Nanomaterials for Sensing Applications: Introduction and Perspective

  • Adisorn TuantranontEmail author
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 14)


Recent progress in synthesis and fundamental understanding of properties of nanomaterials has led to significant advancement of nanomaterial-based gas/chemical/biological sensors. This book includes a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, graphene, molecularly imprinted nanostructures, nanometal structures, DNA-based structures, smart nanomaterials, nanoprobes, magnetic-based nanomaterials, phthalocyanines, and porphyrins organic molecules for various gas/chemical/biological sensing applications. Perspectives of new sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assay, colorimetric, fluorescence, and electrochemiluminescense are explored.


Chemical and Biosensors Gas Nanomaterials 



Adisorn Tuantranont acknowledges Thailand Research Fund (TRF) for Researcher Career Development Funding (RSA5380005) and all financial support from NSTDA and NRCT.


  1. 1.
    Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170Google Scholar
  2. 2.
    Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266(5193):1961–1966Google Scholar
  3. 3.
    Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739–1746Google Scholar
  4. 4.
    Nel A, Xia T, Mudler L et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627Google Scholar
  5. 5.
    Oberdarster G, Oberdarster E, Oberdarster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839Google Scholar
  6. 6.
    Pokropivny VV, Skorokhod VV (2008) New dimensionality classifications of nanostructures. Physica E 40(7):2521–2525Google Scholar
  7. 7.
    Chan WCW, Maxwell DJ, Gao X et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46Google Scholar
  8. 8.
    Pashchanka M, Hoffmann RC, Gurlo A et al (2010) Molecular based, chimie douce approach to 0d and 1d indium oxide nanostructures. Evaluation of their sensing properties towards co and h 2. J Mater Chem 20(38):8311–8319Google Scholar
  9. 9.
    Sun EY, Josephson L, Weissleder R (2006) “Clickable” nanoparticles for targeted imaging. Mol Imaging 5(2):122–128Google Scholar
  10. 10.
    Hillhouse HW (2011) Development of double-gyroid nanowire arrays for photovoltaics. In: Proceedings of the 2011 AIChE annual meeting. October 16–21, 2011, Minneapolis, MNGoogle Scholar
  11. 11.
    Zhao YS, Fu H, Peng A et al (2009) Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc Chem Res 43(3):409–418Google Scholar
  12. 12.
    Chopra N, Gavalas VG, Hinds BJ et al (2007) Functional one-dimensional nanomaterials: applications in nanoscale biosensors. Anal Lett 40(11):2067–2096Google Scholar
  13. 13.
    Wang Y, Li Z, Wang J et al (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212Google Scholar
  14. 14.
    Yi DK, Lee JH, Rogers JA et al (2009) Two-dimensional nanohybridization of gold nanorods and polystyrene colloids. Appl Phys Lett 94(8)Google Scholar
  15. 15.
    Chen JS, Archer LA, Wen Lou X (2011) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21(27):9912–9924Google Scholar
  16. 16.
    Ciesielski A, Palma CA, Bonini M et al (2010) Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2d self-assembly at solid–liquid interfaces. Adv Mater 22(32):3506–3520Google Scholar
  17. 17.
    Lu J, Dongning Y, Jie L et al (2008) Three dimensional single-walled carbon nanotubes. Nano Lett 8(10):3325–3329Google Scholar
  18. 18.
    Song HS, Zhang WJ, Cheng C et al (2011) Controllable fabrication of three-dimensional radial ZnO nanowire/silicon microrod hybrid architectures. Cryst Growth Des 11(1):147–153Google Scholar
  19. 19.
    Ivanovskii AL (2003) Fullerenes and related nanoparticles encapsulated in nanotubes: synthesis, properties, and design of new hybrid nanostructures. Russ J Inorg Chem 48(6):846–860Google Scholar
  20. 20.
    Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14Google Scholar
  21. 21.
    Chen RJ, Bangsaruntip S, Drouvalakis KA et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA 100(9):4984–4989Google Scholar
  22. 22.
    Lam CW, James JT, McCluskey R et al (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intractracheal instillation. Toxicol Sci 77(1):126–134Google Scholar
  23. 23.
    Jeong S, Shim HC, Kim S et al (2009) Efficient electron transfer in functional assemblies of pyridine-modified nQDs on SWNTs. ACS Nano 4(1):324–330Google Scholar
  24. 24.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on EColi as a model for gram-negative bacteria. J Colloid Interface Sci 275(1):177–182Google Scholar
  25. 25.
