Packaging Technology for Devices in Autonomous Sensor Networks

  • Chengkuo Lee
  • Prakash Pitchappa
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 13)


Autonomous sensor network (ASN) node comprises of multiple miniaturized sensors, actuators, controller-circuitry and power source. Packaging and integration of these components play a critical role in determining the overall system performance, cost and time to market. Packaging of electronic components provides significant improvement in device characteristic performance and ensures long-term reliability. Packaging of ASN nodes and/or its components is more challenging, because of the sheer variety of components, like sensors, actuators, integrated circuit (IC) controllers, that make up the ASN nodes. Numerous packaging solutions like assembling individually packaged components on a single board (printed circuit board level packaging) or housing all components in a single package (system-in-package or system-on-chip approach) have been demonstrated. Some of the popular and commercially available chip-level packaging technologies are wire bonding, flip-chip bonding, tape automated bonding, etc. However the cost for these conventional chip-level packaging is much higher than other cost associated with device manufacturing. Thus wafer-level packaging has gained interest as it can be used as a low cost packaging technology. In this chapter, packaging of infrared (IR) sensors has been used as a case study to demonstrate the packaging constraints imposed by device performance and application requirements, followed by brief discussion on various packaging solutions available for individual IR sensor and more sophisticated IR sensor array. As future outlook, it seems possible to integrate all the components of ASN node, except for the battery power source. To tackle this technology constraint, energy harvesting technology has been investigated as an alternative power source. Thus replacing the battery by energy harvesters as power source is discussed at the end of this chapter.


Autonomous sensor network Energy harvesting MEMS NEMS Packaging Wireless sensor network 



