Advertisement

Implanted Sensors

Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 13)

Abstract

Implanted sensor research has primarily been driven by the growing incidence of diabetes and the need to improve the quality of life for millions with the disease. Research to provide discreet and accurate glucose monitoring systems has a long history, culminating in three commercially available continuous glucose monitoring (CGM) systems (Medtronic, Dexcom, and Abbott). Although these systems are a significant step toward better glucose monitoring, research continues to overcome technical issues and enhance patient usability. The research includes performance improvements to current commercial electrochemical CGM, new optical-based systems in development, and long-range research incorporating unique platforms and nanotechnology. The research described only touches the surface of the ideas being percolated to solve the growing need for implanted sensors, for glucose and beyond; there are many other novel concepts incubating.

Keywords

Biocompatibility Diabetes Electrochemical Glucose Implanted sensor In vivo Optical 

Abbreviations

ASK

Amplitude shift keying

CGM

Continuous glucose monitor

CLSI

Clinical and Laboratory Standards Institute

CNT

Carbon nanotube

Con-A

Concanavalin-A

DCCT

Diabetes Complications and Control Trial

FAD

Flavin adenine dinucleotide

FET

Field-effect transistors

FRET

Fluorescence resonance binding protein

FSK

Frequency shift keying

GBP

Glucose binding protein

GFP

Green fluorescent protein

GGBP

Glucose galactose binding protein

GOx

Glucose oxidase

MAD

Mean absolute difference

MAPD

Mean absolute percent difference

MARD

Mean absolute relative difference (same as MAPD)

Med

Mediator

MOS

Metal oxide semiconductor

NIR

Near infrared

PEG

Polyethylene glycol

PSK

Phase shift keying

PTFE

Polytetrafluoroethylene

PVA

Polyvinyl alcohol

QCM

Quartz crystal microbalance

QD

Quantum dot

RFID

Radio-frequency identification

SAW

Surface acoustic wave

SMSI

Sensors for Medicine and Science Inc.

