Advertisement

Graphene-Based Chemical and Biosensors

  • Anurat WisitsoraatEmail author
  • Adisorn Tuantranont
Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 14)

Abstract

Graphene is a novel and promising material for chemical and biosensing due to its extraordinary structural, electronic, and physiochemical properties. Recently, a large number of graphene-based chemical and biosensors with different structures and fabrication methods have been reported. In this chapter, graphene’s synthesis methods, properties, and applications in chemical and biosensing are extensively surveyed. Graphene-based chemical and biosensors may similarly be classified into three main groups including chemoresistive, electrochemical, and other sensing platforms. Chemoresistive graphene-based chemical sensors have been widely developed for ultrasensitive gas-phase chemical sensing with single molecule detection capability. Graphene-based electrochemical sensors for chemical and biosensing have shown excellent performances toward various non-bio and bio-analytes compared to most other carbon-based electrodes due to its very high electron transfer rate of highly dense edge-plane-like defective active sites, excellent direct electrochemical oxidation of small biomolecules and direct electrochemistry of enzyme while graphene FET chemoresistive biosensors for detections of DNA, protein/DNA mixture, and other antibody-specific biomolecules have been reported with high sensitivity and specificity. In addition, the graphene’s performance considerably depends on synthesis method and surface functionalized graphene oxides prepared by chemical, thermal, and particularly electrochemical reductions are demonstrated to be highly promising for both electrochemical and chemoresistive sensing platforms. However, large-scale economical production of graphene is still not generally attainable and graphene-based chemical and biosensors still suffer from poor reproducibility due to difficulty of controlling graphene sensor structures. Therefore, novel methods for well-controlled synthesis and processing of graphene must be further developed. Furthermore, effective doping methods should be developed and applied to enhance its sensing behaviors. Lastly, graphene’s chemical and biological interaction and related charge transport mechanisms are not well understood and should be further studied.

Keywords

Chemical and biosensors Chemoresistive sensor Electrochemical sensor FET sensors Graphene 

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306(5696):666–669Google Scholar
  2. 2.
    Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453Google Scholar
  3. 3.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191Google Scholar
  4. 4.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224Google Scholar
  5. 5.
    Service RF (2009) Carbon sheets an atom thick give rise to graphene dreams. Science 324(5929):875–877Google Scholar
  6. 6.
    Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710Google Scholar
  7. 7.
    Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578Google Scholar
  8. 8.
    Eda G, Lin YY, Miller S et al (2008) Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92(23):233305Google Scholar
  9. 9.
    Mattevi C, Eda G, Agnoli S et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived craphene thin films. Adv Funct Mater 19(16):2577–2583Google Scholar
  10. 10.
    Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907Google Scholar
  11. 11.
    Yu A, Ramesh P, Sun X et al (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet – carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744Google Scholar
  12. 12.
    Nomura K, MacDonald AH (2006) Quantum hall ferromagnetism in graphene. Phys Rev Lett 96(25):256602Google Scholar
  13. 13.
    Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum hall effect in graphene. Science 315(5817):1379Google Scholar
  14. 14.
    Novoselov KS, McCann E, Morozov SV et al (2006) Unconventional quantum hall effect and berry’s phase of 2pi in bilayer graphene. Nat Phys 2(3):177–180Google Scholar
  15. 15.
    Zhang Y, Tan YW, Stormer HL et al (2005) Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065):201–204Google Scholar
  16. 16.
    Cai D, Yusoh K, Song M (2009) The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20(8):085712Google Scholar
  17. 17.
    Rafiee MA, Rafiee J, Wang Z et al (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890Google Scholar
  18. 18.
    Vadukumpully S, Paul J, Mahanta N et al (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205Google Scholar
  19. 19.
    Park S, Mohanty N, Suk JW et al (2010) Biocompatible, robust free-standing paper composed of a tween/graphene composite. Adv Mater 22(15):1736–1740Google Scholar
  20. 20.
    Wang K, Ruan J, Song H et al (2010) Biocompatibility of graphene oxide. Nanoscale Res Lett 6(1):1–8Google Scholar
  21. 21.
    Yan X, Chen J, Yang J et al (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces 2(9):2521–2529Google Scholar
  22. 22.
    Chang H, Sun Z, Yuan Q et al (2010) Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films. Adv Mater 22(43):4872–4876Google Scholar
  23. 23.
    Joung D, Chunder A, Zhai L et al (2010) High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis. Nanotechnology 21(16):165202Google Scholar
  24. 24.
    Kedzierski J, Hsu PL, Healey P et al (2008) Epitaxial graphene transistors on SiC substrates. IEEE Trans Electron Dev 55(8):2078–2085Google Scholar
  25. 25.
