Ubiquitous Devices for Chemical Sensing

  • Radislav A. Potyrailo
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 13)


Widely accepted and deployed commodity consumer products (e.g., laptops, optical disk drives, flatbed scanners, tablets, personal digital assistants, cell phones, wrist watches) as well as high-performance components of consumer products (e.g., micromachined accelerometers, radiofrequency identification tags) present a prominent set of attractive capabilities for advanced sensors. For detection of chemical species in liquids and gases, we take advantage of previously developed, optimized, and mass-produced physical transducers, optoelectronic, radiofrequency identification, and other types of components and rationally combine them with sensing materials to produce new types of chemical sensors. This chapter presents several examples of our recent developments to demonstrate chemical sensors based on mechanical, radiant, and electrical signal-transduction methodologies.


Micromachined accelerometers Optical disk drives Radiofrequency identification tags Signal transduction 



Charge-coupled device


Compact disc


Digital versatile disc


High frequency


Integrated circuit




Low frequency


Microelectromechanical system




Principal component analysis


Personal digital assistant






Radiofrequency identification


Relative standard deviation




Super audio CD


Surface acoustic-wave






Thickness shear mode


Ultrahigh frequency



I am grateful to my colleagues at GE who coauthored numerous original publications cited in this review: A. Agree, S. Boyette, A. Burns, J. Carter, T. Cecconie, R. Diana, B. Dworken, H. Ehring, D. B. Engel, G. Gach, S. K. Gamage, S. Go, L. Hassib, S. Klensmeden, K. Krishnan, A. M. Leach, Y. Lee, K. Lindh, R. J. May, P. Miller, D. Monk, W. G. Morris, N. N. Nagraj, V. Pizzi, P. Shrikhande, T. M. Sivavec, C. Surman, H. W. Tomlinson, L. J. Yu, M. Vincent, M. B. Wisnudel, T. Wortley, R. Wroczynski, and C. Xiao. The author acknowledges E. Forzani and N. Tao (Arizona State University) for providing Figure 1i and J. Li (NASA Ames Research Center) for providing Figure 1j. This work has been supported from General Electric’s fundamental research and business funds.


