Ultrafast room temperature NH3 sensing with positively gated reduced graphene oxide field-effect transistors. Chem Commun 47(27):7761–7763

    CAS  Google Scholar 

  220. Tang L, Wang Y, Li Y et al (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19(17):2782–2789

    CAS  Google Scholar 

  221. Kang X, Wang J, Wu H et al (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81(3):754–759

    CAS  Google Scholar 

  222. Parvin MH (2011) Graphene paste electrode for detection of chlorpromazine. Electrochem Commun 13(4):366–369

    CAS  Google Scholar 

  223. Li F, Li J, Feng Y et al (2011) Electrochemical behavior of graphene doped carbon paste electrode and its application for sensitive determination of ascorbic acid. Sens Actuators B Chem 157(1):110–114

    CAS  Google Scholar 

  224. Wang J, Yang S, Guo D et al (2009) Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochem Commun 11(10):1892–1895

    CAS  Google Scholar 

  225. Li J, Guo S, Zhai Y et al (2009) Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11(5):1085–1088

    CAS  Google Scholar 

  226. Li J, Guo S, Zhai Y et al (2009) High-sensitivity determination of lead and cadmium based on the nafion-graphene composite film. Anal Chim Acta 649(2):196–201

    CAS  Google Scholar 

  227. Ohno Y, Maehashi K, Matsumoto K (2010) Chemical and biological sensing applications based on graphene field-effect transistors. Biosens Bioelectron 26(4):1727–1730

    CAS  Google Scholar 

  228. Sofue Y, Ohno Y, Maehashi K et al (2011) Highly sensitive electrical detection of sodium ions based on graphene field-effect transistors. Jpn J Appl Phys 50(6 Pt 2):06GE07

    Google Scholar 

  229. Sudibya HG, He Q, Zhang H et al (2011) Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5(3):1990–1994

    CAS  Google Scholar 

  230. Shafiei M, Spizzirri PG, Arsat R et al (2010) Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J Phys Chem C 114(32):13796–13801

    CAS  Google Scholar 

  231. Arsat R, Breedon M, Shafiei M et al (2009) Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem Phys Lett 467(4–6):344–347

    CAS  Google Scholar 

  232. Huang B, Li Z, Liu Z et al (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J Phys Chem C 112(35):13442–13446

    CAS  Google Scholar 

  233. Leenaerts O, Partoens B, Peeters FM (2008) Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys Rev B Condens Matter Mater Phys 77(12):125416

    Google Scholar 

  234. Schedin F, Geim AK, Morozov SV et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    CAS  Google Scholar 

  235. Li X, Wang H, Robinson JT et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939–15944

    CAS  Google Scholar 

  236. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687

    CAS  Google Scholar 

  237. Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19(20):3214–3228

    CAS  Google Scholar 

  238. Martin P (2009) Electrochemistry of gaphene: new horizons for sensing and energy storage. Chem Rec 9(4):211–223

    Google Scholar 

  239. Jia J, Kato D, Kurita R et al (2007) Structure and electrochemical properties of carbon films prepared by a electron cyclotron resonance sputtering method. Anal Chem 79(1):98–105

    CAS  Google Scholar 

  240. Niwa O, Jia J, Sato Y et al (2006) Electrochemical performance of angstrom level flat sputtered carbon film consisting of sp2 and sp3 mixed bonds. J Am Chem Soc 128(22):7144–7145

    CAS  Google Scholar 

  241. Shang NG, Papakonstantinou P, McMullan M et al (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514

    CAS  Google Scholar 

  242. Fischer AE, Show Y, Swain GM (2004) Electrochemical performance of diamond thin-film electrodes from different commercial sources. Anal Chem 76(9):2553–2560

    CAS  Google Scholar 

  243. Guo HL, Wang XF, Qian QY et al (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9):2653–2659

    CAS  Google Scholar 

  244. Ramesha GK, Sampath NS (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113(19):7985–7989

    CAS  Google Scholar 

  245. Shao Y, Wang J, Engelhard M et al (2009) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20(4):743–748

    Google Scholar 

  246. Kefala G, Economou A, Voulgaropoulos A (2004) A study of nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst 129(11):1082–1090

    CAS  Google Scholar 

  247. Zhu L, Tian C, Yang R et al (2008) Anodic stripping voltammetric determination of lead in tap water at an ordered mesoporous carbon/nafion composite film electrode. Electroanalysis 20(5):527–533

    CAS  Google Scholar 

  248. Xu H, Zeng L, Xing S et al (2008) Ultrasensitive voltammetric detection of trace lead(ii) and cadmium(ii) using MWCNTs-nafion/bismuth composite electrodes. Electroanalysis 20(24):2655–2662

    CAS  Google Scholar 

  249. Lin WJ, Liao CS, Jhang JH et al (2009) Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and B-nicotinamide adenine dinucleotide. Electrochem Commun 11(11):2153–2156