    Lee CG, Park S, Ruoff RS et al (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95(2):023304Google Scholar
  26. 26.
    Liao L, Bai J, Cheng R et al (2010) Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett 10(5):1917–1921Google Scholar
  27. 27.
    Lin YM, Dimitrakopoulos C, Jenkins KA et al (2010) 100-ghz transistors from wafer-scale epitaxial graphene. Science 327(5966):662Google Scholar
  28. 28.
    Lin YM, Jenkins KA, Alberto VG et al (2009) Operation of graphene transistors at giqahertz frequencies. Nano Lett 9(1):422–426Google Scholar
  29. 29.
    Xia F, Farmer DB, Lin YM et al (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718Google Scholar
  30. 30.
    Ponomarenko LA, Schedin F, Katsnelson MI et al (2008) Chaotic dirac billiard in graphene quantum dots. Science 320(5874):356–358Google Scholar
  31. 31.
    Myung S, Park J, Lee H et al (2010) Ambipolar memory devices based on reduced graphene oxide and nanoparticles. Adv Mater 22(18):2045–2049Google Scholar
  32. 32.
    Stoller MD, Park S, Yanwu Z et al (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502Google Scholar
  33. 33.
    Vivekchand SRC, Rout CS, Subrahmanyam KS et al (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120(1):9–13Google Scholar
  34. 34.
    Wang H, Hao Q, Yang X et al (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11(6):1158–1161Google Scholar
  35. 35.
    Wang Y, Shi Z, Huang Y et al (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107Google Scholar
  36. 36.
    Guo P, Song H, Chen X (2009) Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun 11(6):1320–1324Google Scholar
  37. 37.
    Liang M, Zhi L (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19(33):5871–5878Google Scholar
  38. 38.
    Wang C, Li D, Too CO et al (2009) Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater 21(13):2604–2606Google Scholar
  39. 39.
    Yang S, Cui G, Pang S et al (2009) Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. ChemSusChem 3(2):236–239Google Scholar
  40. 40.
    Yoo EJ, Kim J, Hosono E et al (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282Google Scholar
  41. 41.
    Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-d carbon support in pem fuel cells. J Phys Chem C 113(19):7990–7995Google Scholar
  42. 42.
    Shao Y, Liu J, Wang Y et al (2009) Novel catalyst support materials for pem fuel cells: current status and future prospects. J Mater Chem 19(1):46–59Google Scholar
  43. 43.
    Shao Y, Sui J, Yin G et al (2008) Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal Environ 79(1):89–99Google Scholar
  44. 44.
    Wu J, Becerril HA, Bao Z et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92(26):263302Google Scholar
  45. 45.
    Liu Q, Liu Z, Zhang X et al (2009) Polymer photovoltaic cells based on solution-processable graphene and p3ht. Adv Funct Mater 19(6):894–904Google Scholar
  46. 46.
    Liu Q, Liu Z, Zhang X et al (2008) Organic photovoltaic cells based on an acceptor of soluble graphene. Appl Phys Lett 92(22):223303Google Scholar
  47. 47.
    Yin Z, Sun S, Salim T et al (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4(9):5263–5268Google Scholar
  48. 48.
    Yang K, Wan J, Zhang S et al (2011) In vivo pharmacokinetics, long-term biodistribution, and toxicology of pegylated graphene in mice. ACS Nano 5(1):516–522Google Scholar
  49. 49.
    Nair RR, Blake P, Blake JR et al (2010) Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl Phys Lett 97(15):153102Google Scholar
  50. 50.
    Ang PK, Chen W, Wee ATS et al (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130(44):14392–14393Google Scholar
  51. 51.
    Kang X, Wang J, Wu H et al (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25(4):901–905Google Scholar
  52. 52.
    Shan C, Yang H, Han D et al (2009) Graphene/aunps/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074Google Scholar
  53. 53.
    Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036Google Scholar
  54. 54.
    Baby TT, Aravind SSJ, Arockiadoss T et al (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens Actuators B Chem 145(1):71–77Google Scholar
  55. 55.
    Choi BG, Park H, Park TJ et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5):2910–2918Google Scholar
  56. 56.
    Dong H, Gao W, Yan F et al (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511–5517Google Scholar
  57. 57.
    Feng L, Chen Y, Ren J et al (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32(11):2930–2937Google Scholar
  58. 58.
    Lu CH, Yang HH, Zhu CL et al (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48(26):4785–4787Google Scholar
  59. 59.
    Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8(12):4469–4476Google Scholar
  60. 60.
    Zeng Q, Cheng J, Tang L et al (2010) Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv Funct Mater 20(19):3366–3372Google Scholar
  61. 61.
    Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613Google Scholar
  62. 62.