    Colaianni L, Kung SC, Taggart D et al (2009) Gold nanowires: deposition, characterization and application to the mass spectrometry detection of low-molecular weight analytes. In: 3rd international workshop on advances in sensors and interfaces (IWASI 2009), pp 20–24. June 25–26, 2009, Trani (Bari), ItalyGoogle Scholar
  26. 26.
    Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods – anisotropic modules for a future nanotechnology. Angew Chem Int Ed 41(14):2446–2461Google Scholar
  27. 27.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107(7):2891–2959Google Scholar
  28. 28.
    Sayle TXT, Maphanga RR, Ngoepe PE et al (2009) Predicting the electrochemical properties of MnO2 nanomaterials used in rechargeable Li batteries: simulating nanostructure at the atomistic level. J Am Chem Soc 131(17):6161–6173Google Scholar
  29. 29.
    Pietryga JM, Zhuravlev KK, Whitehead M et al (2008) Evidence for Barrierless auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption. Phys Rev Lett 101(21)Google Scholar
  30. 30.
    Chen Y, Xu Z, Gartia MR et al (2010) Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching. ACS Nano 5(10):8002–8012Google Scholar
  31. 31.
    Fang X, Zhang L (2006) One-dimensional (1d) ZnS nanomaterials and nanostructures. J Mater Sci Technol 22(6):721–736Google Scholar
  32. 32.
    Madsen M, Takei K, Kapadia R et al (2010) Nanoscale semiconductor “X” on substrate “Y” – processes, devices, and applications. Adv Mater 23(28):3115–3127Google Scholar
  33. 33.
    Okamoto H, Sugiyama Y, Nakano H (2011) Synthesis and modification of silicon nanosheets and other silicon nanomaterials. Chem Eur J 17(36):9864–9887Google Scholar
  34. 34.
    Forey C, Mellot-Draznieks C, Serre C et al (2005) Chemistry: a chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042Google Scholar
  35. 35.
    Zhao YS, Fu H, Peng A et al (2008) Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Adv Mater 20(15):2859–2876Google Scholar
  36. 36.
    Barbero CA, Acevedo DF, Yslas E et al (2010) Synthesis, properties and applications of conducting polymer nano-objects. Mol Cryst Liq Cryst 521:214–228Google Scholar
  37. 37.
    Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43(45):6042–6108Google Scholar
  38. 38.
    Liu L, Busuttil K, Zhang S et al (2011) The role of self-assembling polypeptides in building nanomaterials. Phys Chem Chem Phys 13(39):17435–17444Google Scholar
  39. 39.
    George J, Ramana KV, Bawa AS et al (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48(1):50–57Google Scholar
  40. 40.
    Lo PK, Karam P, Aldaye FA et al (2010) Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat Chem 2(4):319–328Google Scholar
  41. 41.
    Arami H, Stephen Z, Veiseh O et al (2011) Chitosan-coated iron oxide nanoparticles for molecular imaging and drug delivery. Adv Polym Sci 243:169–184Google Scholar
  42. 42.
    Bao C, Tian F, Estrada G (2010) Improved visualization of internalized carbon nanotubes by maximising cell spreading on nanostructured substrates. Nano Biomed Eng 2(4):201–207Google Scholar
  43. 43.
    Chen J, Cheng F (2009) Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res 42(6):713–723Google Scholar
  44. 44.
    Sotiriou GA, Teleki A, Camenzind A et al (2011) Nanosilver on nanostructured silica: antibacterial activity and ag surface area. Chem Eng J 170(2–3):547–554Google Scholar
  45. 45.
    Wang X, Zhuang J, Peng Q et al (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121–124Google Scholar
  46. 46.
    Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178Google Scholar
  47. 47.
    Gasparotto A, Barreca D, MacCato C et al (2012) Manufacturing of inorganic nanomaterials: concepts and perspectives. Nanoscale 4(9):2813–2825Google Scholar
  48. 48.
    Bang J, Bae J, Lwenhielm P et al (2007) Facile routes to patterned surface neutralization layers for block copolymer lithography. Adv Mater 19(24):4552–4557Google Scholar
  49. 49.
    Chomistek KJ, Panagiotou T (2011) Large scale nanomaterial production using microfluidizer high shear processing. In: Materials research society symposium proceedings, pp 85–94Google Scholar
  50. 50.
    Diegoli S, Hamlett CAE, Leigh SJ et al (2007) Engineering nanostructures at surfaces using nanolithography. Proc Inst Mech Eng G J Aerosp Eng 221(4):589–629Google Scholar
  51. 51.
    Nakata Y, Miyanaga N, Okada T (2007) Topdown femtosecond laser-interference technique for the generation of new nanostructures. J Phys Conf Ser 59(1):245–248Google Scholar
  52. 52.
    Dessert PE (2010) Additive manufacturing of nano-materials: cornerstone for the new manufacturing paradigm. In: Technical paper – Society of Manufacturing Engineers, pp 1–8Google Scholar
  53. 53.
    Zhang S (2003) Building from the bottom up. Mater Today 6(5):20–27Google Scholar
  54. 54.
    Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35Google Scholar
  55. 55.
    Wei D, Liu Y, Wang Y et al (2009) Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758Google Scholar
  56. 56.
    Mariotti D, Sankaran RM (2010) Microplasmas for nanomaterials synthesis. J Phys D Appl Phys 43(32)Google Scholar
  57. 57.
    Shang NG, Papakonstantinou P, McMullan M et al (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514Google Scholar
  58. 58.
    Sun X, Dong Y, Li C et al (2010) Characterization and fabrication of rare-earth doped amplifying fibers based on atomic layer deposition. In: Proceedings of SPIE – The International Society for Optical EngineeringGoogle Scholar
  59. 59.
    Xu XD, Wang YC, Liu ZF (2005) Large-scale fabrication of uniform gold nanoparticles in ultrahigh vacuum. J Cryst Growth 285(3):372–379Google Scholar
  60. 60.
    Kim HW, Lee JW, Shim SH et al (2007) Controlled growth of SnO2 nanorods by thermal evaporation of Sn powders. J Korean Phys Soc 51(1):198–203Google Scholar
  61. 61.
    Liu WC, Cai W (2008) One-dimensional and quasi-one-dimensional ZnO nanostructures prepared by spray-pyrolysis-assisted thermal evaporation. Appl Surf Sci 254(10):3162–3166Google Scholar
  62. 62.
    Wang M, Fei GT (2009) Synthesis of tapered CdS nanobelts and CdSe nanowires with good optical property by hydrogen-assisted thermal evaporation. Nanoscale Res Lett 4(10):1166–1170Google Scholar
  63. 63.
    Ageeva SA, Bobrinetskii II, Konov VI et al (2009) 3D nanotube-based composites produced by laser irradiation. Quantum Electron 39(4):337–341Google Scholar
  64. 64.
    Choopun S, Tabata H, Kawai T (2005) Self-assembly ZnO nanorods by pulsed laser deposition under argon atmosphere. J Cryst Growth 274(1–2):167–172Google Scholar
  65. 65.
    Park HK, Schriver KE, Haglund Jr RF (2011) Resonant infrared laser deposition of polymer-nanocomposite materials for optoelectronic applications. Appl Phys A Mater Sci Process 105(3):583–592Google Scholar
  66. 66.
    Dolatshahi-Pirouz A, Jensen T, Vorup-Jensen T et al (2010) Synthesis of functional nanomaterials via colloidal mask templating and glancing angle deposition (glad). Adv Eng Mater 12(9):899–905Google Scholar
  67. 67.
    Merchan-Merchan W, Saveliev AV, Desai M (2009) Novel flame-gradient method for synthesis of metal oxide nanomaterials. In: Nanotechnology 2009: fabrication, particles, characterization, MEMS, electronics and photonics – technical proceedings of the 2009 NSTI nanotechnology conference and Expo, NSTI-Nanotech 2009, pp 76–79Google Scholar
  68. 68.
    Li X, Wang H, Robinson JT et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939–15944Google Scholar
  69. 69.
    Malfatti L, Innocenzi P (2011) Sol–gel chemistry: from self-assembly to complex materials. J Sol–Gel Sci Technol 60(3):226–235Google Scholar
  70. 70.
    Chen J, Li W (2011) Hydrothermal synthesis of high densified CdS polycrystalline microspheres under high gravity. Chem Eng J 168(2):903–908Google Scholar
  71. 71.
    Li H, Lu Z, Li Q et al (2011) Hydrothermal synthesis and properties of controlled α-Fe2O3 nanostructures in HEPES solution. Chem Asian J 6(9):2320–2331Google Scholar
  72. 72.
    Li Q, Kang Z, Mao B et al (2008) One-step polyoxometalate-assisted solvothermal synthesis of ZnO microspheres and their photoluminescence properties. Mater Lett 62(16):2531–2534Google Scholar
  73. 73.