Application-specific integrated circuit


Autonomous sensor network


Ball grid arrays






Ceramic ball grid arrays


Chip carriers


Complementary metal oxide semiconductor


Chemical mechanical polishing


Ceramic pin grid arrays


Dual in line packages




Deep reactive-ion etching


Direct wafer bonding


Frequency up-converter


High-melting point


High-resonant frequency


Integrated circuit


Inductively coupled plasma


Intermetallic compounds




Infrared focal plane array


Intermediated wafer bonding


Leaded chip carriers


Leadless chip carriers


Low melting point




Long-wave infrared


Multichip modules


Microcontroller unit


Microelectromechanical systems


Mid-wave infrared


Plastic ball grid arrays


Personal computer


Printed circuit board


Plasma enhanced chemical vapor deposition


Pin grid arrays


Plastic pin grid arrays


Quad flat packages


Radio frequency




Single in line packages


Surface mount technology








Small outline packages


Short-wave infrared


Tape automated bonding


Thin film encapsulation


Thermoelectric power generators


Through silicon vias


Undoped silica glass


Wafer to wafer


Wireless body area network


Wafer-level encapsulation


Wafer-level packaging


Wireless sensor networks


  1. 1.
    Guo H, Lou L, Chen X, Lee C (2012) PDMS-coated piezoresistive NEMS diaphragm for chloroform vapor detection. IEEE Electron Device Lett 33(7):1078–1080CrossRefGoogle Scholar
  2. 2.
    Lou L, Zhang S, Park W-T, Tsai JM-L, Kwong D-L, Lee C (2012) Optimization of NEMS pressure sensors with multilayered diaphragm using silicon nanowires as piezoresistive sensing elements. J Micromech Microeng 22(5):055012CrossRefGoogle Scholar
  3. 3.
    Zhang S, Lou L, Lee C (2012) Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl Phys Lett 100(2):023111CrossRefGoogle Scholar
  4. 4.
    Ryhänen T (2010) Impact of silicon MEMS—30 years after. In: Lehto A, Lindroos V, Motooka T, Tilli M (eds) Handbook of silicon based MEMS materials and technologies. William Andrew is an imprint of Elsevier, The Boulevard, Langford Lane, Oxford OX5 1GB, UK, pp xv–xxxiiCrossRefGoogle Scholar
  5. 5.
    Bloss R (2012) Numerous recent shows highlight the latest in sensor innovations. Sensor Rev 32(2):101–105CrossRefGoogle Scholar
  6. 6.
    Sparks DR (2001) Packaging of microsystems for harsh environments. IEEE Instrum Meas Mag 4(3):30–33CrossRefGoogle Scholar
  7. 7.
    Lau JH, Lee C, Premachandran CS, Aibin Y (2009) Advanced MEMS packaging. McGraw-Hill, New YorkCrossRefGoogle Scholar
  8. 8.
    Reichl H, Aschenbrenner R, Töpper M, Pötter H (2009) Heterogeneous integration: building the foundation for innovative products. In: Zhang GQ, Roosmalen A (eds) More than Moore: creating high value micro/nanoelectronics systems. Springer, New York, pp 279–303CrossRefGoogle Scholar
  9. 9.
    Lau JH (1996) Flip chip technologies. McGraw-Hill, New YorkGoogle Scholar
  10. 10.
    Brand O (2008) Packaging. In: Gianchandani YB, Tabata O (eds) Comprehensive microsystems, vol 1. Elsevier B.V., Amsterdam, pp 435–463 (Chapter 1.15)Google Scholar
  11. 11.
    Zhong ZW, Tee TY, Luan J-E (2007) Recent advances in wire bonding, flip chip and lead-free solder for advanced microelectronics packaging. Microelectron Int 24(3):18–26CrossRefGoogle Scholar
  12. 12.
    Goldstein H (2001) Packages go vertical. IEEE Spectrum 38(8):46–51CrossRefGoogle Scholar
  13. 13.
    Yole Development (2012) MEMS packaging—market & technology trends. In: SEMICON West 2012, San FranciscoGoogle Scholar
  14. 14.
    Lau JH, Lee C, Premachandran CS, Aibin Y (2009) Advanced MEMS wafer-level packaging. In: Advanced MEMS packaging, McGraw-Hill, New York, pp 157–207 (Chapter 4)Google Scholar
  15. 15.
    Ko C-T, Chen K-N (2010) Wafer-level bonding/stacking technology for 3D integration. Microelectron Reliab 50(4):481–488CrossRefGoogle Scholar
  16. 16.
    Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18:073001CrossRefGoogle Scholar
  17. 17.
    Yole Development (2011) 2010–2016 Permanent wafer bonders applications & markets. A Yole 2011 report on technologies & markets trends for permanent bondingGoogle Scholar
  18. 18.
    Najafi K, Harpster TJ, Kim H, Mitchell JS, Welch WC III (2008) Wafer bonding. In: Gianchandani YB, Tabata O (eds) Comprehensive microsystems, vol 1. Elsevier B.V., Amsterdam, pp 235–270CrossRefGoogle Scholar
  19. 19.
    Schmidt MA (1998) Wafer-to-wafer bonding for microstructure formation. Proc IEEE 86(8):1575–1585CrossRefGoogle Scholar
  20. 20.
    Knechtel R (2010) Glass frit bonding. In: Lindroos V, Tilli M, Lehto A (eds) Handbook of silicon based MEMS materials and technologies, 1st edn. Elsevier, Amsterdam, pp 521–531 (Chapter 33)CrossRefGoogle Scholar
  21. 21.