    Pumera M, Ambrosi A, Bonanni A et al (2011) Graphene for electrochemical sensing and biosensing. Trends Analyt Chem 29(9):954–965Google Scholar
  63. 63.
    Ratinac KR, Yang W, Gooding JJ et al (2011) Graphene and related materials in electrochemical sensing. Electroanalysis 23(4):803–826Google Scholar
  64. 64.
    Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385(3):452–468Google Scholar
  65. 65.
    Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14Google Scholar
  66. 66.
    Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271Google Scholar
  67. 67.
    Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924Google Scholar
  68. 68.
    Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145Google Scholar
  69. 69.
    Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150Google Scholar
  70. 70.
    Chen JH, Cullen WG, Jang C et al (2009) Defect scattering in graphene. Phys Rev Lett 102(23):236805Google Scholar
  71. 71.
    Meyer JC, Kisielowski C, Erni R et al (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8(11):3582–3586Google Scholar
  72. 72.
    Bagri A, Mattevi C, Acik M et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587Google Scholar
  73. 73.
    Szabo T, Berkesi O, Forgo P et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749Google Scholar
  74. 74.
    Fowler JD, Allen MJ, Tung VC et al (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306Google Scholar
  75. 75.
    Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22(22):2392–2415Google Scholar
  76. 76.
    Kou R, Shao Y, Wang D et al (2009) Enhanced activity and stability of pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11(5):954–957Google Scholar
  77. 77.
    Qi X, Pu KY, Zhou X et al (2010) Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small 6(5):663–669Google Scholar
  78. 78.
    Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331Google Scholar
  79. 79.
    Schniepp HC, Li JL, McAllister MJ et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539Google Scholar
  80. 80.
    Veca LM, Lu F, Meziani MJ et al (2009) Polymer functionalization and solubilization of carbon nanosheets. Chem Commun 18:2565–2567Google Scholar
  81. 81.
    Xu LQ, Yang WJ, Neoh KG et al (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43(20):8336–8339Google Scholar
  82. 82.
    Xu Y, Liu Z, Zhang X et al (2009) A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv Mater 21(12):1275–1279Google Scholar
  83. 83.
    Zhang Y, Small JP, Pontius WV et al (2005) Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl Phys Lett 86(7):1–3Google Scholar
  84. 84.
    Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568Google Scholar
  85. 85.
    Lotya M, Hernandez Y, King PJ et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620Google Scholar
  86. 86.
    Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036Google Scholar
  87. 87.
    Kang F, Leng Y, Zhang TY (1996) Influences of H2O2 on synthesis of H2SO4-gics. J Phys Chem Solid 57(6–8):889–892Google Scholar
  88. 88.
    Kang F, Zhang TY, Leng Y (1997) Electrochemical behavior of graphite in electrolyte of sulfuric and acetic acid. Carbon 35(8):1167–1173Google Scholar
  89. 89.
    Pan YX, Yu ZZ, Ou YC et al (2000) New process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. J Polym Sci B Polym Phys 38(12):1626–1633Google Scholar
  90. 90.
    Li X, Zhang G, Bai X et al (2008) Highly conducting graphene sheets and langmuir-blodgett films. Nat Nanotechnol 3(9):538–542Google Scholar
  91. 91.
    Dreyer DR, Park S, Bielawski CW et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240Google Scholar
  92. 92.
    Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59:466–472Google Scholar
  93. 93.
    Staudenmaier L (1898) Verfahren zur darstellung der graphitsaure. Ber Dtsch Chem Ges 31:1481–1487Google Scholar
  94. 94.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339Google Scholar
  95. 95.
    Parades JI, Villar-Rodil S, Martínez-Alonso A et al (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564Google Scholar
  96. 96.
    Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274Google Scholar
  97. 97.
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682Google Scholar
  98. 98.
    Shin HJ, Kim KK, Benayad A et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992Google Scholar
  99. 99.
    Wu ZS, Ren W, Gao L et al (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499Google Scholar
  100. 100.
    Wang S, Chia PJ, Chua LL et al (2008) Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv Mater 20(18):3440–3446Google Scholar
  101. 101.
    Fan X, Peng W, Li Y et al (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20(23):4490–4493Google Scholar
  102. 102.
    McAllister MJ, Li JL, Adamson DH et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404Google Scholar
  103. 103.
    Zhu Y, Stoller MD, Cai W et al (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4(2):1227–1233Google Scholar
  104. 104.
    Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater 21(21):5004–5006Google Scholar
  105. 105.
    Dubin S, Gilje S, Wang K et al (2010) A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7):3845–3852Google Scholar
  106. 106.
    Zhou M, Wang Y, Zhai Y et al (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15(25):6116–6120Google Scholar
  107. 107.
