Skip to main content

Autonomous Lab-on-a-Chip Technologies

  • Chapter
  • First Online:
Autonomous Sensor Networks

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 13))

Abstract

Autonomous lab-on-a-chip (auto-LOC) devices are self-sustaining devices that can perform assays and report results without external cues. In this chapter, we describe the main frameworks for developing auto-LOC devices including the plug-in framework and the monolithic framework. The plug-in model aims at miniaturizing stand-alone plug-and-play components, which can then be assembled together with the microfabricated chip to develop an integrated auto-LOC device. The monolithic framework, on the other hand, seeks to integrate all components on a microfabricated microfluidic chip platform. We also highlight technologies that are relevant to portable, low-energy, and autonomous functioning of LOC devices. Finally, we present some case studies of integrated auto-LOC devices with applications ranging from point-of-care diagnostics to space exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

μCE:

Microchip capillary electrophoresis

AAS:

Atomic absorption spectroscopy

COC:

Cyclic olefin copolymer

ECD:

Electrochemical detection

EDL:

Electrical double layer

EO:

Electroosmotic

ICP:

Inductively coupled plasma

LFA:

Lateral flow assay

LIF:

Laser-induced fluorescence

LOC:

Lab on a chip

MS:

Mass spectrometry

PAH:

Polycyclic aromatic hydrocarbons

PZT:

Piezoelectric

References

  1. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64

    Article  Google Scholar 

  2. Ramsey RS, Ramsey JM (1997) Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem 69(6):1174–1178

    Article  CAS  Google Scholar 

  3. Yao SH, Santiago JG (2003) Porous glass electroosmotic pumps: theory. J Colloid Interface Sci 268(1):133–142

    Article  CAS  Google Scholar 

  4. Litster S, Suss ME, Santiago JG (2010) A two-liquid electroosmotic pump using low applied voltage and power. Sens Actuators A Phys 163(1):311–314

    Article  Google Scholar 

  5. Brask A, Goranovic G, Jensen MJ, Bruus H (2005) A novel electro-osmotic pump design for nonconducting liquids: theoretical analysis of flow rate-pressure characteristics and stability. J Micromech Microeng 15(4):883–891

    Article  Google Scholar 

  6. Glawdel T, Elbuken C, Lee LEJ, Ren CL (2009) Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)-towards water toxicity testing. Lab Chip 9(22):3243–3250

    Article  CAS  Google Scholar 

  7. Uhlig ELP, Graydon WF, Zingg W (1983) The Electroosmotic Actuation of Implantable Insulin Micropumps. J Biomed Mater Res 17(6):931–943

    Article  CAS  Google Scholar 

  8. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116

    Article  CAS  Google Scholar 

  9. Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens Actuators B Chem 89(3):315–323

    Article  Google Scholar 

  10. Johnston ID, Davis JB, Richter R, Herbert GI, Tracey MC (2004) Elastomer-glass micropump employing active throttles. Analyst 129(9):829–834

    Article  CAS  Google Scholar 

  11. Johnston ID, Tracey MC, Davis JB, Tan CKL (2005) Microfluidic solid phase suspension transport with an elastomer-based, single piezo-actuator, micro throttle pump. Lab Chip 5(3):318–325

    Article  CAS  Google Scholar 

  12. Fruetel JA, Renzi RF, VanderNoot VA, Stamps J, Horn BA, West JAA, Ferko S, Crocker R, Bailey CG, Arnold D, Wiedenman B, Choi WY, Yee D, Shokair I, Hasselbrink E, Paul P, Rakestraw D, Padgen D (2005) Microchip separations of protein biotoxins using an integrated hand-held device. Electrophoresis 26(6):1144–1154

    Article  CAS  Google Scholar 

  13. Jackson DJ, Naber JF, Roussel TJ, Crain MM, Walsh KM, Keynton RS, Baldwin RP (2003) Portable high-voltage power supply and electrochemical detection circuits for microchip capillary electrophoresis. Anal Chem 75(14):3643–3649

    Article  CAS  Google Scholar 

  14. Zimmermann M, Hunziker P, Delamarche E (2009) Autonomous capillary system for one-step immunoassays. Biomed Microdevices 11(1):1–8

    Article  Google Scholar 

  15. Jokinen V, Leinikka M, Franssila S (2009) Microstructured surfaces for directional wetting. Adv Mater 21(47):4835

    Article  CAS  Google Scholar 

  16. Goedecke N, Eijkel J, Manz A (2002) Evaporation driven pumping for chromatography application. Lab Chip 2(4):219–223

    Article  CAS  Google Scholar 

  17. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590

    Article  CAS  Google Scholar 

  18. Dong L, Jiang H (2007) Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3(10):1223–1230

    Article  CAS  Google Scholar 

  19. Solovev AA, Mei YF, Urena EB, Huang GS, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5(14):1688–1692

    Article  CAS  Google Scholar 

  20. Burdick J, Laocharoensuk R, Wheat PM, Posner JD, Wang J (2008) Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. J Am Chem Soc 130(26):8164

    Article  CAS  Google Scholar 

  21. Pumera M (2010) Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale 2(9):1643–1649

    Article  CAS  Google Scholar 

  22. Guijt RM, Evenhuis CJ, Macka M, Haddad PR (2004) Conductivity detection for conventional and miniaturised capillary electrophoresis systems. Electrophoresis 25(23–24):4032–4057

    Article  CAS  Google Scholar 

  23. Vandaveer WR, Pasas-Farmer SA, Fischer DJ, Frankenfeld CN, Lunte SM (2004) Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis 25(21–22):3528–3549

    Article  CAS  Google Scholar 

  24. Ferrigno R, Lee JN, Jiang XY, Whitesides GM (2004) Potentiometric titrations in a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 76(8):2273–2280

    Article  CAS  Google Scholar 

  25. Ertl P, Emrich CA, Singhal P, Mathies RA (2004) Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system. Anal Chem 76(13):3749–3755

    Article  CAS  Google Scholar 

  26. Shadpour H, Hupert ML, Patterson D, Liu CG, Galloway M, Stryjewski W, Goettert J, Soper SA (2007) Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array. Anal Chem 79(3):870–878

    Article  CAS  Google Scholar 

  27. Martin RS, Gawron AJ, Lunte SM, Henry CS (2000) Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal Chem 72(14):3196–3202

    Article  CAS  Google Scholar 

  28. Wang J, Pumera M (2002) Dual conductivity/amperometric detection system for microchip capillary electrophoresis. Anal Chem 74(23):5919–5923

    Article  CAS  Google Scholar 

  29. Jung B, Bharadwaj R, Santiago JG (2006) On-chip millionfold sample stacking using transient isotachophoresis. Anal Chem 78(7):2319–2327

    Article  CAS  Google Scholar 

  30. Edel JB, Beard NP, Hofmann O, DeMello JC, Bradley DDC, deMello AJ (2004) Thin-film polymer light emitting diodes as integrated excitation sources for microscale capillary electrophoresis. Lab Chip 4(2):136–140

    Article  CAS  Google Scholar 

  31. Mitra B, Wilson CG, Que L, Selvaganapathy P, Gianchandani YB (2006) Microfluidic discharge-based optical sources for detection of biochemicals. Lab Chip 6(1):60–65

    Article  CAS  Google Scholar 

  32. Roman GT, Kennedy RT (2007) Fully integrated microfluidic separations systems for biochemical analysis. J Chromatogr A 1168(1–2):170–188

    CAS  Google Scholar 

  33. Zhang DY, Justis N, Lo YH (2005) Integrated fluidic lenses and optic systems. IEEE J Sel Top Quantum Electron 11(1):97–106

    Article  CAS  Google Scholar 

  34. Gambin Y, Legrand O, Quake SR (2006) Microfabricated rubber microscope using soft solid immersion lenses. Appl Phys Lett 88(17):174102

    Article  Google Scholar 

  35. Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, Sammarco TS, Man PM, Jones D, Heldsinger D, Mastrangelo CH, Burke DT (1998) An integrated nanoliter DNA analysis device. Science 282(5388):484–487

    Article  CAS  Google Scholar 

  36. Hofmann O, Wang XH, Cornwell A, Beecher S, Raja A, Bradley DDC, deMello AJ, deMello JC (2006) Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection. Lab Chip 6(8):981–987

    Article  CAS  Google Scholar 

  37. Kamei T, Paegel BM, Scherer JR, Skelley AM, Street RA, Mathies RA (2003) Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices. Anal Chem 75(20):5300–5305

    Article  CAS  Google Scholar 

  38. Wang XH, Hofmann O, Das R, Barrett EM, Demello AJ, Demello JC, Bradley DDC (2007) Integrated thin-film polymer/fullerene photodetectors for on-chip microfluidic chemiluminescence detection. Lab Chip 7(1):58–63

    Article  Google Scholar 

  39. Jang A, Zou Z, MacKnight E, Wu PM, Kim IS, Ahn CH, Bishop PL (2009) Development of a portable analyzer with polymer lab-on-a-chip (LOC) for continuous sampling and monitoring of Pb(II). Water Sci Technol 60(11):2889–2896

    Article  CAS  Google Scholar 

  40. Slater C, Cleary J, Lau KT, Snakenborg D, Corcoran B, Kutter JP, Diamond D (2010) Validation of a fully autonomous phosphate analyser based on a microfluidic lab-on-a-chip. Water Sci Technol 61(7):1811–1818

    Article  CAS  Google Scholar 

  41. Benhabib M, Chiesl TN, Stockton AM, Scherer JR, Mathies RA (2010) Multichannel capillary electrophoresis microdevice and instrumentation for in situ planetary analysis of organic molecules and biomarkers. Anal Chem 82(6):2372–2379

    Article  CAS  Google Scholar 

  42. Mora MF, Greer F, Stockton AM, Bryant S, Willis PA (2011) Toward total automation of microfluidics for extraterrestial in situ analysis. Anal Chem 83(22):8636–8641

    Article  CAS  Google Scholar 

  43. Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. In: Annual Review of Biomedical Engineering, Annual Reviews: Palo Alto, vol 10, pp 107–144

    Google Scholar 

  44. Smith SM, DaviesStreet JE, Fontenot TB, Lane HW (1997) Assessment of a portable clinical blood analyzer during space flight. Clin Chem 43(6):1056–1065

    CAS  Google Scholar 

  45. Meagher RJ, Hatch AV, Renzi RF, Singh AK (2008) An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8(12):2046–2053

    Article  CAS  Google Scholar 

  46. Wong R, Tse W (2008) Lateral flow immunoassay. Humana Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bharadwaj, R., Singh, A.K. (2012). Autonomous Lab-on-a-Chip Technologies. In: Filippini, D. (eds) Autonomous Sensor Networks. Springer Series on Chemical Sensors and Biosensors, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_31

Download citation

Publish with us

Policies and ethics