  1. 1.
    Hulanicki A, Glab S, Ingman F (1991) Chemical sensors: definitions and classification. Commission on general aspects of analytical chemistry. Pure Appl Chem 63(9):1247–1250CrossRefGoogle Scholar
  2. 2.
    Wolfbeis OS (ed) (1991) Fiber optic chemical sensors and biosensors. CRC, Boca RatonGoogle Scholar
  3. 3.
    Taylor RF, Schultz JS (eds) (1996) Handbook of chemical and biological sensors. IOP Publishing, BristolGoogle Scholar
  4. 4.
    Webster JG (ed) (1999) The measurement, instrumentation, and sensors handbook. CRC, Boca RatonGoogle Scholar
  5. 5.
    Potyrailo RA (2006) Polymeric sensor materials: toward an alliance of combinatorial and rational design tools ? Angew Chem Int Ed 45:702–723CrossRefGoogle Scholar
  6. 6.
    Middelhoek S, Noorlag JW (1981/1982) Three-dimensional representation of input and output transducers. Sens Actuators 2:29–41CrossRefGoogle Scholar
  7. 7.
    Janata J (1989) Principles of chemical sensors. Plenum, New YorkGoogle Scholar
  8. 8.
    Hirschfeld T, Callis JB, Kowalski BR (1984) Chemical sensing in process analysis. Science 226:312–318CrossRefGoogle Scholar
  9. 9.
    Hirschfeld T (1985) Instrumentation in the next decade. Science 230:286–291CrossRefGoogle Scholar
  10. 10.
    Hagleitner C, Hierlemann A, Brand O, Baltes H (2002) Cmos single chip gas detection systems - part i. In: Baltes H, Göpel W, Hesse J (eds) Sensors update, vol 11. Weinheim, VCH, pp 101–155Google Scholar
  11. 11.
    Wohltjen H (2006) A journey: from sensor ideas to sensor products. In: Plenary talk at the 11th international meeting on chemical sensors. University of Brescia, Brescia, 16–19 July 2006 (Elsevier Science)Google Scholar
  12. 12.
    Boussaad S, Tao NJ (2003) Polymer wire chemical sensor using a microfabricated tuning fork. Nano Lett 3:1173–1176CrossRefGoogle Scholar
  13. 13.
    Ren M, Forzani ES, Tao N (2005) Chemical sensor based on microfabricated wristwatch tuning forks. Anal Chem 77:2700–2707CrossRefGoogle Scholar
  14. 14.
    Vo-Dinh T, Alarie JP, Isola N, Landis D, Wintenberg AL, Ericson MN (1999) DNA biochip using a phototransistor integrated circuit. Anal Chem 71:358–363CrossRefGoogle Scholar
  15. 15.
    Ivanisevic A, Yeh J-Y, Mawst L, Kuech TF, Ellis AB (2001) Light-emitting diodes as chemical sensors. Nature 409:476CrossRefGoogle Scholar
  16. 16.
    Manzano J, Filippini D, Lundström I (2003) Computer screen illumination for the characterization of colorimetric assays. Sens Actuators B 96:173–179CrossRefGoogle Scholar
  17. 17.
    Cho EJ, Bright FV (2001) Optical sensor array and integrated light source. Anal Chem 73:3289–3293CrossRefGoogle Scholar
  18. 18.
    Cho EJ, Tao Z, Tehan EC, Bright FV (2002) Multianalyte pin-printed biosensor arrays based on protein-doped xerogels. Anal Chem 74:6177–6184CrossRefGoogle Scholar
  19. 19.
    Finkenzeller K (2003) RFID handbook. Fundamentals and applications in contactless smart cards and identification, 2nd edn. Wiley, HobokenGoogle Scholar
  20. 20.
    Potyrailo RA, Morris WG (2007) Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal Chem 79:45–51CrossRefGoogle Scholar
  21. 21.
    Want R (2004) Enabling ubiquitous sensing with RFID. Computer 37(4):84–86. doi: 10.1109/MC.2004.1297315 CrossRefGoogle Scholar
  22. 22.
    Potyrailo RA, Morris WG, Leach AM, Hassib L, Krishnan K, Surman C, Wroczynski R, Boyette S, Xiao C, Shrikhande P, Agree A, Cecconie T (2007) Theory and practice of ubiquitous quantitative chemical analysis using conventional computer optical disk drives. Appl Opt 46:7007–7017CrossRefGoogle Scholar
  23. 23.
    Bjorklund R, Filippini D, Lundström I (2008) Automatic optimization of experimental conditions for fast evaluation of diagnostic tests using ubiquitous instrumentation. Sens Actuators B 134:199–205CrossRefGoogle Scholar
  24. 24.
    Gardner JW, Guha PK, Udrea F, Covington JA (2010) Cmos interfacing for integrated gas sensors: a review. IEEE Sens J 10:1833–1848CrossRefGoogle Scholar
  25. 25.
    Potyrailo RA, May RJ, Sivavec TM (2004) Recognition and quantification of perchloroethylene, trichloroethylene, vinyl chloride, and three isomers of dichloroethylene using acoustic-wave sensor array. Sens Lett 2:31–36CrossRefGoogle Scholar
  26. 26.
    Potyrailo RA, Sivavec TM (2004) Boosting sensitivity of organic vapor detection with silicone block polyimide polymers. Anal Chem 76:7023–7027CrossRefGoogle Scholar
  27. 27.
    Potyrailo RA, Sivavec TM (2005) Dual-response resonant chemical sensors for multianalyte analysis. Sens Actuators B 106:249–252CrossRefGoogle Scholar
  28. 28.
    Potyrailo RA, Leach AM, Morris WG, Gamage SK (2006) Chemical sensors based on micromachined transducers with integrated piezoresistive readout. Anal Chem 78:5633–5638CrossRefGoogle Scholar
  29. 29.
    Ballantine DS Jr, White RM, Martin SJ, Ricco AJ, Frye GC, Zellers ET, Wohltjen H (1997) Acoustic wave sensors: theory, design, and physico-chemical applications. Academic, San DiegoGoogle Scholar
  30. 30.
    Campbell CK (1998) Surface acoustic wave devices for mobile and wireless communications. Academic, San DiegoGoogle Scholar
  31. 31.
    Filippini D, Alimelli A, Di Natale C, Paolesse R, D'Amico A, Lundström I (2006) Chemical sensing with familiar devices. Angew Chem Int Ed 45:3800–3803CrossRefGoogle Scholar
  32. 32.
    Macken S, Di Natale C, Paolesse R, D'Amico A, Lundström I, Filippini D (2009) Towards integrated devices for computer screen photo-assisted multi-parameter sensing. Anal Chim Acta 632:143–147CrossRefGoogle Scholar
  33. 33.
    Di Natale C, Martinelli E, Paolesse R, D'Amico A, Filippini D, Lundström I (2008) An experimental biomimetic platform for artificial olfaction. PLoS One 3(9):e3139. doi: 10.1371/journal.pone.0003139 CrossRefGoogle Scholar
  34. 34.
    Benschop J, Rosmalen GV (1991) Confocal compact scanning optical microscope based on compact disc technology. Appl Opt 30:1179–1184CrossRefGoogle Scholar
  35. 35.
    Quercioli F, Tiribilli B, Ascoli C, Baschieri P, Frediani C (1999) Monitoring of an atomic force microscope cantilever with a compact disk pickup. Rev Sci Instrum 70:3620–3624CrossRefGoogle Scholar
  36. 36.
    Chu C-L, Lin C-H (2005) Development of an optical accelerometer with a dvd pick-up head. Meas Sci Technol 16:2498–2502CrossRefGoogle Scholar
  37. 37.
    Lange SA, Roth G, Wittemann S, Lacoste T, Vetter A, Grässle J, Kopta S, Kolleck M, Breitinger B, Wick M, Hörber JKH, Dübel S, Bernard A (2006) Measuring biomolecular binding events with a compact disc player device. Angew Chem Int Ed 45:270–273CrossRefGoogle Scholar
  38. 38.
    Gordon JF (1999) Apparatus and method for carrying out analysis of samples. US Patent 5,892,577Google Scholar
  39. 39.
    La Clair JJ, Burkart MD (2003) Molecular screening on a compact disc. Org Biomol Chem 1:3244–3249CrossRefGoogle Scholar
  40. 40.
    Jones CL, Thigpen SA (2005) Microbial cell driven website design using genetic algorithms and optical disc computing. In: Australian society for microbiology 2005 national conference, National Convention Centre, Canberra, 25–29 September 2005Google Scholar
  41. 41.
    Jones CL (2005) Cryptographic hash functions and cd-based optical biosensors. Prob Nonlinear Anal Eng Syst 11(2(23)):17–36Google Scholar
  42. 42.
    Banuls M-J, González-Pedro V, Puchades R, Maquieira Á (2007) Pmma isocyanate-modified digital discs as a support for oligonucleotide-based assays. Bioconj Chem 18:1408–1414CrossRefGoogle Scholar
  43. 43.
    Morais S, Carrascosa J, Mira D, Puchades R, Maquieira Á (2007) Microimmunoanalysis on standard compact discs to determine low abundant compounds. Anal Chem 79:7628–7635CrossRefGoogle Scholar
  44. 44.
    Potyrailo RA, Morris WG, Leach AM, Sivavec TM, Wisnudel MB, Boyette S (2006) Analog signal acquisition from computer optical disk drives for quantitative chemical sensing. Anal Chem 78:5893–5899CrossRefGoogle Scholar
  45. 45.
    Potyrailo RA, Morris WG, Wroczynski R, Hassib L, Miller P, Dworken B, Leach AM, Boyette S, Xiao C (2009) Multi-wavelength operation of optical disk drives for chemical and biological analysis. Sens Actuators B 136:203–208CrossRefGoogle Scholar
  46. 46.
    Hruschka WR, Massie DR, Anderson JD (1983) Computerized analysis of two-dimensional electrophoretograms. Anal Chem 55:2345–2348CrossRefGoogle Scholar
  47. 47.
    Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760CrossRefGoogle Scholar
  48. 48.
    Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713CrossRefGoogle Scholar
  49. 49.
    Zhang C, Suslick KS (2005) Colorimetric sensor array for organics in water. J Am Chem Soc 127:11548–11549CrossRefGoogle Scholar
  50. 50.
    Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509CrossRefGoogle Scholar
  51. 51.
    Hirayama E, Sugiyama T, Hisamoto H, Suzuki K (2000) Visual and colorimetric lithium ion sensing based on digital color analysis. Anal Chem 72:465–474CrossRefGoogle Scholar
  52. 52.
    Suzuki K, Hirayama E, Sugiyama T, Yasuda K, Okabe H, Citterio D (2002) Ionophore-based lithium ion film optode realizing multiple color variations utilizing digital color analysis. Anal Chem 74:5766–5773CrossRefGoogle Scholar
  53. 53.
    García A, Erenas MM, Marinetto ED, Abad CA, De Orbe-Paya I, Palma AJ, Capitán-Vallvey LF (2011) Mobile phone platform as portable chemical analyzer. Sens Actuators B 156:350–359CrossRefGoogle Scholar
  54. 54.
    Lim SH, Feng L, Kemling JW, Musto CJ, Suslick KS (2009) An optoelectronic nose for detection of toxic gases. Nat Chem 1:562–567. doi: 10.1038/nchem.360 CrossRefGoogle Scholar
  55. 55.
    Forzani E, Tao N (2012) Wearable and wireless sensor for real-time detection of volatile organic compounds, Private communication to R PotyrailoCrossRefGoogle Scholar
  56. 56.
    Li J (2012) Nanosensors-cellphone integration for extended chemical sensing network. Private communication to R PotyrailoGoogle Scholar
  57. 57.
    Nambi S, Nyalamadugu S, Wentworth SM, Chin BA (2003) Radio frequency identification sensors. In: 7th World Multiconference on Systemics, Cybernetics & Informatics (SCI 2003), Dubna, Russia, pp 386–390Google Scholar
  58. 58.
    Mascaro DJ, Baxter JC, Halvorsen A, White K, Scholz B, Schulz DL (2007) Chemiblock transducers. Sens Actuators B 120:353–361CrossRefGoogle Scholar
  59. 59.
    Christensen CM (1997) The innovator’s dilemma: when new technologies cause great firms to fail. Harvard Business School Press, BostonGoogle Scholar
  60. 60.
    Christensen CM, Raynor ME (2003) The innovator’s solution: creating and sustaining successful growth. Harvard Business School Press, BostonGoogle Scholar
  61. 61.
    Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry-recent development and future perspective. Comp Electron Agric 50:1–14CrossRefGoogle Scholar
  62. 62.
    Nicolaou KC, Xiao X-Y, Parandoosh Z, Senyei A, Nova MP (1995) Radiofrequency encoded combinatorial chemistry. Angew Chem Int Ed 34:2289–2291CrossRefGoogle Scholar
  63. 63.
    Bachner F (2005) Intertech Corp., Presented at Organic RFID Conf., San-Diego, October 19–21Google Scholar
  64. 64.
    Lawrence D (2005) TechVention. Presented at Organic RFID Conf., San-Diego, October 19–21Google Scholar
  65. 65.
    Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H, Peng S, Cho KJ (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351CrossRefGoogle Scholar
  66. 66.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655CrossRefGoogle Scholar
  67. 67.
    Snow ES, Perkins FK, Robinson JA (2006) Chemical vapor detection using single-walled carbon nanotubes. Chem Soc Rev 35:790–798CrossRefGoogle Scholar
  68. 68.
    Ratinac KR, Yang W, Ringer SP, Braet F (2010) Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Environ Sci Technol 44:1167–1176CrossRefGoogle Scholar
  69. 69.
    Grate JW (2008) Hydrogen-bond acidic polymers for chemical vapor sensing. Chem Rev 108:726–745CrossRefGoogle Scholar
  70. 70.
    Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769CrossRefGoogle Scholar
  71. 71.
    Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens Actuators B 107:209–232CrossRefGoogle Scholar
  72. 72.
    Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50CrossRefGoogle Scholar
  73. 73.
    Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35CrossRefGoogle Scholar
  74. 74.
    Grate JW, Abraham H, McGill RA (1997) Sorbent polymer materials for chemical sensors and arrays. In: Kress-Rogers E (ed) Handbook of biosensors and electronic noses. Medicine, food, and the environment. CRC, Boca Raton, pp 593–612Google Scholar
  75. 75.
    Grate JW (2000) Acoustic wave microsensor arrays for vapor sensing. Chem Rev 100:2627–2648CrossRefGoogle Scholar
  76. 76.
    King WH Jr (1964) Piezoelectric sorption detector. Anal Chem 36:1735–1739CrossRefGoogle Scholar
  77. 77.
    Ward M, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249:1000–1007CrossRefGoogle Scholar
  78. 78.
    Thompson M, Stone DC (1997) Surface-launched acoustic wave sensors: chemical sensing and thin-film characterization. Wiley, New YorkGoogle Scholar
  79. 79.
    Potyrailo RA, Morris WG, Wroczynski RJ (2003) Acoustic-wave sensors for high-throughput screening of materials. In: Potyrailo RA, Amis EJ (eds) High throughput analysis: a tool for combinatorial materials science. Kluwer Academic/Plenum, New York (Chap. 11)Google Scholar
  80. 80.
    Sepaniak MJ, Datskos PG, Lavrik NV, Tipple C (2002) Microcantilever transducers: a new approach in sensor technology. Anal Chem 74:568A–575ACrossRefGoogle Scholar
  81. 81.
    Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229–2253CrossRefGoogle Scholar
  82. 82.
    Su M, Li S, Dravid VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82:3562–3564CrossRefGoogle Scholar
  83. 83.
    Hansen KM, Ji H-F, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem 73:1567–1571CrossRefGoogle Scholar
  84. 84.
    Dutta P, Tipple CA, Lavrik NV, Datskos PG, Hofstetter H, Hofstetter O, Sepaniak MJ (2003) Enantioselective sensors based on antibody-mediated nanomechanics. Anal Chem 75:2342–2348CrossRefGoogle Scholar
  85. 85.
    Savran CA, Knudsen SM, Ellington AD, Manalis SR (2004) Micromechanical detection of proteins using aptamer-based receptor molecules. Anal Chem 76:3194–3198CrossRefGoogle Scholar
  86. 86.
    Ahuja A, James DL, Narayan R (1999) Dynamic behavior of ultra-thin polymer films deposited on surface acoustical wave devices. Sens Actuators B 72:234–241CrossRefGoogle Scholar
  87. 87.
    Gomes MTSR, Rocha TA, Duarte AC, Oliveira JABP (1996) The performance of a tetramethylammonium fluoride tetrahydrate coated piezoelectric crystal for carbon dioxide detection. Anal Chim Acta 335:235–238CrossRefGoogle Scholar
  88. 88.
    Oprea A, Henkel K, Oehmgen R, Appel G, Schmeißer D, Lauer H, Hausmann P (1999) Increased sensor sensitivities obtained by polymer-coated quartz microbalances. Mat Sci Eng C 8–9:509–512CrossRefGoogle Scholar
  89. 89.
    Korsah K, Ma CL, Dress B (1998) Harmonic frequency analysis of saw resonator chemical sensors: application to the detection of carbon dioxide and humidity. Sens Actuators B 50:110–116CrossRefGoogle Scholar
  90. 90.
    Hoyt AE, Ricco AJ, Bartholomew JW, Osbourn GC (1998) Saw sensors for the room-temperature measurement of co2 and relative humidity. Anal Chem 70:2137–2145CrossRefGoogle Scholar
  91. 91.
    Fatibello-Filho O, de Andrade JF, Suleiman AA, Guilbault GG (1989) Piezoelectric crystal monitor for carbon dioxide in fermentation processes. Anal Chem 61:746–748CrossRefGoogle Scholar
  92. 92.
    Morris WG, Potyrailo RA (2006) Wireless sensor array system for combinatorial screening of sensor materials. In: Fasolka M, Wang Q, Potyrailo RA, Chikyow T, Schubert US, Korkin A (eds) Combinatorial methods and informatics in materials science. Mrs symposium proceedings, vol 894. Materials Research Society, Warrendale, pp 219–224Google Scholar
  93. 93.
    Wang W, Lee K, Kim T, Park I, Yang S (2007) Novel wireless, passive co2 sensor incorporating a surface acoustic wave reflective delay line. Smart Mater Struct 16:1382–1389CrossRefGoogle Scholar
  94. 94.
    Kebabian PL, Freedman A (2006) Fluoropolymer-based capacitive carbon dioxide sensor. Meas Sci Technol 17:703–710CrossRefGoogle Scholar
  95. 95.
    Ong KG, Zeng K, Grimes CA (2002) A wireless, passive carbon nanotube-based gas sensor. IEEE Sensors J 2:82–88CrossRefGoogle Scholar
  96. 96.
    Potyrailo RA, Hobbs SE, Hieftje GM (1998) Optical waveguide sensors in analytical chemistry: today's instrumentation, applications and future development trends. Fresenius J Anal Chem 362:349–373CrossRefGoogle Scholar
  97. 97.
    Potyrailo RA, Mirsky VM (2008) Combinatorial and high-throughput development of sensing materials: the first ten years. Chem Rev 108:770–813CrossRefGoogle Scholar
  98. 98.
    Potyrailo RA, Morris WG, Leach AM, Sivavec TM, Wisnudel MB, Krishnan K, Surman C, Hassib L, Wroczynski R, Boyette S, Xiao C, Agree A, Cecconie T (2007) A multiplexed, ubiquitous chem/bio detection platform on dvd. Am Lab (May) 32–35Google Scholar
  99. 99.
    Potyrailo RA, Morris WG, Boyette SM, Wisnudel MB, Leach AM, Stanley ML (2005) Sensor systems and methods for quantification of physical parameters, chemical and biochemical volatile and nonvolatile compounds in fluids. US Patent Application 20050111000Google Scholar
  100. 100.
    Potyrailo RA, Morris WG, Boyette SM (2005) Sensor systems and methods for remote quantification of compounds. US Patent Application 20050111001Google Scholar
  101. 101.
    Potyrailo RA, Morris WG, Leach AM (2005) Sensor system and methods for improved quantitation of environmental parameters. US Patent Application 20050111328Google Scholar
  102. 102.
    Potyrailo RA, Morris WG, Boyette SM, Wisnudel MB, Leach AM, Stanley ML (2007) Sensor systems and methods for quantification of physical parameters, chemical and biochemical volatile and nonvolatile compounds in fluids. US Patent 7,170,609Google Scholar
  103. 103.
    Potyrailo RA, Morris WG, Boyette SM (2007) Sensor systems and methods for remote quantification of compounds. US Patent 7,271,913Google Scholar
  104. 104.
    Potyrailo RA, Morris WG, Leach AM (2008) Sensor system and methods for improved quantitation of environmental parameters. US Patent 7,456,968Google Scholar
  105. 105.
    Potyrailo RA, Wisnudel MB, Boyette SM, Leach AM, Krishnan K (2009) Methods for deposition of sensor regions onto optical storage media substrates and resulting devices. US Patent 7,524,455Google Scholar
  106. 106.
    Potyrailo RA, Sivavec TM, Xiao C, Cecconie TJ, Hassib L, Leach AM, Engel DB (2010) Material compositions for sensors for determination of chemical species at trace concentrations and method of using sensors. US Patent 7,807,473Google Scholar
  107. 107.
    Xiao C, Potyrailo RA, Morris WG, Boyette SM, Yu LJ, Cecconie TJ, Leach AM, Shrikhande PV (2010) Optical sensor array system and method for parallel processing of chemical and biochemical information. US Patent 7,723,120Google Scholar
  108. 108.
    Potyrailo RA, Morris WG, Leach AM (2006) Lab-on-dvd: Concept and feasibility demonstration for water analysis. In: Abstracts of papers, american chemical society 232nd national meeting & exposition, San Francisco, 10–14 September 2006, p ANYL-254Google Scholar
  109. 109.
    Potyrailo RA, Morris WG, Leach AM, Wisnudel MB, Boyette S (2006) Lab-on-DVD: concept and feasibility demonstration for water analysis. In: 2006 international symposium on spectral science research, Bar Harbor, Maine, May 29–June 02, 2006. Organized by the U.S. Army Edgewood Chemical and Biological Center, pp. 221–222Google Scholar
  110. 110.
    Potyrailo RA, Wisnudel MB, Boyette SM, Leach AM, Krishnan K (2005) Methods for deposition of sensor regions onto optical storage media substrates and resulting devices. US Patent Application 20050112358Google Scholar
  111. 111.
    Xiao C, Sivavec TM, Engel DB, Leach AM (2007) Self-contained phosphate sensors and method for using same. US Patent Application 20070092972Google Scholar
  112. 112.
    Yamada M, Kajiyama S, Kanou Y, Matsumura Y, Tsuchiya Y (1998) Dvd/cd/cd-r compatible pick-up with two-wavelength two-beam laser. IEEE Trans Consum Electr 44:591–600CrossRefGoogle Scholar
  113. 113.
    Uchiyama M, Ebihara T, Omi K, Kitano H, Hoshino I, Mori K (2000) Development of optical pickup for digital versatile disc using two-wavelength-integrated laser diode. Jpn J Appl Phys Part 1 39:1549–1553CrossRefGoogle Scholar
  114. 114.
    Mori E, Komma Y, Yasuda K, Hotta N, Imafuji O, Kikuchi A, Itoh T (2002) Digital versatile disc read-only disc, rewritable disc and compact disc compatible optical pickup with a two-wavelength laser diode unit. Jpn J Appl Phys Part 1 41:4845–4849CrossRefGoogle Scholar
  115. 115.
    Knittel J, Krackhardt U, Dambach S, Richter H (2002) Compact optical pickup with a two-wavelength laser diode. Jpn J Appl Phys Part 1 41:1817–1820CrossRefGoogle Scholar
  116. 116.
    Saito R, Ito F, Yokochi Y, Saito T, Ohira T, Sato H, Itonaga M (2004) Polarization-free blu-ray disc/digital versatile disc compatible optical pick-up. Jpn J Appl Phys 43:4799–4800CrossRefGoogle Scholar
  117. 117.
    Sturm J, Leifhelm M, Schatzmayr H, Groiss S, Zimmermann H (2005) Optical receiver ic for cd/dvd/blue-laser application. IEEE J Solid-State Circ 40:1406–1413CrossRefGoogle Scholar
  118. 118.
    Kang S-M, Lee J-E, Kim W-C, Park N-C, Park Y-P, Cho E-H, Sohn J-S, Suh S-D (2006) Development of integrated small-form-factor optical pickup with blu-ray disc specification. Jpn J Appl Phys 45:6723–6729CrossRefGoogle Scholar
  119. 119.
    Issiki F, Maeda N, Kimura K, Suenaga H, Kurokawa T (2007) Triple-write one-lens optical pickup for blu-ray Disc/DVD/CD supporting 4x blu-ray read/write. Digest of Technical Papers. International Conference on Consumer Electronics, ICCE 2007, pp 1–2. doi: 10.1109/ICCE.2007.341425
  120. 120.
    Göpel W (1996) Ultimate limits in the miniaturization of chemical sensors. Sens Actuators A 56:83–102CrossRefGoogle Scholar
  121. 121.
    Potyrailo RA, Surman C, Nagraj NN, Burns A (2011) Materials and transducers toward selective wireless gas sensing. Chem Rev 111:7315–7354. doi: 10.1021/cr2000477 CrossRefGoogle Scholar
  122. 122.
    Mackay RS, Jaconson B (1957) Endoradiosonde. Nature 179:1239–1240CrossRefGoogle Scholar
  123. 123.
    Lehpamer H (2008) RFID design principles. Artech House, NorwoodGoogle Scholar
  124. 124.
    Potyrailo RA, Morris WG, Sivavec T, Tomlinson HW, Klensmeden S, Lindh K (2009) Rfid sensors based on ubiquitous passive 13.56-mhz rfid tags and complex impedance detection. Wirel Commun Mob Comput 9:1318–1330CrossRefGoogle Scholar
  125. 125.
    Potyrailo RA, Surman C, Go S, Lee Y, Sivavec T, Morris WG (2009) Development of radio-frequency identification sensors based on organic electronic sensing materials for selective detection of toxic vapors. J Appl Phys 106:124902CrossRefGoogle Scholar
  126. 126.
    Potyrailo RA, Wortley T, Surman C, Monk D, Morris WG, Vincent M, Diana R, Pizzi V, Carter J, Gach G, Klensmeden S, Ehring H (2011) Passive multivariable temperature and conductivity rfid sensors for single-use biopharmaceutical manufacturing components. Biotechnol Prog 27:875–884CrossRefGoogle Scholar
  127. 127.
    Potyrailo RA, Surman C, Monk D, Morris WG, Wortley T, Vincent M, Diana R, Pizzi V, Carter J, Gach G, Klensmeden S, Ehring H (2011) RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing. Meas Sci Technol 22:082001. doi: 10.1088/0957-0233/22/8/082001 CrossRefGoogle Scholar
  128. 128.
    Surman C, Potyrailo RA, Morris WG, Wortley T, Vincent M, Diana R, Pizzi V, Carter J, Gach G (2011) Temperature-independent passive rfid pressure sensors for single-use bioprocess components. In: IEEE international conference on RFID (IEEE RFID), pp 78–84Google Scholar
  129. 129.
    Madrid RE, Felice CJ, Valentinuzzi ME (1999) Automatic on-line analyser of microbial growth using simultaneous measurements of impedance and turbidity. Med Biol Eng Comput 37:789–793CrossRefGoogle Scholar
  130. 130.
    Biswas K, Sen S, Dutta PK (2006) A constant phase element sensor for monitoring microbial growth. Sens Actuators B 119:186–191CrossRefGoogle Scholar
  131. 131.
    Martens H, Martens M (2001) Multivariate analysis of quality. An introduction. Wiley, ChichesterGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.GE Global Research Center, 1 Research CircleNiskayunaUSA

Personalised recommendations