SPEES-PES

Sulfonated polyether-ether sulfone-polyether sulfone

SPR

Surface plasmon resonance

References

  1. 1.
    Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20:2435–2453. doi: 10.1016/j.bios.2004.11.012 CrossRefGoogle Scholar
  2. 2.
    Wilson GS, Johnson MA (2008) In-vivo electrochemistry: what can we learn about living systems? Chem Rev (Washington, DC, U S) 108:2462–2481, doi:papers2://publication/doi/10.1021/cr068082iCrossRefGoogle Scholar
  3. 3.
    Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(Art. 1):29–45Google Scholar
  4. 4.
    Clark LC Jr, Sachs G (1968) Bioelectrodes for tissue metabolism. Ann N Y Acad Sci 148(1):133–153CrossRefGoogle Scholar
  5. 5.
    Shichiri M, Kawamori R, Yamasaki Y, Hakui N, Abe H (1982) Wearable artificial endocrine pancrease with needle-type glucose sensor. Lancet 2:1129–1131CrossRefGoogle Scholar
  6. 6.
    Shichiri M, Kawamori R, Goriya Y, Yamasaki Y, Hakui N, Abe H (1983) Wearable-type artificial endocrine pancreas for feedback control. Characteristics and results in depancreatized dogs. Int Congr Ser – Excerpta Med 607:339–346Google Scholar
  7. 7.
    Clemens AH, Chang PH, Myers RW (1977) The development of biostator, a glucose controlled insulin infusion system (gciis). Horm Metab Res, Suppl Ser 7:23–33Google Scholar
  8. 8.
    Pfeiffer EF, Wolfgang K. The artificial pancreas. Hoechst Aktiengesellschaft 6230 Frankfurt (M) 80, FrankfurtGoogle Scholar
  9. 9.
    Shichiri M, Asakawa N, Yamasaki Y, Kawamori R, Abe H (1986) Telemetry glucose monitoring device with needle-type glucose sensor: a useful tool for blood glucose monitoring in diabetic individuals. Diabetes Care 9:298–301CrossRefGoogle Scholar
  10. 10.
    Shichiri M, Kawamori R, Goriya Y, Yamasaki Y, Nomura M, Hakui N, Abe H (1983) Glycemic control in pancreatectomized dogs with a wearable artificial endocrine pancreas. Diabetologia 24:179–184CrossRefGoogle Scholar
  11. 11.
    Hoshino M, Haraguchi Y, Mizushima I, Sakai M (2009) Recent progress in mechanical artificial pancreas. J Artif Organs 12:141–149. doi: 10.1007/s10047-009-0463-6 CrossRefGoogle Scholar
  12. 12.
    Kowalski AJ (2009) Can we really close the loop and how soon? Accelerating the availability of an artificial pancreas: a roadmap to better diabetes outcomes. Diabetes Technol Ther 11:S113–S119. doi: 10.1089/dia.2009.0031 CrossRefGoogle Scholar
  13. 13.
    Hovorka R (2011) Closed-loop insulin delivery: from bench to clinical practice. Nat Rev Endocrinol 7:385–395. doi: 10.1038/nrendo.2011.32 CrossRefGoogle Scholar
  14. 14.
    Steil GM, Panteleon AE, Rebrin K (2004) Closed-loop insulin delivery-the path to physiological glucose control. Adv Drug Deliv Rev 56(2):125–144CrossRefGoogle Scholar
  15. 15.
    Rigby GP, Crump PW, Vadgama P (1996) Stabilized needle electrode system for in vivo glucose monitoring based on open flow microperfusion. Analyst (Cambridge, United Kingdom) 121(6):871–875CrossRefGoogle Scholar
  16. 16.
    Hanning I, Vadgama P, Covington AK, Alberti KGMM (1986) Improved blood compatibility at a glucose enzyme electrode used for extracorporeal monitoring. Anal Lett 19:461–478CrossRefGoogle Scholar
  17. 17.
    Gilligan BJ, Shults MC, Rhodes RK, Updike SJ (1994) Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model. Diabetes Care 17:882–887CrossRefGoogle Scholar
  18. 18.
    Shults MC, Rhodes RK, Updike SJ, Gilligan BJ, Reining WN (1994) A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Trans Biomed Eng 41:937–942CrossRefGoogle Scholar
  19. 19.
    Updike SJ, Shults M, Ekman B (1982) Implanting the glucose enzyme electrode: problems, progress, and alternative solutions. Diabetes Care 5:207–212. doi: 10.2337/diacare.5.3.207 CrossRefGoogle Scholar
  20. 20.
    Updike SJ, Hicks GP (1967) Reagentless substrate analysis with immobilized enzymes. Science 158:270–272CrossRefGoogle Scholar
  21. 21.
    Lucisano JY, Gough DA (1988) Transient response of the two-dimensional glucose sensor. Anal Chem 60(13):1272–1281CrossRefGoogle Scholar
  22. 22.
    Moatti-Sirat D, Capron F, Poitout V, Reach G, Bindra DS, Zhang Y, Wilson GS, Thevenot DR (1992) Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue. Diabetologia 35:224–230CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Hu Y, Wilson GS, Moatti-Sirat D, Poitout V, Reach G (1994) Elimination of the acetaminophen interference in an implantable glucose sensor. Anal Chem 66(7):1183–1188CrossRefGoogle Scholar
  24. 24.
    Benmakroha Y, Christie I, Desai M, Vadgama P (1996) Poly(vinyl chloride), polysulfone and sulfonated polyether-ether sulfone composite membranes for glucose and hydrogen peroxide perm-selectivity in amperometric biosensors. Analyst (Cambridge, U K) 121:521–526. doi:10.1039/an9962100521Google Scholar
  25. 25.
    Centonze D, Guerrieri A, Malitesta C, Palmisano F, Zambonin PG (1992) Interference-free glucose sensor based on glucose oxidase immobilized in an overoxidized non-conducting polypyrrole film. Fresenius' J Anal Chem 342:729–733. doi: 10.1007/bf00321865 CrossRefGoogle Scholar
  26. 26.
    Christie IM, Vadgama P, Lloyd S (1993) Modification of electrode surfaces with oxidized phenols to confer selectivity to amperometric biosensors for glucose determination. Anal Chim Acta 274:191–199. doi: 10.1016/0003-2670(93)80465-w CrossRefGoogle Scholar
  27. 27.
    Lowry JP, McAteer K, El ASS, Duff A, O'Neill RD (1994) Characterization of glucose oxidase-modified poly(phenylenediamine)-coated electrodes in vitro and in vivo: homogeneous interference by ascorbic acid in hydrogen peroxide detection. Anal Chem 66:1754–1761. doi: 10.1021/ac00082a025 CrossRefGoogle Scholar
  28. 28.
    Vaidya R, Wilkins E (1994) Use of charged membranes to control interference by body chemicals in a glucose biosensor. Med Eng Phys 16:416–421CrossRefGoogle Scholar
  29. 29.
    Reach G, Wilson GS (1992) Can continuous glucose monitoring be used for the treatment of diabetes. Anal Chem 64(6):381A–386AGoogle Scholar
  30. 30.
    Grunstein E, Abel P, Gens A, Eich K, Von WT (1989) Preparation and validation of implantable electrodes for the measurement of oxygen and glucose. Biomed Biochim Acta 48:911–917Google Scholar
  31. 31.
    Allen DJ, Johnson KW, Nevin RS (1993) Hydrophilic polyurethane membranes for electrochemical glucose sensors. Application: EP Patent 92-308837 535898Google Scholar
  32. 32.
    Van Antwerp WP (1996) Polyurethane/polyurea compositions containing silicone for biosensor membranes. Application: WO Patent 96-US3987 9630431Google Scholar
  33. 33.
    Van Antwerp B (1998) Siloxane-containing biocompatible polyurethane membranes suitable for in vivo use. Application: WO Patent 96-US15386 9813685Google Scholar
  34. 34.
    Claremont DJ, Penton C, Pickup JC (1986) Potentially-implantable, ferrocene-mediated glucose sensor. J Biomed Eng 8:272–274. doi: 10.1016/0141-5425(86)90095-6 CrossRefGoogle Scholar
  35. 35.
    Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56:667–671. doi: 10.1021/ac00268a018 CrossRefGoogle Scholar
  36. 36.
    Thome-Duret V, Gangnerau MN, Zhang Y, Wilson GS, Reach G (1996) Modification of the sensitivity of glucose sensor implanted into subcutaneous tissue. Diabetes Metab 22(3):174–178Google Scholar
  37. 37.
    Pishko MV, Michael AC, Heller A (1991) Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels. Anal Chem 63(20):2268–2272CrossRefGoogle Scholar
  38. 38.
    Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev (Washington, DC) 108:2482–2505. doi: papers2://publication/doi/10.1021/cr068069y CrossRefGoogle Scholar
  39. 39.
    Updike SJ, Shults MC, Capelli CC, von Heimburg D, Rhodes RK, Joseph-Tipton N, Anderson B, Koch DD (1988) Laboratory evaluation of new reusable blood glucose sensor. Diabetes Care 11:801–807CrossRefGoogle Scholar
  40. 40.
    Bergs EA (1992) The failure of the elco 'direct 30/30' reusable glucose sensor: a user's perspective. Biosens Bioelectron 7:9–10CrossRefGoogle Scholar
  41. 41.
    Poscia A, Mascini M, Moscone D, Luzzana M, Caramenti G, Cremonesi P, Valgimigli F, Bongiovanni C, Varalli M (2003) A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1). Biosens Bioelectron 18(7):891–898CrossRefGoogle Scholar
  42. 42.
    Glucoscout in-line hospital continuous glucose monitoring system. Via Medical Div of International Biomedical. http://www.int-bio.com/continuous-blood-monitoring.php?productsubcategory=blood-glucose. Accessed 4 Dec 2011 (2011)
  43. 43.
    CLSI (2008) Performance metrics for continuous interstitial glucose monitoring; approved guideline, 1st edn. Clinical and Laboratory Standards Institute (CLSI)Google Scholar
  44. 44.
    Lodwig V, Heinemann L (2003) Continuous glucose monitoring with glucose sensors: calibration and assessment criteria. Diabetes Technol Ther 5(4):572–586CrossRefGoogle Scholar
  45. 45.
    Thome-Duret V, Reach G, Gangnerau MN, Lemonnier F, Klein JC, Zhang Y, Hu Y, Wilson GS (1996) A subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood. Anal Chem 68(21):3822–3826CrossRefGoogle Scholar
  46. 46.
    Thome-Duret V, Aussedat B, Reach G, Gangnerau MN, Lemonnier F, Klein JC, Zhang Y, Hu Y, Wilson GS (1998) Continuous glucose monitoring in the free-moving rat. Metab Clin Exp 47(7):799–803CrossRefGoogle Scholar
  47. 47.
    Brenneman AJ, Smous JE (2008) Continuous analyte monitoring assembly and method of forming the same. WO2008115409A1Google Scholar
  48. 48.
    Ward RS, Tian Y, Ward WK, Anderson E, House J (2006) Biosensor membrane material and drug delivery apparatus. US20060183871A1Google Scholar
  49. 49.
    Ward WK, Sass RG (2007) Multiple use analyte sensing assembly. US7225008B1Google Scholar
  50. 50.
    Brenneman A, Sass RG, Ward WK, Matson J, Slomski D, Bruce R, Wood L, Federiuk I (2008) Adhesive overbandage. US20080269657A1Google Scholar
  51. 51.
    Ward WK (2010) Method and apparatus for background current arrangements for a biosensor. US20100198031A1Google Scholar
  52. 52.
    Kaplan D, Ward WK (2011) Additional calibration for glucose sensor. WO2011028670A2Google Scholar
  53. 53.
    Salins LLE, Ware RA, Ensor CM, Daunert S (2001) A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein. Anal Biochem 294(1):19–26CrossRefGoogle Scholar
  54. 54.
    Thomas KJ, Sherman DB, Amiss TJ, Andaluz SA, Pitner JB (2006) A long-wavelength fluorescent glucose biosensor based on bioconjugates of galactose/glucose binding protein and nile red derivatives. Diabetes Technol Ther 8:261–268. doi: 10.1089/dia.2006.8.261 CrossRefGoogle Scholar
  55. 55.
    Amiss TJ, Sherman DB, Nycz CM, Andaluz SA, Pitner JB (2007) Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor. Protein Sci 16:2350–2359. doi: 10.1110/ps.073119507 CrossRefGoogle Scholar
  56. 56.
    Lakowicz JR, Maliwal B (1992) Optical sensing of glucose using phase-modulation fluorimetry. Anal Chim Acta 271:155–164. doi: 10.1016/0003-2670(93)80563-z CrossRefGoogle Scholar
  57. 57.
    Lakowicz JR, Maliwal BP, Koen PA (1993) Method using luminescence lifetimes and energy transfer for quantification of saccharides. CA2087411A1Google Scholar
  58. 58.
    Saxl T, Khan F, Ferla M, Birch D, Pickup J (2011) A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein. Analyst (Cambridge, UK) 136:968–972. doi: 10.1039/c0an00430h CrossRefGoogle Scholar
  59. 59.
    Veetil JV, Jin S, Ye K (2011) A glucose sensor protein for continuous glucose monitoring. Biosens Bioelectron 26:1650–1655. doi: 10.1016/j.bios.2010.08.052 CrossRefGoogle Scholar
  60. 60.
    Ballerstadt R, Schultz JS (2000) A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring. Anal Chem 72(17):4185–4192CrossRefGoogle Scholar
  61. 61.
    Cote GL, Pishko MV, Sirkar K, Russell R, Anderson RR (2002) Hydrogel particle compositions and methods for glucose detection. Application: US Patent 99-354914 6485703Google Scholar
  62. 62.
    Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565. doi: 10.1016/j.bios.2004.10.002 CrossRefGoogle Scholar
  63. 63.
    James TD, Sandanayake KRAS, Shinkai S (1994) A glucose-specific molecular fluorescence sensor. Angew Chem 106:2287–2289CrossRefGoogle Scholar
  64. 64.
    Gamsey S, Suri JT, Wessling RA, Singaram B (2006) Continuous glucose detection using boronic acid-substituted viologens in fluorescent hydrogels: linker effects and extension to fiber optics. Langmuir 22:9067–9074. doi: 10.1021/la0617053 CrossRefGoogle Scholar
  65. 65.
    Markle DR, Markle WH (2009) Fiber-optic glucose sensor for percutaneous intravascular deployment without an indwelling cannula. WO2009129186A2Google Scholar
  66. 66.
    Suri JT, Cordes DB, Cappuccio FE, Wessling RA, Singaram B (2003) Monosaccharide detection with 4,7-phenanthrolinium salts: charge-induced fluorescence sensing. Langmuir 19:5145–5152. doi: 10.1021/la034270h CrossRefGoogle Scholar
  67. 67.
    Kristensen JS, Gregorius K, Struve C, Frederiksen JM, Yu Y (2006) Sensor for detection of carbohydrate. WO2006061207A1Google Scholar
  68. 68.
    Colvin AE, Mortellaro MA, Modzelewska A (2008) Preparation of arylboronic acid derivatives as oxidation resistant indicator molecules. WO2008066921A2Google Scholar
  69. 69.
    Colvin AE, O'Connor CJ, Ferraro DC (2010) Wireless optical sensor assembly. WO2010033901A1Google Scholar
  70. 70.
    Robert Carlson CT (2010) Development of the sensing system for implantable glucose sensor. Receptors LLC, ChaskaGoogle Scholar
  71. 71.
    Chaudhary A, Raina M, Harma H, Hanninen P, McShane MJ, Srivastava R (2009) Evaluation of glucose sensitive affinity binding assay entrapped in fluorescent dissolved-core alginate microspheres. Biotechnol Bioeng 104:1075–1085. doi: 10.1002/bit.22500 CrossRefGoogle Scholar
  72. 72.
    Chaudhary A, Harma H, Hanninen P, McShane MJ, Srivastava R (2011) Glucose response of near-infrared alginate-based microsphere sensors under dynamic reversible conditions. Diabetes Technol Ther 13:827–835. doi: 10.1089/dia.2011.0057 CrossRefGoogle Scholar
  73. 73.
    Gough DA, Kumosa LS, Routh TL, Lin JT, Lucisano JY (2010) Function of an implanted tissue glucose sensor for more than 1 year in animals. Sci Transl Med 2. doi:10.1126/scitranslmed.3001148Google Scholar
  74. 74.
    Grantham DH, Jain F, Papadimitrakopoulos F, Burgess D (2008) Analyte sensing device with external control unit and implantable biosensor for continuously monitoring metabolic levels of analytes. WO2008039543A1Google Scholar
  75. 75.
    Papadimitrakopoulos F, Vaddiraju S, Jain FC, Tomazos IC (2010) Manufacture and use of electrochemical enzymic biosensor for continuous monitoring of metabolites and proteins. US20100116691A1Google Scholar
  76. 76.
    Beach RD, Kuster FV, Moussy F (1999) Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring. IEEE Trans Instrum Meas 48:1239–1245. doi: 10.1109/19.816143 CrossRefGoogle Scholar
  77. 77.
    Rawer R, Li Q, Stork W, Mueller-Glaser KD (2004) Implantable osmotic-pressure-based glucose sensor with non-invasive optical readout. Proceedings of SPIE-The International Society for Optical Engineering 5275 (BioMEMS and Nanotechnology):247–256Google Scholar
  78. 78.
    Badugu R, Lakowicz JR, Geddes CD (2005) A glucose-sensing contact lens: from bench top to patient. Curr Opin Biotechnol 16:100–107. doi: 10.1016/j.copbio.2004.12.007 CrossRefGoogle Scholar
  79. 79.
    March WF, Ochsner K, Horna J (2000) Intraocular lens glucose sensor. Diabetes Technol Ther 2:27–30. doi: 10.1089/152091500316700 CrossRefGoogle Scholar
  80. 80.
    Cordes DB, Gamsey S, Singaram B (2006) Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew Chem Int Ed 45:3829–3832. doi: 10.1002/anie.200504390 CrossRefGoogle Scholar
  81. 81.
    Duong HD, Rhee JI (2007) Use of cdse/zns core-shell quantum dots as energy transfer donors in sensing glucose. Talanta 73:899–905. doi: 10.1016/j.talanta.2007.05.011 CrossRefGoogle Scholar
  82. 82.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev (Washington, DC, U S) 108:814–825, doi:papers2://publication/doi/10.1021/cr068123aCrossRefGoogle Scholar
  83. 83.
    Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by swcnt connectors. Angew Chem Int Ed 43:2113–2117. doi: 10.1002/anie.200353275 CrossRefGoogle Scholar
  84. 84.
    Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468. doi: 10.1007/s00216-006-0314-8 CrossRefGoogle Scholar
  85. 85.
    Zang J, Li CM, Cui X, Wang J, Sun X, Dong H, Sun CQ (2007) Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19:1008–1014. doi: 10.1002/elan.200603808 CrossRefGoogle Scholar
  86. 86.
    Drake C, Deshpande S, Bera D, Seal S (2007) Metallic nanostructured materials based sensors. Int Mater Rev 52:289–317. doi: 10.1179/174328007x212481 CrossRefGoogle Scholar
  87. 87.
    Cai C, Chen J (2004) Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 332(1):75–83CrossRefGoogle Scholar
  88. 88.
    Abel PU, von Woedtke T (2002) Biosensors for in vivo glucose measurement: can we cross the experimental stage. Biosens Bioelectron 17(11–12):1059–1070CrossRefGoogle Scholar
  89. 89.
    Gifford R, Kehoe JJ, Barnes SL, Kornilayev BA, Alterman MA, Wilson GS (2006) Protein interactions with subcutaneously implanted biosensors. Biomaterials 27:2587–2598. doi: 10.1016/j.biomaterials.2005.11.033 CrossRefGoogle Scholar
  90. 90.
    Morais JM, Papadimitrakopoulos F, Burgess DJ (2010) Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J 12:188–196. doi: 10.1208/s12248-010-9175-3 CrossRefGoogle Scholar
  91. 91.
    Hickey T, Kreutzer D, Burgess DJ, Moussy F (2002) In vivo evaluation of a dexamethasone/plga microsphere system designed to suppress the inflammatory tissue response to implantable medical devices. J Biomed Mater Res 61(2):180–187CrossRefGoogle Scholar
  92. 92.
    Bhardwaj U, Sura R, Papadimitrakopoulos F, Burgess DJ (2010) Plga/pva hydrogel composites for long-term inflammation control following s.C. Implantation. Int J Pharm 384:78–86. doi: 10.1016/j.ijpharm.2009.09.046 CrossRefGoogle Scholar
  93. 93.
    Jayant RD, McShane MJ, Srivastava R (2011) In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: towards localized implant inflammation suppression. Int J Pharm 403:268–275. doi: 10.1016/j.ijpharm.2010.10.035 CrossRefGoogle Scholar
  94. 94.
    Gifford R, Batchelor MM, Lee Y, Gokulrangan G, Meyerhoff ME, Wilson GS (2005) Mediation of in vivo glucose sensor inflammatory response via nitric oxide release. J Biomed Mater Res, Part A 75A:755–766. doi: 10.1002/jbm.a.30359 CrossRefGoogle Scholar
  95. 95.
    Shin JH, Marxer SM, Schoenfisch MH (2004) Nitric oxide-releasing sol–gel particle/polyurethane glucose biosensors. Anal Chem 76(15):4543–4549CrossRefGoogle Scholar
  96. 96.
    Schoenfisch MH, Mowery KA, Rader MV, Baliga N, Wahr JA, Meyerhoff ME (2000) Improving the thromboresistivity of chemical sensors via nitric oxide release: fabrication and in vivo evaluation of no-releasing oxygen-sensing catheters. Anal Chem 72(6):1119–1126CrossRefGoogle Scholar
  97. 97.
    Updike SJ, Shults MC, Gilligan BJ, Rhodes RK (2000) A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration. Diabetes Care 23(2):208–214CrossRefGoogle Scholar
  98. 98.
    Klueh U, Dorsky DI, Kreutzer DL (2004) Enhancement of implantable glucose sensor function in vivo using gene transfer-induced neovascularization. Biomaterials 26:1155–1163. doi: 10.1016/j.biomaterials.2004.04.017 CrossRefGoogle Scholar
  99. 99.
    Ward WK, Duman HM (2010) Strategies to overcome biological barriers to biosensing. Chem Anal (Hoboken, NJ) 174:59–86Google Scholar
  100. 100.
    Shenkman L, Koukaki M, Karamanou S, Econornou A (2007) The p. Cezanne project: innovative approaches to continuous glucose monitoring. In: 2007 annual international conference of the ieee engineering in medicine and biology society, vols 1–16. Proceedings of annual international conference of the ieee engineering in medicine and biology society. pp 6061–6064Google Scholar
  101. 101.
    Mazzilli F, Peisino M, Mitouassiwou R, Cotte B, Thoppay P, Lafon C, Favre P, Meurville E, Dehollain C (2010) In-vitro platform to study ultrasound as source for wireless energy transfer and communication for implanted medical devices. In: 2010 annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society conference proceedings. pp 3751–3754Google Scholar
  102. 102.
    Davilis Y, Kalis A, Ifantis A (2010) On the use of ultrasonic waves as a communications medium in biosensor networks. IEEE Trans Inf Technol Biomed 14(3):650–656CrossRefGoogle Scholar
  103. 103.
    Laskovski AN, Yuce MR (2011) Class-e self-oscillation for the transmission of wireless power to implants. Sens Actuators A Phys 171(2):391–397CrossRefGoogle Scholar
  104. 104.
    Abouei J, Brown JD, Plataniotis KN, Pasupathy S (2011) Energy efficiency and reliability in wireless biomedical implant systems. IEEE Trans Inf Technol Biomed 15(3):456–466CrossRefGoogle Scholar
  105. 105.
    Hannan MA, Abbas SM, Samad SA, Hussain A (2012) Modulation techniques for biomedical implanted devices and their challenges. Sensors 12(1):297–319CrossRefGoogle Scholar
  106. 106.
    Valdastri P, Susilo E, Forster T, Strohhofer C, Menciassi A, Dario P (2011) Wireless implantable electronic platform for chronic fluorescent-based biosensors. IEEE Trans Biomed Eng 58(6):1846–1854CrossRefGoogle Scholar
  107. 107.
    Forouzandeh FF, Mohamed OA, Sawan M, Awwad F (2009) Tbcd-tdm: novel ultra-low energy protocol for implantable wireless body sensor networks. In: Globecom 2009–2009 ieee global telecommunications conference, vols 1–8. IEEE global telecommunications conference (globecom). pp 4333–4338Google Scholar
  108. 108.
    Morais R, Frias CM, Silva NM, Azevedo JLF, Serodio CA, Silva PM, Ferreira JAF, Simoes JAO, Reis MC (2009) An activation circuit for battery-powered biomedical implantable systems. Sens Actuators A Phys 156(1):229–236CrossRefGoogle Scholar
  109. 109.
    Hamza N, Touati F, Khriji L (2008) An optimized embedded architecture for multi-purpose wireless biomedical system using zigbee technology. In: Scs: 2008 2nd international conference on signals, circuits and systems. pp 451–456Google Scholar
  110. 110.
    Tuchin VV (ed) (2009) Handbook of optical sensing of glucose in biological fluids and tissues. CRC Press, Boca Raton, Florida, USA. ISBN 13:978-1-58488-974-8Google Scholar
  111. 111.
    Berti F, Todros S, Lakshmi D, Whitcombe MJ, Chianella I, Ferroni M, Piletsky SA, Turner APF, Marrazza G (2010) Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing. Biosens Bioelectron 26:497–503. doi: 10.1016/j.bios.2010.07.063 CrossRefGoogle Scholar
  112. 112.
    Poma A, Turner APF, Piletsky SA (2010) Advances in the manufacture of MIP nanoparticles. Trends Biotechnol 28:629–637. doi: 10.1016/j.tibtech.2010.08.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Biosensors & Bioelectronics CentreIFM-Linköping UniversityLinköpingSweden
  2. 2.Life Science, Acreo AB part of Swedish ICTNorrköpingSweden

Personalised recommendations