    Reinert W, Merz P (2010) Metallic alloy seal bonding. In: Lindroos V, Tilli M, Lehto A (eds) Handbook of silicon based MEMS materials and technologies, 1st edn. Elsevier, Amsterdam, pp 533–542CrossRefGoogle Scholar
  22. 22.
    Niklaus F, Stemme G, Lu J-Q, Gutmann RJ (2006) Adhesive wafer bonding. J Appl Phys 99(3):031101–031101CrossRefGoogle Scholar
  23. 23.
    Yu D-Q, Lee C, Yan LL, Choi WK, Yu A, Lau JH (2009) The role of Ni buffer layer on high yield low temperature hermetic wafer bonding using In/Sn/Cu metallization. Appl Phys Lett 94:034105CrossRefGoogle Scholar
  24. 24.
    Henttinen K (2010) Via technologies for MEMS. In: Lindroos V, Tilli M, Lehto A (eds) Handbook of silicon based MEMS materials and technologies, 1st edn. Elsevier, Amsterdam, pp 575–583CrossRefGoogle Scholar
  25. 25.
    Chen K, Premachandran C, Choi K, Ong C, Ling X, Ratmin A, Pa M, Lau JH (2008) C2W low temperature bonding method for MEMS applications. In: IEEE proceedings of electronics packaging technology conference, Singapore, December 2008, pp 1–7Google Scholar
  26. 26.
    Lau JH, Lee C, Premachandran CS, Aibin Y (2009) Advanced MEMS packaging. In: Advanced MEMS packaging, McGraw-Hill, New York, pp 47–79 (Chapter 2)Google Scholar
  27. 27.
    Kuhmann JF et al (1999) Through wafer interconnects and flip-chip bonding: a toolbox for advanced hybrid technologies for MEMS. In: Proceedings of the 13th European conference on solid-state transducers, Eurosensors XIII, The Hague, Netherlands, 12–15 September 1999, pp 265–272Google Scholar
  28. 28.
    Shiv L, Heschel M, Korth H, Weichel S, Hauffe R, Kilian A, Semak B, Houlberg M, Egginton P, Hase A, Kuhmann J (2006) Ultra thin hermetic wafer level, chip scale package. In: IEEE proceedings of the electronic components & technology conference (ECTC 2006), San Diego, 30 May 30–2 June 2006, pp 1122–1128Google Scholar
  29. 29.
    Stark BH, Najafi K (2004) A low temperature thin-film electroplated metal vacuum package. IEEE J MEMS 13:147–157CrossRefGoogle Scholar
  30. 30.
    Kohin M, Buttler N (2004) Performance limits of uncooled VOx microbolometer focal plane arrays. In: Proceedings of SPIE, vol 5406, Orlando, pp 447–453Google Scholar
  31. 31.
    Chou BCS, Shic J-S, Chen Y-M (1995) A highly sensitive Pirani vacuum gauge. In: The 8th international conference on solid-state sensors and actuators, Stockholm, Sweden, vol 2, pp 167–170Google Scholar
  32. 32.
    Liddiard KC (1984) Thin film resistance bolometer IR detector. Infrared Phys 24(1):57–64CrossRefGoogle Scholar
  33. 33.
    Yole Development (2011) Uncooled infrared imaging market: commercial & military applicationsGoogle Scholar
  34. 34.
    Xu D, Jing E, Xiong B, Wang Y (2010) Wafer-level vacuum packaging of micromachined thermoelectric IR sensors. IEEE Trans Adv Packaging 33(4):904–911CrossRefGoogle Scholar
  35. 35.
    Du C-H, Lee C (2002) Characterization of thermopile based on complementary metal-oxide-semiconductor (CMOS) materials and post CMOS micromachining. Jpn J Appl Phys 41(6B Pt 1):4340–4345CrossRefGoogle Scholar
  36. 36.
    Feiertag G, Winter M, Leidl A (2009) Packaging of MEMS microphones. In: Smart sensors, actuators, and MEMS IV, Proceedings of SPIE, vol 7362Google Scholar
  37. 37.
    Capper P, Elliott CT (2001) Infrared detectors and emitters: materials and devices. Kluwer Academic, NorwellCrossRefGoogle Scholar
  38. 38.
    Hunter SR, Maurer GS, Simelgor G, Radhakrishnan S, Gray J, Bachir K, Pennell T, Bauer M, Jagadish U (2008) Development and optimization of microcantilever based IR imaging arrays. In: Infrared technology and applications XXXIV, Proceedings of SPIE, vol 6940, p 694013Google Scholar
  39. 39.
    Xu D, Xiong B, Wang Y (2011) Micromachined thermopile IR detector module with high performance. IEEE Photon Technol Lett 23(3):149–151CrossRefGoogle Scholar
  40. 40.
    Gooch R, Schimert T (2003) Low-cost wafer-level vacuum packaging for MEMS. MRS Bull 28(1):55–59CrossRefGoogle Scholar
  41. 41.
    Xie J, Lee C, Wang M-F, Feng H (2011) Seal and encapsulate cavities for complementary metal-oxide-semiconductor microelectromechanical system thermoelectric power generators. J Vac Sci Technol B 29:2CrossRefGoogle Scholar
  42. 42.
    Xie J, Lee C, Wang M-F, Liu Y, Feng H (2009) Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators. J Micromech Microeng 19:125029 (8 pp)CrossRefGoogle Scholar
  43. 43.
    Mathuna CO, O’Donnell T, Martinez-Catala RV, Rohan J, O’Flynn B (2008) Energy scavenging for long-term deployable wireless sensor networks. Talanta 75(3):613–623CrossRefGoogle Scholar
  44. 44.
    Raghunathan V, Ganeriwal S, Srivastava M (2006) Emerging techniques for long lived wireless sensor networks. IEEE Commun Mag 44(4):108–114CrossRefGoogle Scholar
  45. 45.