    Lai Y, Lin Z, Chen Z et al (2010) Fabrication of patterned CdS/TiO2 heterojunction by wettability template-assisted electrodeposition. Mater Lett 64(11):1309–1312Google Scholar
  74. 74.
    Houlton A, Pike AR, Angel Galindo M et al (2009) DNA-based routes to semiconducting nanomaterials. Chem Commun (Cambridge, England) 14:1797–1806Google Scholar
  75. 75.
    Samano EC, Pilo-Pais M, Goldberg S et al (2011) Self-assembling DNA templates for programmed artificial biomineralization. Soft Matter 7(7):3240–3245Google Scholar
  76. 76.
    Eid C, Brioude A, Salles V et al (2010)Iron based 1d nanostructures by electrospinning process. In: Nanotechnology 2010: electronics, devices, fabrication, MEMS, fluidics and computational – technical proceedings of the 2010 NSTI nanotechnology conference and Expo, NSTI-Nanotech 2010, pp 95–98Google Scholar
  77. 77.
    Miao J, Miyauchi M, Simmons TJ et al (2010) Electrospinning of nanomaterials and applications in electronic components and devices. J Nanosci Nanotechnol 10(9):5507–5519Google Scholar
  78. 78.
    Jayasinghe SN (2008) Electrospray self-assembly: an emerging jet-based route for directly forming nanoscaled structures. Physica E 40(9):2911–2915Google Scholar
  79. 79.
    Rider DA, Liu K, Eloi JC et al (2008) Nanostructured magnetic thin films from organometallic block copolymers: pyrolysis of self-assembled polystyrene-block-poly(ferrocenylethylmethylsilane). ACS Nano 2(2):263–270Google Scholar
  80. 80.
    Feng X, Hu G, Hu J (2011) Solution-phase synthesis of metal and/or semiconductor homojunction/heterojunction nanomaterials. Nanoscale 3(5):2099–2117Google Scholar
  81. 81.
    Cha JN, Hung AM, Noh H (2010) Biomolecular architectures and systems for nanoscience engineering. In: Proceedings of SPIE – The International Society for Optical EngineeringGoogle Scholar
  82. 82.
    Darling SB (2007) Directing the self-assembly of block copolymers. Prog Polym Sci (Oxford) 32(10):1152–1204Google Scholar
  83. 83.
    Gerasopoulos K, McCarthy M, Banerjee P et al (2010) Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates. Nanotechnology 21(5)Google Scholar
  84. 84.
    Giacomelli C, Schmidt V, Aissou K et al (2010) Block copolymer systems: from single chain to self-assembled nanostructures. Langmuir 26(20):15734–15744Google Scholar
  85. 85.
    Kumar CV, Deshapriya IK, Duff MR Jr et al (2010) Novel, simple, versatile and general synthesis of nanoparticles made from proteins, nucleic acids and other materials. J Nano Res 12:77–88Google Scholar
  86. 86.
    Li S, Ji Y, Chen P et al (2010) Surface-induced phase transitions in dense nanoparticle arrays of lamella-forming diblock copolymers. Polymer 51(21):4994–5001Google Scholar
  87. 87.
    Liu LH, Yan M (2010) Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. Acc Chem Res 43(11):1434–1443Google Scholar
  88. 88.
    Lohuller T, Aydin D, Schwieder M et al (2011) Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases 6(1):MR1–MR12Google Scholar
  89. 89.
    Zhang Z, Fu Y, Li B et al (2011) Self-assembly-based structural DNA nanotechnology. Curr Org Chem 15(4):534–547Google Scholar
  90. 90.
    Carter JD, Labean TH (2011) Organization of inorganic nanomaterials via programmable DNA self-assembly and peptide molecular recognition. ACS Nano 5(3):2200–2205Google Scholar
  91. 91.
    Hegmann T, Qi H, Marx VM (2007) Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J Inorg Organomet Polym Mater 17(3):483–508Google Scholar
  92. 92.
    Holmes JD, Lyons DM, Ziegler KJ (2003) Supercritical fluid synthesis of metal and semiconductor nanomaterials. Chem Eur J 9(10):2144–2150Google Scholar
  93. 93.
    Hung AM, Micheel CM, Bozano LD et al (2010) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 5(2):121–126Google Scholar
  94. 94.
    Hung AM, Noh H, Cha JN (2010) Recent advances in DNA-based directed assembly on surfaces. Nanoscale 2(12):2530–2537Google Scholar
  95. 95.