    Ansari S, Giannelis EP (2009) Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci B Polym Phys 47(9):888–897Google Scholar
  108. 108.
    Fang M, Wang K, Lu H et al (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105Google Scholar
  109. 109.
    Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5):806–817Google Scholar
  110. 110.
    Geng J, Jung HT (2010) Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films. J Phys Chem C 114(18):8227–8234Google Scholar
  111. 111.
    Liu ZB, Xu YF, Zhang XY et al (2009) Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B 113(29):9681–9686Google Scholar
  112. 112.
    Nguyen DA, Lee YR, Raghu AV et al (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58(4):412–417Google Scholar
  113. 113.
    Yang H, Shan C, Li F et al (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 26:3880–3882Google Scholar
  114. 114.
    Liu Z, Robinson JT, Sun X et al (2008) Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877Google Scholar
  115. 115.
    Lee SH, Dreyer DR, An J et al (2009) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (atrp) from graphene oxide. Macromol Rapid Commun 31(3):281–288Google Scholar
  116. 116.
    Stankovich S, Piner RD, Chen X et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158Google Scholar
  117. 117.
    Bai H, Xu Y, Zhao L et al (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669Google Scholar
  118. 118.
    Chunder A, Liu J, Zhai L (2010) Reduced graphene oxide/poly(3-hexylthiophene) supramolecular composites. Macromol Rapid Commun 31(4):380–384Google Scholar
  119. 119.
    Hao R, Qian W, Zhang L et al (2008) Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem Commun 48:6576–6578Google Scholar
  120. 120.
    Chunder A, Pal T, Khondaker SI et al (2010) Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J Phys Chem C 114(35):15129–15135Google Scholar
  121. 121.
    Wojcik A, Kamat PV (2010) Reduced graphene oxide and porphyrin. An interactive affair in 2-D. ACS Nano 4(11):6697–6706Google Scholar
  122. 122.
    Su Q, Pang S, Alijani V et al (2009) Composites of craphene with large aromatic molecules. Adv Mater 21(31):3191–3195Google Scholar
  123. 123.
    Yang Q, Pan X, Huang F et al (2010) Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J Phys Chem C 114(9):3811–3816Google Scholar
  124. 124.
    Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565Google Scholar
  125. 125.
    Becerril HA, Mao J, Liu Z et al (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470Google Scholar
  126. 126.
    Wang G, Wang B, Park J et al (2009) Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47(14):3242–3246Google Scholar
  127. 127.
    Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430(1–3):56–59Google Scholar
  128. 128.
    Kotov NA (2006) Materials science: carbon sheet solutions. Nature 442(7100):254–255Google Scholar
  129. 129.
    Cao H, Yu Q, Colby R et al (2010) Large-scale graphitic thin films synthesized on Ni and transferred to insulators: structural and electronic properties. J Appl Phys 107(4):044310Google Scholar
  130. 130.
    Lee S, Lee K, Zhong Z (2010) Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett 10(11):4702–4707Google Scholar
  131. 131.
    Bhaviripudi S, Jia X, Dresselhaus MS et al (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10(10):4128–4133Google Scholar
  132. 132.
    Gomez De Arco L, Zhang Y, Kumar A et al (2009) Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans Nanotechnol 8(2):135–138Google Scholar
  133. 133.
    Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35Google Scholar
  134. 134.
    Chae SJ, Güneş F, Kim KK et al (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21(22):2328–2333Google Scholar
  135. 135.
    Yu Q, Lian J, Siriponglert S et al (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93(11):113103Google Scholar
  136. 136.
    Li X, Cai W, Colombo L et al (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9(12):4268–4272Google Scholar
  137. 137.
    Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314Google Scholar
  138. 138.
    Cai W, Moore AL, Zhu Y et al (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651Google Scholar
  139. 139.
    Lee Y, Bae S, Jang H et al (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett 10(2):490–493Google Scholar
  140. 140.
    Wei D, Liu Y, Wang Y et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758Google Scholar
  141. 141.
    Qu L, Liu Y, Baek JB et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326Google Scholar
  142. 142.
    Reddy ALM, Srivastava A, Gowda SR et al (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11):6337–6342Google Scholar
  143. 143.
    Wang JJ, Zhu MY, Outlaw RA et al (2004) Free-standing subnanometer graphite sheets. Appl Phys Lett 85(7):1265–1267Google Scholar
  144. 144.
    Wang J, Zhu M, Outlaw RA et al (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42(14):2867–2872Google Scholar
  145. 145.
    Dato A, Radmilovic V, Lee Z et al (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016Google Scholar
  146. 146.
    Vitchev R, Malesevic A, Petrov RH et al (2010) Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition. Nanotechnology 21(9):095602Google Scholar
  147. 147.