    CAS  Google Scholar 

  250. Liu H, Gao J, Xue MQ et al (2009) Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 25:12006–12010

    CAS  Google Scholar 

  251. Du M, Yang T, Jiao K (2010) Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film. J Mater Chem 20(41):9253–9260

    CAS  Google Scholar 

  252. Du Y, Guo S, Dong S et al (2011) An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids. Biomaterials 32(33):8584–8592

    CAS  Google Scholar 

  253. Li L, Du Z, Liu S et al (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82(5):1637–1641

    CAS  Google Scholar 

  254. Mao S, Yu K, Lu G et al (2011) Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res 4(10):921–930

    Google Scholar 

  255. Wu H, Wang J, Kang X et al (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80(1):403–406

    CAS  Google Scholar 

  256. Lu J, Drzal LT, Worden RM et al (2007) Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem Mater 19(25):6240–6246

    CAS  Google Scholar 

  257. Wang Z, Zhou X, Zhang J et al (2009) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113(32):14071–14075

    CAS  Google Scholar 

  258. Mao S, Lu G, Yu K et al (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22(32):3521–3526

    CAS  Google Scholar 

  259. Dong X, Shi Y, Huang W et al (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649–1653

    CAS  Google Scholar 

  260. Ohno Y, Maehashi K, Matsumoto K (2010) Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc 132(51):18012–18013

    CAS  Google Scholar 

  261. Ohno Y, Maehashi K, Inoue K et al (2011) Label-free aptamer-based immunoglobulin sensors using graphene field-effect transistors. Jpn J Appl Phys 50(7 Pt 1):070120

    Google Scholar 

  262. Wang Y, Lu J, Tang L et al (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem 81(23):9710–9715

    CAS  Google Scholar 

  263. Pumera M, Scipioni R, Iwai H et al (2009) A mechanism of adsorption of b-nicotinamide adenine dinucleotide on graphene sheets: Experiment and theory. Chem Eur J 15(41):10851–10856

    CAS  Google Scholar 

  264. Musameh M, Wang J, Merkoci A et al (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4(10):743–746

    CAS  Google Scholar 

  265. Valentini F, Amine A, Orlanducci S et al (2003) Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal Chem 75(20):5413–5421

    CAS  Google Scholar 

  266. Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130(9):1232–1239

    CAS  Google Scholar 

  267. Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications. Electroanalysis 9(9):661–674

    CAS  Google Scholar 

  268. Leger C, Bertrand P (2008) Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem Rev 108(7):2379–2438

    CAS  Google Scholar 

  269. Armstrong FA, Hill HAO, Walton NJ (1988) Direct electrochemistry of redox proteins. Acc Chem Res 21(11):407–413

    CAS  Google Scholar 

  270. Zhang W, Li G (2004) Third-generation biosensors based on the direct electron transfer of proteins. Anal Sci 20(4):603–609

    CAS  Google Scholar 

  271. Wu Y, Hu S (2007) Biosensors based on direct electron transfer in redox proteins. Microchim Acta 159(1–2):1–17

    CAS  Google Scholar 

  272. Yao YL, Shiu KK (2008) Direct electrochemistry of glucose oxidase at carbon nanotube-gold colloid modified electrode with poly(diallyldimethylammonium chloride) coating. Electroanalysis 20(14):1542–1548

    CAS  Google Scholar 

  273. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl 43:6042–6108

    CAS  Google Scholar 

  274. Sarma AK, Vatsyayan P, Goswami P et al (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24(8):2313–2322

    CAS  Google Scholar 

  275. Dai ZH, Ni J, Huang XH et al (2007) Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-mcm-41 matrix. Bioelectrochemistry 70(2):250–256

    CAS  Google Scholar 

  276. Shan C, Yang H, Song J et al (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382

    CAS  Google Scholar 

  277. Guiseppi-Elie A, Lei C, Baughman RH (2002) Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13(5):559–564

    CAS  Google Scholar 

  278. Deng C, Chen J, Chen X et al (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 23(8):1272–1277

    CAS  Google Scholar 

  279. Cai C, Chen J (2004) Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 332(1):75–83

    CAS  Google Scholar 

  280. Liu G, Lin Y (2006) Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem Commun 8(2):251–256

    CAS  Google Scholar 

  281. Lin Y, Lu F, Tu Y et al (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 4(2):191–195

    CAS  Google Scholar 

  282. Rubianes MD, Rivas GA (2003) Carbon nanotubes paste electrode. Electrochem Commun 5(8):689–694

    CAS  Google Scholar 

  283. Wu L, Zhang X, Ju H (2007) Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanofiber. Biosens Bioelectron 23(4):479–484

    Google Scholar 

  284. Zhou M, Shang L, Li B et al (2008) Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosens Bioelectron 24(3):442–447

    CAS  Google Scholar 

  285. Chen H, Müller MB, Gilmore KJ et al (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurat Wisitsoraat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wisitsoraat, A., Tuantranont, A. (2013). Graphene-Based Chemical and Biosensors. In: Tuantranont, A. (eds) Applications of Nanomaterials in Sensors and Diagnostics. Springer Series on Chemical Sensors and Biosensors, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_47

Download citation