    Ikkala O, Ras RHA, Houbenov N et al (2009) Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs. Faraday Discuss 143:95–107Google Scholar
  96. 96.
    Jaswal VS, Banipal PK, Kaura A et al (2011) Bovine serum albumin driven interfacial growth of selenium-gold/silver hybrid nanomaterials. J Nanosci Nanotechnol 11(5):3824–3833Google Scholar
  97. 97.
    Liyao Z, Mi Z, Qiang Y et al (2009) Asymmetric modification and controlled assembly of nanoparticles. Prog Chem 21(7–8):1389–1397Google Scholar
  98. 98.
    Jagminasa A, Valsiūnas I, Šimkūnaitėa B, Vaitkus R (2008) Peculiarities of bi0 nanowire arrays growth within the alumina template pores by ac electrolysis. J Crys Growth 310(19):4351–4357Google Scholar
  99. 99.
    Ma MG, Zhu JF (2009) A facile solvothermal route to synthesis of a-alumina with bundle-like and flower-like morphologies. Mater Lett 63(11):881–883Google Scholar
  100. 100.
    Tsai KT, Huang YR, Lai MY et al (2010) Identical-length nanowire arrays in anodic alumina templates. J Nanosci Nanotechnol 10(12):8293–8297Google Scholar
  101. 101.
    Wan L, Fu H, Shi K et al (2008) Simple synthesis of mesoporous alumina thin films. Mater Lett 62(10–11):1525–1527Google Scholar
  102. 102.
    Chifen AN, Knoll W, Forch R (2007) Fabrication of nano-porous silicon oxide layers by plasma polymerisation methods. Mater Lett 61(8–9):1722–1724Google Scholar
  103. 103.
    Jiao L, Zhang L, Wang X et al (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880Google Scholar
  104. 104.
    Barbieri O, Hahn M, Herzog A et al (2005) Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43(6):1303–1310Google Scholar
  105. 105.
    Chae HK, Siberio-Perez DY, Kim J et al (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974):523–527Google Scholar
  106. 106.
    McIlroy DN, Corti G, Cantrell T et al (2009) Engineering high surface area catalysts for clean tech applications. In: Technical proceedings of the 2009 NSTI nanotechnology conference and expo, NSTI-Nanotech 2009, pp 111–114Google Scholar
  107. 107.
    Acharya S, Sarma DD, Golan Y et al (2009) Shape-dependent confinement in ultrasmall zero-, one-, and two-dimensional pbs nanostructures. J Am Chem Soc 131(32):11282–11283Google Scholar
  108. 108.
    Tsai C, Tseng RJ, Yang Y et al (2008) Quantum dot functionalized one dimensional virus templates for nanoelectronics. J Nanoelectron Optoelectron 3(2):133–136Google Scholar
  109. 109.
    Kaul AB, Megerian K, Bagge L et al (2010) Carbon-based nanodevices for electronic and optical applications. In: Nanotechnology 2010: electronics, devices, fabrication, MEMS, Fluidics and computational – technical proceedings of the 2010 NSTI nanotechnology conference and expo, NSTI-Nanotech 2010, pp 304–307Google Scholar
  110. 110.
    Ravindiran, Shankar P (2011) Nanoelectronics approach based on nano structures & nanomaterial. In: IET conference publications, pp 721–726. July 20–22, 2011, Chennai, IndiaGoogle Scholar
  111. 111.
    Botey M, Martorell J, Lozano G et al (2010) Anomalous group velocity at the high energy range of real 3d photonic nanostructures. In: Proceedings of SPIE – The International Society for Optical EngineeringGoogle Scholar
  112. 112.
    Chung YW, Leu IC, Lee JH et al (2005) Fabrication and characterization of photonic crystals from colloidal processes. J Cryst Growth 275(1–2):e2389–e2394Google Scholar
  113. 113.
    Botey M, Lozano G, Marguez H et al (2011) Anomalous light propagation, finite size-effects and losses in real 3d photonic nanostructures. In: International conference on transparent optical networks. June 26–30, 2011, Stockholm, SwedenGoogle Scholar
  114. 114.
    Jiang P, Sun CH, Linn NC et al (2007) Self-assembled photonic crystals and templated nanomaterials. Curr Nanosci 3(4):296–305Google Scholar
  115. 115.
    Kratochvil BE, Dong L, Zhang L et al (2007) Automatic nanorobotic characterization of anomalously rolled-up sige/si helical nanobelts through vision-based force measurement. In: Proceedings of the 3rd IEEE international conference on automation science and engineering (IEEE CASE 2007), pp 57–62. September 22–25, 2007, Scottsdale, AZ, USAGoogle Scholar
  116. 116.
    Kim J, Kim BC, Lopez-Ferrer D et al (2010) Nanobiocatalysis for protein digestion in proteomic analysis. Proteomics 10(4):687–699Google Scholar
  117. 117.
    Euliss LE, DuPont JA, Gratton S et al (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35(11):1095–1104Google Scholar
  118. 118.
    Soto CM, Ratna BR (2010) Virus hybrids as nanomaterials for biotechnology. Curr Opin Biotechnol 21(4):426–438Google Scholar
  119. 119.
    Stender CL, Sekar P, Odom TW (2008) Solid-state chemistry on a surface and in a beaker: unconventional routes to transition metal chalcogenide nanomaterials. J Solid State Chem 181(7):1621–1627Google Scholar
  120. 120.
    Geng L, Jiang P, Xu J et al (2009) Applications of nanotechnology in capillary electrophoresis and microfluidic chip electrophoresis for biomolecular separations. Prog Chem 21(9):1905–1921Google Scholar
  121. 121.
    Vicens J, Vicens Q (2011) Emergences of supramolecular chemistry: from supramolecular chemistry to supramolecular science. J Incl Phenom Macrocycl Chem 71(3–4):251–274Google Scholar
  122. 122.
    Petrovie ZL, Radmilovic-Radenovic M, Maguire P et al (2010) Application of non-equilibrium plasmas in top-down and bottom-up nanotechnologies and biomedicine. In: Proceedings of the 2010 27th international conference on microelectronics (MIEL 2010), pp 29–36. May 16-19, 2010, Aleksan Nis, SerbiaGoogle Scholar
  123. 123.
    Pierstorff E, Ho D (2007) Monitoring, diagnostic, and therapeutic technologies for nanoscale medicine. J Nanosci Nanotechnol 7(9):2949–2968Google Scholar
  124. 124.
    Verma S, Domb AJ, Kumar N (2011) Nanomaterials for regenerative medicine. Nanomedicine 6(1):157–181Google Scholar
  125. 125.
    Chen D, Gao Y, Wang G et al (2007) Surface tailoring for controlled photoelectrochemical properties: effect of patterned tio2 microarrays. J Phys Chem C 111(35):13163–13169Google Scholar
  126. 126.
    Ji C, Park HS (2007) Characterizing the elasticity of hollow metal nanowires. Nanotechnology 18(11)Google Scholar
  127. 127.
    Park HS, Cai W, Espinosa HD et al (2009) Mechanics of crystalline nanowires. MRS Bull 34(3):178–183Google Scholar
  128. 128.
    Yu M, Long YZ, Sun B et al (2012) Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale 4(9):2783–2796Google Scholar
  129. 129.
    Bernardi M, Giulianini M, Grossman JC (2010) Self-assembly and its impact on interfacial charge transfer in carbon nanotube/p3ht solar cells. ACS Nano 4(11):6599–6606Google Scholar
  130. 130.
    Jakhmola A, Bhandari R, Pacardo DB et al (2010) Peptide template effects for the synthesis and catalytic application of pd nanoparticle networks. J Mater Chem 20(8):1522–1531Google Scholar
  131. 131.
    Jiao H (2009) Recent developments and applications of iron oxide nanomaterials. Fenmo Yejin Cailiao Kexue yu Gongcheng/Mater Sci Eng Powder Metallurgy 14(3):131–137Google Scholar
  132. 132.
    Baikousi M, Bourlinos AB, Douvalis A et al (2012) Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in removal of hexavalent chromium ions from aqueous solutions. Langmuir 28(8):3918–3930Google Scholar
  133. 133.
    Banerjee AN (2011) The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol Sci Appl 4(1):35–65Google Scholar
  134. 134.
    Guo S, Dong S (2011) Metal nanomaterial-based self-assembly: development, electrochemical sensing and sers applications. J Mater Chem 21(42):16704–16716Google Scholar
  135. 135.
    Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal Environ 88(1–2):1–24Google Scholar
  136. 136.
    Guo S, Wang E (2011) Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery. Acc Chem Res 44(7):491–500Google Scholar
  137. 137.
    Ochekpe NA, Olorunfemi PO, Ngwuluka NC (2009) Nanotechnology and drug delivery. Part 1: background and applications. Trop J Pharm Res 8(3):265–274Google Scholar
  138. 138.
    Di Francia G, Alfano B, La Ferrara V (2009) Conductometric gas nanosensors. Journal of Sensors 2009:18, Article ID 659275, doi: 10.1155/2009/659275
  139. 139.
    Sugiyama S, Toriyama T, Nakamura K et al (2010) Evaluation and analysis of physical properties of nanomaterials for highly sensitive mechanical sensing devices. IEEJ Trans Sens Micromach 130(5):146–151Google Scholar
  140. 140.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854Google Scholar
  141. 141.
    Arici AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377Google Scholar
  142. 142.
    Lee KT, Cho J (2011) Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 6(1):28–41Google Scholar
  143. 143.
    Basu S, Basu PK (2011) Nanomaterials and chemical sensors. Sens Transducers 134(11):1–31Google Scholar
  144. 144.
    Jimenez-Cadena G, Riu J, Rius FX (2007) Gas sensors based on nanostructured materials. Analyst 132(11):1083–1099Google Scholar
  145. 145.
    Jung I, Dikin D, Park S et al (2008) Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J Phys Chem C 112(51):20264–20268Google Scholar
  146. 146.
    Lu G, Ocola LE, Chen J (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94(8)Google Scholar
  147. 147.
    Lu G, Ocola LE, Chen J (2009) Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44):445502–445510Google Scholar
  148. 148.
    Shafiei M, Spizzirri PG, Arsat R et al (2010) Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J Phys Chem C 114(32):13796–13801Google Scholar
  149. 149.
    Arsat R, Breedon M, Shafiei M et al (2009) Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem Phys Lett 467(4–6):344–347Google Scholar
  150. 150.
    Qin L, Xu J, Dong X et al (2008) The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 19(18)Google Scholar
  151. 151.
    Spencer MJS (2012) Gas sensing applications of 1d-nanostructured zinc oxide: insights from density functional theory calculations. Prog Mater Sci 57(3):437–486Google Scholar
  152. 152.
    Madamopoulos N, Siganakis G, Tsigara A et al (2005) Diffractive optical elements for photonic gas sensors. In: Proceedings of SPIE – The International Society for Optical EngineeringGoogle Scholar
  153. 153.
    Gracheva IE, Moshnikov VA, Karpova SS et al (2011) Net-like structured materials for gas sensors. J Phys Conf Ser 291(1)Google Scholar
  154. 154.
    Fowler JD, Allen MJ, Tung VC et al (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306Google Scholar
  155. 155.
    Wang J, Yang S, Guo D et al (2009) Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochem Commun 11(10):1892–1895Google Scholar
  156. 156.
    Wang Y, Lu J, Tang L et al (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem 81(23):9710–9715Google Scholar
  157. 157.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825Google Scholar
  158. 158.
    Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21(10):1192–1199Google Scholar
  159. 159.
    Dong CK, Dae JK (2008) Molecular recognition and specific interactions for biosensing applications. Sensors 8(10):6605–6641Google Scholar
  160. 160.
    Lu CH, Yang HH, Zhu CL et al (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48(26):4785–4787Google Scholar
  161. 161.
    Hyun S, Park TH (2011) Integration of biomolecules and nanomaterials: towards highly selective and sensitive biosensors. Biotechnol J 6(11):1310–1316Google Scholar
  162. 162.
    Lin YM, Jenkins KA, Alberto VG et al (2009) Operation of graphene transistors at giqahertz frequencies. Nano Lett 9(1):422–426Google Scholar
  163. 163.
    Lu J, Drzal LT, Worden RM et al (2007) Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem Mater 19(25):6240–6246Google Scholar
  164. 164.
    Xu H, Zeng L, Xing S et al (2008) Ultrasensitive voltammetric detection of trace lead(ii) and cadmium(ii) using MWCNTs-nafion/bismuth composite electrodes. Electroanalysis 20(24):2655–2662Google Scholar
  165. 165.
    Tamiya E (2006) Nanomaterials based optical and electrochemical biosensors. In: 2006 I.E. nanotechnology materials and devices conference (NMDC), pp 288–289. October 22–25, 2006, Gyeongju, KoreaGoogle Scholar
  166. 166.
    Zheng G, Lieber CM (2011) Nanowire biosensors for label-free, real-time, ultrasensitive protein detection. Methods Mol Biol 790:223–237Google Scholar
  167. 167.
    Choi BG, Park H, Park TJ et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5):2910–2918Google Scholar
  168. 168.
    Li L, Du Z, Liu S et al (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82(5):1637–1641Google Scholar
  169. 169.
    Robinson JT, Perkins FK, Snow ES et al (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140Google Scholar
  170. 170.
    Bi S, Zhou H, Zhang S (2009) Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassy of cancer biomarker. Biosens Bioelectron 24:2961–2966Google Scholar
  171. 171.
    Shao N, Lu S, Wickstrom E et al (2007) Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology 18:315101Google Scholar
  172. 172.
    Teker K, Sirdeshmukh R, Sivakumar K et al (2005) Applications of carbon nanotubes for cancer research. Nanobiotechnology 1:171–182Google Scholar
  173. 173.
    Dasgupta A, Kumar GVP (2012) Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity. Appl Opt 51(11):1688–1693Google Scholar
  174. 174.
    Langhammer C, Larsson EM, Kasemo B et al (2010) Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Lett 10(9):3529–3538Google Scholar
  175. 175.
    Karuwan C, Wisitoraat A, Maturos T et al (2009) Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection. Talanta 79:995–1000Google Scholar
  176. 176.
    Panini N, Messina G, Salinas E et al (2008) Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples. Biosens Bioelectron 23:1145–1151Google Scholar
  177. 177.
    Phokharatkul D, Karuwan C, Lomas T et al (2011) AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing. Talanta 84:1390–1395Google Scholar
  178. 178.
    Yuan Q, Duan HH, Li LL et al (2009) Controlled synthesis and assembly of ceria-based nanomaterials. J Colloid Interface Sci 335(2):151–167Google Scholar
  179. 179.
    Joo SH, Choi SJ, Oh I et al (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412(6843):169–172Google Scholar
  180. 180.
    Ariga K, Li M, Richards GJ et al (2011) Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. J Nanosci Nanotechnol 11(1):1–13Google Scholar
  181. 181.
    Feng W, Sun LD, Zhang YW et al (2010) Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution-based process. Coord Chem Rev 254(9–10):1038–1053Google Scholar
  182. 182.
    Anthony NR, Bisignano AJ, Mehta AK et al (2012) Structural heterogeneities of self-assembled peptide nanomaterials. In: Progress in biomedical optics and imaging – Proceedings of SPIE. February 4–9, 2012, California, USAGoogle Scholar
  183. 183.
    Lazzari M, Rodriguez-Abreu C, Rivas J et al (2006) Self-assembly: a minimalist route to the fabrication of nanomaterials. J Nanosci Nanotechnol 6(4):892–905Google Scholar
  184. 184.
    Ariga K, Hill JP, Lee MV et al (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9(1)Google Scholar
  185. 185.
    Arning V, Leenen MAM, Steiger J et al (2009) New nanomaterials enable low cost flexible electronics. When circuits are printed, labels can talk. Vakuum in Forschung und Praxis 21(2):A18–A23Google Scholar
  186. 186.
    Jakubowska M, Sloma M, Mlozniak A (2009) Polymer composites based on carbon nanotubes for printed electronics. In: ISSE 2009: 32nd International spring seminar on electronics technology: hetero system integration, the path to new solutions in the modern electronics – conference proceedings. May 13–17, 2009, Brno, Czech RepublicGoogle Scholar
  187. 187.
    Jubete E, Loaiza OA, Ochoteco E et al (2009) Nanotechnology: a tool for improved performance on electrochemical screen-printed (bio)sensors. J SensGoogle Scholar
  188. 188.
    Gilje S, Han S, Wang M et al (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398Google Scholar
  189. 189.
    Qu Y, Li X, Chen G et al (2008) Synthesis of Cu2O nano-whiskers by a novel wet-chemical route. Mater Lett 62(6–7):886–888Google Scholar
  190. 190.
    Singh DP, Ojha AK, Srivastava ON (2009) Synthesis of different Cu(OH)2 and CuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wet chemical route. J Phys Chem C 113(9):3409–3418Google Scholar
  191. 191.
    Dua V, Surwade SP, Ammu S et al (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49(12):2154–2157Google Scholar
  192. 192.
    Manga KK, Wang S, Jaiswal M et al (2010) High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. Adv Mater 22(46):5265–5270Google Scholar
  193. 193.
    Joshi M, Bhattacharyya A, Ali SW (2008) Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Textile Res 33(3):304–317Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Nanoelectronics and MEMS LaboratoryNational Electronics and Computer Technology Center (NECTEC), National Sciences and Technology Development Agency (NSTDA)Pathum ThaniThailand

Personalised recommendations