    Malesevic A, Vitchev R, Schouteden K et al (2008) Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30):305604Google Scholar
  148. 148.
    Zhu M, Wang J, Holloway BC et al (2007) A mechanism for carbon nanosheet formation. Carbon 45(11):2229–2234Google Scholar
  149. 149.
    Penuelas J, Ouerghi A, Lucot D et al (2009) Surface morphology and characterization of thin graphene films on SiC vicinal substrate. Phys Rev B Condens Matter Mater Phys 79(3):033408Google Scholar
  150. 150.
    Berger C, Song Z, Li T et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108(52):19912–19916Google Scholar
  151. 151.
    de Heer WA, Berger C, Wu X et al (2007) Epitaxial graphene. Solid State Commun 143(1–2):92–100Google Scholar
  152. 152.
    Hass J, De Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Matter 20(32):016602Google Scholar
  153. 153.
    Ni ZH, Chen W, Fan XF et al (2008) Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys Rev B Condens Matter Mater Phys 77(11):115416Google Scholar
  154. 154.
    Peng X, Ahuja R (2008) Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett 8(12):4464–4468Google Scholar
  155. 155.
    Zhou SY, Gweon GH, Fedorov AV et al (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 6(10):770–775Google Scholar
  156. 156.
    Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207Google Scholar
  157. 157.
    Tedesco JL, Jernigan GG, Culbertson JC et al (2010) Morphology characterization of argon-mediated epitaxial graphene on C-face SiC. Appl Phys Lett 96(22):222103Google Scholar
  158. 158.
    Wu X, Sprinkle M, Li X et al (2008) Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys Rev Lett 101(2):026801Google Scholar
  159. 159.
    Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196Google Scholar
  160. 160.
    Kim S, Ihm J, Choi HJ et al (2008) Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys Rev Lett 100(17):176802Google Scholar
  161. 161.
    Varchon F, Feng R, Hass J et al (2007) Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. Phys Rev Lett 99(12):125007Google Scholar
  162. 162.
    Sutter PW, Flege JI, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7(5):406–411Google Scholar
  163. 163.
    Vozquez De Parga AL, Calleja F, Borca B et al (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100(5):056807Google Scholar
  164. 164.
    Wintterlin J, Bocquet ML (2009) Graphene on metal surfaces. Surf Sci 603(10–12):1841–1852Google Scholar
  165. 165.
    Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107(3):718–747Google Scholar
  166. 166.
    Yang X, Dou X, Rouhanipour A et al (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130(13):4216–4217Google Scholar
  167. 167.
    Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305):470–473Google Scholar
  168. 168.
    Jiao L, Zhang L, Wang X et al (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880Google Scholar
  169. 169.
    Xie L, Jiao L, Dai H (2010) Selective etching of graphene edges by hydrogen plasma. J Am Chem Soc 132(42):14751–14753Google Scholar
  170. 170.
    Jiao L, Wang X, Diankov G et al (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5(5):321–325Google Scholar
  171. 171.
    Shimizu T, Haruyama J, Marcano DC et al (2010) Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons. Nat Nanotechnol 6(1):45–50Google Scholar
  172. 172.
    Sinitskii A, Dimiev A, Corley DA et al (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4):1949–1954Google Scholar
  173. 173.
    Sinitskii A, Dimiev A, Kosynkin DV et al (2010) Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes. ACS Nano 4(9):5405–5413Google Scholar
  174. 174.
    Kosynkin DV, Higginbotham AL, Sinitskii A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876Google Scholar
  175. 175.
    Elias AL, Botello-Méndez AR, Meneses-Rodríguez D et al (2010) Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett 10(2):366–372Google Scholar
  176. 176.
    Stolyarova E, Kwang TR, Ryu S et al (2007) High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc Natl Acad Sci USA 104(22):9209–9212Google Scholar
  177. 177.
    Hashimoto A, Suenaga K, Gloter A et al (2004) Direct evidence for atomic defects in graphene layers. Nature 430(7002):870–873Google Scholar
  178. 178.
    Xu K, Cao P, Heath JR (2009) Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett 9(12):4446–4451Google Scholar
  179. 179.
    Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065):197–200Google Scholar
  180. 180.
    Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355Google Scholar
  181. 181.
    Morozov SV, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602Google Scholar
  182. 182.
    Gokus T, Nair RR, Bonetti A et al (2009) Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12):3963–3968Google Scholar
  183. 183.
    Luo Z, Vora PM, Mele EJ et al (2009) Photoluminescence and band gap modulation in graphene oxide. Appl Phys Lett 94(11):111909Google Scholar
  184. 184.
    Han MY, Ozyilmaz B, Zhang Y et al (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98(20):206805Google Scholar
  185. 185.
    Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6(12):2748–2754Google Scholar
  186. 186.
    Evaldsson M, Zozoulenko IV, Xu H et al (2008) Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys Rev B Condens Matter Mater Phys 78(16):161407Google Scholar
  187. 187.
    Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97(21)Google Scholar
  188. 188.
    Yan Q, Huang B, Yu J et al (2007) Intrinsic current–voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett 7(6):1469–1473Google Scholar
  189. 189.
    Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8(3):235–242Google Scholar
  190. 190.
    Nilsson J, Castro Neto AH, Guinea F et al (2008) Electronic properties of bilayer and multilayer graphene. Phys Rev B Condens Matter Mater Phys 78(4):045405Google Scholar
  191. 191.
    Zhang Y, Tang TT, Girit C et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248):820–823Google Scholar
  192. 192.
    Cervantes-Sodi F, Csányi G, Piscanec S et al (2008) Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys Rev B Condens Matter Mater Phys 77(16):165427Google Scholar
  193. 193.
    Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63Google Scholar
  194. 194.
    Hwang EH, Adam S, Sarma SD (2007) Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98(18):186806Google Scholar
  195. 195.
    Chen JH, Jang C, Xiao S et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3(4):206–209Google Scholar
  196. 196.
    Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14(23):1609–1613Google Scholar
  197. 197.
    Shao Y, Yin G, Gao Y et al (2006) Durability study of PtC and PtCNTs catalysts under simulated pem fuel cell conditions. J Electrochem Soc 153(6):A1093–A1097Google Scholar
  198. 198.
    Wang Y, Li Y, Tang L et al (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11(4):889–892Google Scholar
  199. 199.
    Lin Y, Cui X, Ye X (2005) Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochem Commun 7(3):267–274Google Scholar
  200. 200.
    Alwarappan S, Erdem A, Liu C et al (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113(20):8853–8857Google Scholar
  201. 201.
    Groves MN, Chan ASW, Malardier-Jugroot C et al (2009) Improving platinum catalyst binding energy to graphene through nitrogen doping. Chem Phys Lett 481(4–6):214–219Google Scholar
  202. 202.
    Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308Google Scholar
  203. 203.
    Kravets VG, Grigorenko AN, Nair RR et al (2010) Spectroscopic ellipsometry of graphene and an exciton-shifted van hove peak in absorption. Phys Rev B Condens Matter Mater Phys 81(15):155413Google Scholar
  204. 204.
    Bonaccorso F, Sun Z, Hasan T et al (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622Google Scholar
  205. 205.
    Eda G, Lin YY, Mattevi C et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509Google Scholar
  206. 206.
    Tsoukleri G, Parthenios J, Papagelis K et al (2009) Subjecting a graphene monolayer to tension and compression. Small 5(21):2397–2402Google Scholar
  207. 207.
    Ni ZH, Yu T, Lu YH et al (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11):2301–2305Google Scholar
  208. 208.
    Pop E, Mann D, Wang Q et al (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100Google Scholar
  209. 209.
    Nika DL, Pokatilov EP, Askerov AS et al (2009) Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering. Phys Rev B Condens Matter Mater Phys 79(15):155413Google Scholar
  210. 210.
    Jiang JW, Lan J, Wang JS et al (2011) Isotopic effects on the thermal conductivity of graphene nanoribbons: localization mechanism. J Appl Phys 107(5):054314Google Scholar
  211. 211.
    Jung I, Dikin D, Park S et al (2008) Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J Phys Chem C 112(51):20264–20268Google Scholar
  212. 212.
    Lu G, Ocola LE, Chen J (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94(8):083111Google Scholar
  213. 213.
    Lu G, Ocola LE, Chen J (2009) Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44):445502–445510Google Scholar
  214. 214.
    Robinson JT, Perkins FK, Snow ES et al (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140Google Scholar
  215. 215.
    Dua V, Surwade SP, Ammu S et al (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49(12):2154–2157Google Scholar
  216. 216.
    Dan Y, Lu Y, Kybert NJ et al (2009) Intrinsic response of graphene vapor sensors. Nano Lett 9(4):1472–1475Google Scholar
  217. 217.
    Ganhua L, Leonidas EO, Junhong C (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94:083111Google Scholar
  218. 218.
    Sundaram RS, Gomez-Navarro C, Balasubramanian K et al (2008) Electrochemical modification of grapheme. Adv Mater 20(16):3050–3053Google Scholar
  219. 219.
    Lu G, Yu K, Ocola LE et al (2011) Ultrafast room temperature NH3 sensing with positively gated reduced graphene oxide field-effect transistors. Chem Commun 47(27):7761–7763Google Scholar
  220. 220.
    Tang L, Wang Y, Li Y et al (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19(17):2782–2789Google Scholar
  221. 221.
    Kang X, Wang J, Wu H et al (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81(3):754–759Google Scholar
  222. 222.
    Parvin MH (2011) Graphene paste electrode for detection of chlorpromazine. Electrochem Commun 13(4):366–369Google Scholar
  223. 223.
    Li F, Li J, Feng Y et al (2011) Electrochemical behavior of graphene doped carbon paste electrode and its application for sensitive determination of ascorbic acid. Sens Actuators B Chem 157(1):110–114Google Scholar
  224. 224.
    Wang J, Yang S, Guo D et al (2009) Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochem Commun 11(10):1892–1895Google Scholar
  225. 225.
    Li J, Guo S, Zhai Y et al (2009) Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11(5):1085–1088Google Scholar
  226. 226.
    Li J, Guo S, Zhai Y et al (2009) High-sensitivity determination of lead and cadmium based on the nafion-graphene composite film. Anal Chim Acta 649(2):196–201Google Scholar
  227. 227.
    Ohno Y, Maehashi K, Matsumoto K (2010) Chemical and biological sensing applications based on graphene field-effect transistors. Biosens Bioelectron 26(4):1727–1730Google Scholar
  228. 228.
    Sofue Y, Ohno Y, Maehashi K et al (2011) Highly sensitive electrical detection of sodium ions based on graphene field-effect transistors. Jpn J Appl Phys 50(6 Pt 2):06GE07Google Scholar
  229. 229.
    Sudibya HG, He Q, Zhang H et al (2011) Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5(3):1990–1994Google Scholar
  230. 230.
    Shafiei M, Spizzirri PG, Arsat R et al (2010) Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J Phys Chem C 114(32):13796–13801Google Scholar
  231. 231.
    Arsat R, Breedon M, Shafiei M et al (2009) Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem Phys Lett 467(4–6):344–347Google Scholar
  232. 232.
    Huang B, Li Z, Liu Z et al (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J Phys Chem C 112(35):13442–13446Google Scholar
  233. 233.
    Leenaerts O, Partoens B, Peeters FM (2008) Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys Rev B Condens Matter Mater Phys 77(12):125416Google Scholar
  234. 234.
    Schedin F, Geim AK, Morozov SV et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655Google Scholar
  235. 235.
    Li X, Wang H, Robinson JT et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939–15944Google Scholar
  236. 236.
    McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687Google Scholar
  237. 237.
    Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19(20):3214–3228Google Scholar
  238. 238.
    Martin P (2009) Electrochemistry of gaphene: new horizons for sensing and energy storage. Chem Rec 9(4):211–223Google Scholar
  239. 239.
    Jia J, Kato D, Kurita R et al (2007) Structure and electrochemical properties of carbon films prepared by a electron cyclotron resonance sputtering method. Anal Chem 79(1):98–105Google Scholar
  240. 240.
    Niwa O, Jia J, Sato Y et al (2006) Electrochemical performance of angstrom level flat sputtered carbon film consisting of sp2 and sp3 mixed bonds. J Am Chem Soc 128(22):7144–7145Google Scholar
  241. 241.
    Shang NG, Papakonstantinou P, McMullan M et al (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514Google Scholar
  242. 242.
    Fischer AE, Show Y, Swain GM (2004) Electrochemical performance of diamond thin-film electrodes from different commercial sources. Anal Chem 76(9):2553–2560Google Scholar
  243. 243.
    Guo HL, Wang XF, Qian QY et al (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9):2653–2659Google Scholar
  244. 244.
    Ramesha GK, Sampath NS (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113(19):7985–7989Google Scholar
  245. 245.
    Shao Y, Wang J, Engelhard M et al (2009) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20(4):743–748Google Scholar
  246. 246.
    Kefala G, Economou A, Voulgaropoulos A (2004) A study of nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst 129(11):1082–1090Google Scholar
  247. 247.
    Zhu L, Tian C, Yang R et al (2008) Anodic stripping voltammetric determination of lead in tap water at an ordered mesoporous carbon/nafion composite film electrode. Electroanalysis 20(5):527–533Google Scholar
  248. 248.
    Xu H, Zeng L, Xing S et al (2008) Ultrasensitive voltammetric detection of trace lead(ii) and cadmium(ii) using MWCNTs-nafion/bismuth composite electrodes. Electroanalysis 20(24):2655–2662Google Scholar
  249. 249.
    Lin WJ, Liao CS, Jhang JH et al (2009) Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and B-nicotinamide adenine dinucleotide. Electrochem Commun 11(11):2153–2156Google Scholar
  250. 250.
    Liu H, Gao J, Xue MQ et al (2009) Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 25:12006–12010Google Scholar
  251. 251.
    Du M, Yang T, Jiao K (2010) Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film. J Mater Chem 20(41):9253–9260Google Scholar
  252. 252.
    Du Y, Guo S, Dong S et al (2011) An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids. Biomaterials 32(33):8584–8592Google Scholar
  253. 253.
    Li L, Du Z, Liu S et al (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82(5):1637–1641Google Scholar
  254. 254.
    Mao S, Yu K, Lu G et al (2011) Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res 4(10):921–930Google Scholar
  255. 255.
    Wu H, Wang J, Kang X et al (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80(1):403–406Google Scholar
  256. 256.
    Lu J, Drzal LT, Worden RM et al (2007) Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem Mater 19(25):6240–6246Google Scholar
  257. 257.
    Wang Z, Zhou X, Zhang J et al (2009) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113(32):14071–14075Google Scholar
  258. 258.
    Mao S, Lu G, Yu K et al (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22(32):3521–3526Google Scholar
  259. 259.
    Dong X, Shi Y, Huang W et al (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649–1653Google Scholar
  260. 260.
    Ohno Y, Maehashi K, Matsumoto K (2010) Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc 132(51):18012–18013Google Scholar
  261. 261.
    Ohno Y, Maehashi K, Inoue K et al (2011) Label-free aptamer-based immunoglobulin sensors using graphene field-effect transistors. Jpn J Appl Phys 50(7 Pt 1):070120Google Scholar
  262. 262.
    Wang Y, Lu J, Tang L et al (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem 81(23):9710–9715Google Scholar
  263. 263.
    Pumera M, Scipioni R, Iwai H et al (2009) A mechanism of adsorption of b-nicotinamide adenine dinucleotide on graphene sheets: Experiment and theory. Chem Eur J 15(41):10851–10856Google Scholar
  264. 264.
    Musameh M, Wang J, Merkoci A et al (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4(10):743–746Google Scholar
  265. 265.
    Valentini F, Amine A, Orlanducci S et al (2003) Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal Chem 75(20):5413–5421Google Scholar
  266. 266.
    Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130(9):1232–1239Google Scholar
  267. 267.
    Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications. Electroanalysis 9(9):661–674Google Scholar
  268. 268.
    Leger C, Bertrand P (2008) Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem Rev 108(7):2379–2438Google Scholar
  269. 269.
    Armstrong FA, Hill HAO, Walton NJ (1988) Direct electrochemistry of redox proteins. Acc Chem Res 21(11):407–413Google Scholar
  270. 270.
    Zhang W, Li G (2004) Third-generation biosensors based on the direct electron transfer of proteins. Anal Sci 20(4):603–609Google Scholar
  271. 271.
    Wu Y, Hu S (2007) Biosensors based on direct electron transfer in redox proteins. Microchim Acta 159(1–2):1–17Google Scholar
  272. 272.
    Yao YL, Shiu KK (2008) Direct electrochemistry of glucose oxidase at carbon nanotube-gold colloid modified electrode with poly(diallyldimethylammonium chloride) coating. Electroanalysis 20(14):1542–1548Google Scholar
  273. 273.
    Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl 43:6042–6108Google Scholar
  274. 274.
    Sarma AK, Vatsyayan P, Goswami P et al (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24(8):2313–2322Google Scholar
  275. 275.
    Dai ZH, Ni J, Huang XH et al (2007) Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-mcm-41 matrix. Bioelectrochemistry 70(2):250–256Google Scholar
  276. 276.
    Shan C, Yang H, Song J et al (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382Google Scholar
  277. 277.
    Guiseppi-Elie A, Lei C, Baughman RH (2002) Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13(5):559–564Google Scholar
  278. 278.
    Deng C, Chen J, Chen X et al (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 23(8):1272–1277Google Scholar
  279. 279.
    Cai C, Chen J (2004) Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 332(1):75–83Google Scholar
  280. 280.
    Liu G, Lin Y (2006) Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem Commun 8(2):251–256Google Scholar
  281. 281.
    Lin Y, Lu F, Tu Y et al (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 4(2):191–195Google Scholar
  282. 282.
    Rubianes MD, Rivas GA (2003) Carbon nanotubes paste electrode. Electrochem Commun 5(8):689–694Google Scholar
  283. 283.
    Wu L, Zhang X, Ju H (2007) Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanofiber. Biosens Bioelectron 23(4):479–484Google Scholar
  284. 284.
    Zhou M, Shang L, Li B et al (2008) Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosens Bioelectron 24(3):442–447Google Scholar
  285. 285.
    Chen H, Müller MB, Gilmore KJ et al (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Nanoelectronics and MEMS LaboratoryNational Electronics and Computer Technology Center (NECTEC), National Science and Technology Development agency (NSTDA)PathumthaniThailand

Personalised recommendations