    Niyato D, Hossain E, Rashid MM, Bhargava VK (2007) Wireless sensor networks with energy harvesting technologies: a game-theoretic approach to optimal energy management. IEEE Wireless Commun 14(4):90–96CrossRefGoogle Scholar
  46. 46.
    Thomas JP, Qidwai MA, Kellogg JC (2006) Energy scavenging for small-scale unmanned systems. J Power Sources 159(2):1494–1509CrossRefGoogle Scholar
  47. 47.
    Tan YK (2010) Analysis, design and implementation of energy harvesting systems for wireless sensor nodes. Ph.D. Thesis, National University of SingaporeGoogle Scholar
  48. 48.
    Lee JB, Chen Z, Allen MG, Rohatgi A, Arya R (1994) A high voltage solar cell array as an electrostatic MEMS power supply. In: Proceedings of IEEE workshop on micro electro mechanical systems, Oiso, Japan, pp 331–336Google Scholar
  49. 49.
    Randall JF (2003) On the use of photovoltaic ambient energy sources for powering indoor electronic devices. Ph.D. Thesis, Swiss Federal Institute of TechnologyGoogle Scholar
  50. 50.
    Stordeur M, Stark I (1997) Low power thermoelectric generator—self-sufficient energy supply for micro systems. In: 16th international conference on thermoelectrics, Dresden, Germany, pp 575–577Google Scholar
  51. 51.
    Böttner H (2002) Thermoelectric micro devices: current state, recent developments and future aspects for technological progress and applications. In: Proceedings of the 21st international conference on thermoelectrics, Long Beach, California, USA, pp 511–518Google Scholar
  52. 52.
    Xie J, Lee C, Feng H (2010) Design, fabrication and characterization of CMOS MEMS-based thermoelectric power generators. J Microelectromech Syst 19(2):317–324CrossRefGoogle Scholar
  53. 53.
    Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radio frequency power conversion. J Appl Phys 103(10):101301CrossRefGoogle Scholar
  54. 54.
    Rabaey JM, Ammer MJ, da Silva JL (2000) PicoRadio supports ad hoc ultra-low power wireless networking. Computer 33(7):42–48CrossRefGoogle Scholar
  55. 55.
    Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. In: ASME international mechanical engineering congress and exposition, New Orleans, Louisiana, USA, pp 487–496Google Scholar
  56. 56.
    Mitcheson PD, Green TC, Yeatman EM, Holmes AS (2004) Architectures for vibration-driven micropower generators. J Microelectromech Syst 13(3):429–440CrossRefGoogle Scholar
  57. 57.
    Schenck N, Paradiso J (2001) Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21(3):30–42CrossRefGoogle Scholar
  58. 58.
    Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):175–195CrossRefGoogle Scholar
  59. 59.
    Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) Investigation of MEMS piezoelectric energy harvester system with frequency-widen-bandwidth mechanism introduced by mechanical stoppers. Smart Mater Struct 21(3):035005CrossRefGoogle Scholar
  60. 60.
    Yang B, Lee C, Ho GW, Ong WL, Liu J, Yang C (2012) Modeling and experimental study of a low frequency vibration based power generator using ZnO nanowires arrays. IEEE/ASME J Microelectromech Syst Letts 21(4):776–778CrossRefGoogle Scholar
  61. 61.
    Liu H, Zhang S, Kathiresan R, Kobayashi T, Lee C (2012) Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Appl Phys Lett 100(22):223905CrossRefGoogle Scholar
  62. 62.
    Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. IEEE/ASME J Microelectromech Syst 20(5):1131–1142CrossRefGoogle Scholar
  63. 63.
    Yang B, Lee C, Kee WL, Lim SP (2010) A hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. SPIE J Micro/Nanolithogr MEMS MOEMS (JM3) 9(2):023002Google Scholar
  64. 64.
    Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors. Microsyst Technol 17(12):1747–1754CrossRefGoogle Scholar
  65. 65.
    Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18(4):497–506CrossRefGoogle Scholar
  66. 66.
    Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sens Actuators A: Phys 186:242–248Google Scholar
  67. 67.
    Yang B, Lee C, Xiang W, Xie J, He JH, Kotlanka RK, Low SP, Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19(3):035001CrossRefGoogle Scholar
  68. 68.
    Yang B, Lee C (2010) Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. Microsyst Technol 16(6):961–966CrossRefGoogle Scholar
  69. 69.
    Yang B, Lee C (2009) A wideband electromagnetic energy harvester for random vibration sources. Adv Mater Res 74:165–168CrossRefGoogle Scholar
  70. 70.
    Yang B, Lee C, Kotlanka RK, Xie J, Piang Lim S (2010) MEMS rotary comb mechanism for harvesting kinetic energy of planar vibrations. J Micromech Microeng 20:065017CrossRefGoogle Scholar
  71. 71.
    Lee C, Lim YM, Yang B, Kotlanka RK, Heng C-H, He JH, Tang M, Xie J, Feng H (2009) Theoretical comparison of the energy harvesting capability among various electrostatic mechanisms from structure aspect. Sens Actuators A 156(1):208–216CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations