Printed Organic Electronic Sensors

  • Hoyoul Kong
  • Thomas J. Dawidczyk
  • Recep Ozgun
  • Andreas G. Andreou
  • Howard E. Katz
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 13)


There has been great progress recently in the use of organic and carbon-based materials as the active conductors in electronic sensors for chemical species (analytes). Three principal classes of such materials are conjugated oligomers/polymers, carbon nanotubes, and molecularly imprinted polymers. These materials may be equipped with receptor subunits for analyte binding specificity, and show changed conductances when analytes bind or adsorb. There has been further advancement in the assembly of devices based on these materials into circuit elements that provide output suitable for data processing and networking. Examples of sensors based on these principles, and the mechanisms by which they transduce chemical to electrical information, are reviewed in this chapter.


Carbon nanotubes Chemical sensors Molecular imprinting Organic transistors Organic semiconductors 





4-(2,4-Dichlorophenoxy)butyric acid








c-Methyl calyx[4]-resorcinarene


Carbon paste


Carbon paste electrode


Copper phthalocyanine


Direct current






Dimethyl methylphosphonate






Electron transfer–chemical reaction–electron transfer


Field-effect transistor




Molecularly imprinted polymer


Molecularly imprinted conducting polymer




Multiwalled nanotube


Nonimprinted polymer


Naphthalenetetracarboxylic diimide


Organic field-effect transistor


Printed circuit board




Organic semiconductor


Polycyclic aromatic hydrocarbon








Perylenetetracarboxylic diimide




Radiofrequency identification


Root standard deviation


Reduced graphene oxide


Screen-printed carbon electrode


Single-stranded DNA


Single-walled carbon nanotube


Thin-film transistor




Universal serial bus


A TNT binding peptide



We are grateful to NSF Electronic, Communication, and Cyber Systems (grant number 0730926) and to the Johns Hopkins University Applied Physics Laboratory for support of this work. The network and signaling sections were written with support from Department of Energy Office of Basic Energy Sciences, grant number DE-FG01-07ER46465. We also warmly thank authors whose figures are reproduced here with permission from the indicated reference publishers.


  1. 1.
    Someya T, Dodabalapur A, Huang J, See KC, Katz HE (2010) Chemical and physical sensing by organic field-effect transistors and related devices. Adv Mater 22(34):3799–3811. doi: 10.1002/adma.200902760 CrossRefGoogle Scholar
  2. 2.
    Roberts ME, LeMieux MC, Bao Z (2009) Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano 3(10):3287–3293. doi: 10.1021/nn900808b CrossRefGoogle Scholar
  3. 3.
    Snow ES, Perkins FK, Robinson JA (2006) Chemical vapor detection using single-walled carbon nanotubes. Chem Soc Rev 35(9):790–798. doi: 10.1039/b515473c CrossRefGoogle Scholar
  4. 4.
    Rogers JA, Cao Q (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21(1):29–53. doi: 10.1002/adma.200801995 CrossRefGoogle Scholar
  5. 5.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655. doi: 10.1038/nmat1967 CrossRefGoogle Scholar
  6. 6.
    Huang J, Dawidczyk TJ, Jung BJ, Sun J, Mason AF, Katz HE (2010) Response diversity and dual response mechanism of organic field-effect transistors with dinitrotoluene vapor. J Mater Chem 20(13):2644–2650. doi: 10.1039/b916037j CrossRefGoogle Scholar
  7. 7.
    Street RA, Northrup JE, Salleo A (2005) Transport in polycrystalline polymer thin-film transistors. Phys Rev B 71(16). doi: 10.1103/Physrevb.71.165202, Artn 165202
  8. 8.
    Horowitz G, Hajlaoui R, Delannoy P (1995) Temperature-dependence of the field-effect mobility of sexithiophene—determination of the density of traps. J Phys 5(4):355–371Google Scholar
  9. 9.
    Jeong SW, Jeong JW, Chang S, Kang SY, Cho KI, Ju BK (2010) The vertically stacked organic sensor-transistor on a flexible substrate. Appl Phys Lett 97(25). doi: 10.1063/1.3530448, Artn 253309
  10. 10.
    Horowitz G (2004) Organic thin film transistors: from theory to real devices. J Mater Res 19(7):1946–1962. doi: 10.1557/Jmr.2004.0266 CrossRefGoogle Scholar
  11. 11.
    Huang J, Miragliotta J, Becknell A, Katz HE (2007) Hydroxy-terminated organic semiconductor-based field-effect transistors for phosphonate vapor detection. J Am Chem Soc 129(30):9366–9376. doi: 10.1021/Ja068964z CrossRefGoogle Scholar
  12. 12.
    Zhu ZT, Mason JT, Dieckmann R, Malliaras GG (2002) Humidity sensors based on pentacene thin-film transistors. Appl Phys Lett 81(24):4643–4645. doi: 10.1063/1.1527233 CrossRefGoogle Scholar
  13. 13.
    Graaf H, Schlettwein D (2006) Influence of gas molecules on the charge carrier mobility in thin films of semiconducting perylene tetracarboxylic imides. J Appl Phys 100(12). doi: 10.1063/1.2374930, Artn 126104
  14. 14.
    Yang RD, Gredig T, Colesniuc CN, Park J, Schuller IK, Trogler WC, Kummel AC (2007) Ultrathin organic transistors for chemical sensing. Appl Phys Lett 90(26). doi: 10.1063/1.2749092, Artn 263506
  15. 15.
    Bohrer FI, Colesniuc CN, Park J, Ruidiaz ME, Schuller IK, Kummel AC, Trogler WC (2009) Comparative gas sensing in cobalt, nickel, copper, zinc, and metal-free phthalocyanine chemiresistors. J Am Chem Soc 131(2):478–485. doi: 10.1021/Ja803531r CrossRefGoogle Scholar
  16. 16.
    Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE, Lovinger AJ, Bao Z (2001) Electronic sensing of vapors with organic transistors. Appl Phys Lett 78(15):2229–2231CrossRefGoogle Scholar
  17. 17.
    Crone BK, Dodabalapur A, Sarpeshkar R, Gelperin A, Katz HE, Bao Z (2002) Organic oscillator and adaptive amplifier circuits for chemical vapor sensing. J Appl Phys 91(12):10140–10146. doi: 10.1063/1.1476084 CrossRefGoogle Scholar
  18. 18.
    Liao F, Chen C, Subramanian V (2005) Sens Actuators B Chem 107:849–855CrossRefGoogle Scholar
  19. 19.
    Chang JB, Liu V, Subramanian V, Sivula K, Luscombe C, Murphy A, Liu JS, Frechet JMJ (2006) Printable polythiophene gas sensor array for low-cost electronic noses. J Appl Phys 100(1). doi: 10.1063/1.2208743, Artn 014506
  20. 20.
    Marinelli F, Dell’Aquila A, Torsi L, Tey J, Suranna GP, Mastrorilli P, Romanazzi G, Nobile CF, Mhaisalkar SG, Cioffi N, Palmisano F (2009) An organic field effect transistor as a selective NOx sensor operated at room temperature. Sens Actuators B Chem 140(2):445–450. doi: 10.1016/j.snb.2009.04.035 CrossRefGoogle Scholar
  21. 21.
    Torsi L, Tafuri A, Cioffi N, Gallazzi MC, Sassella A, Sabbatini L, Zambonin PG (2003) Regioregular polythiophene field-effect transistors employed as chemical sensors. Sens Actuators B Chem 93(1–3):257–262. doi: 10.1016/S0925-4005(03)00172-2 CrossRefGoogle Scholar
  22. 22.
    Someya T, Katz HE, Gelperin A, Lovinger AJ, Dodabalapur A (2002) Vapor sensing with alpha, omega-dihexylquarterthiophene field-effect transistors: the role of grain boundaries. Appl Phys Lett 81(16):3079–3081. doi: 10.1063/1.1514826 CrossRefGoogle Scholar
  23. 23.
    Wang L, Fine D, Jung TH, Basu D, von Seggern H, Dodabalapur A (2004) Pentacene field-effect transistors with sub-10-nm channel lengths. Appl Phys Lett 85(10):1772–1774. doi: 10.1063/1.1790033 CrossRefGoogle Scholar
  24. 24.
    Jeong YT, Cobb BH, Lewis SD, Dodabalapur A, Lu SF, Facchetti A, Marks TJ (2008) Realization of dual-channel organic field-effect transistors and their applications to chemical sensing. Appl Phys Lett 93(13). doi: 10.1063/1.2952485, Artn 133304
  25. 25.
    Torsi L, Lovinger AJ, Crone B, Someya T, Dodabalapur A, Katz HE, Gelperin A (2002) Correlation between oligothiophene thin film transistor morphology and vapor responses. J Phys Chem B 106(48):12563–12568. doi: 10.1021/Jp021473q CrossRefGoogle Scholar
  26. 26.
    Duarte D, Sharma D, Cobb B, Dodabalapur A (2011) Charge transport and trapping in organic field effect transistors exposed to polar analytes. Appl Phys Lett 98(13). doi: 10.1063/1.3569592, Artn 133302
  27. 27.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625, pii: 8199CrossRefGoogle Scholar
  28. 28.
    Pengfei QF, Vermesh O, Grecu M, Javey A, Wang O, Dai HJ, Peng S, Cho KJ (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3(3):347–351. doi: 10.1021/nl034010k CrossRefGoogle Scholar
  29. 29.
    Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933. doi: 10.1021/nl034220x CrossRefGoogle Scholar
  30. 30.
    Kim TH, Lee BY, Jaworski J, Yokoyama K, Chung WJ, Wang E, Hong S, Majumdar A, Lee SW (2011) Selective and sensitive tnt sensors using biomimetic polydiacetylene-coated cnt-fets. ACS Nano 5(4):2824–2830. doi: 10.1021/nn103324p CrossRefGoogle Scholar
  31. 31.
    Wang F, Swager TM (2011) Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. J Am Chem Soc 133(29):11181–11193CrossRefGoogle Scholar
  32. 32.
    Park M, Cella LN, Chen W, Myung NV, Mulchandani A (2010) Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives. Biosens Bioelectron 26(4):1297–1301. doi: 10.1016/j.bios.2010.07.017, pii: S0956-5663(10)00392-1CrossRefGoogle Scholar
  33. 33.
    Johnson AT, Staii C (2005) DNA-decorated carbon nanotubes for chemical sensing. Nano Lett 5(9):1774–1778. doi: 10.1021/nl051261f CrossRefGoogle Scholar
  34. 34.
    Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140. doi: 10.1021/nl8013007 CrossRefGoogle Scholar
  35. 35.
    Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306. doi: 10.1021/nn800593m CrossRefGoogle Scholar
  36. 36.
    Huang J, Sun J, Katz HE (2008) Monolayer-dimensional 5,5′-bis(4-hexylphenyl)-2,2′-bithiophene transistors and chemically responsive heterostructures. Adv Mater 20(13):2567. doi: 10.1002/Adma.200703212 Google Scholar
  37. 37.
    See KC, Becknell A, Miragliotta J, Katz HE (2007) Enhanced response of n-channel naphthalenetetracarboxylic diimide transistors to dimethyl methylphosphonate using phenolic receptors. Adv Mater 19(20):3322. doi: 10.1002/Adma.200602924 CrossRefGoogle Scholar
  38. 38.
    Cheng YJ, Hsieh CH, Li PJ, Hsu CS (2011) Morphological stabilization by in situ polymerization of fullerene derivatives leading to efficient, thermally stable organic photovoltaics. Adv Funct Mater 21(9):1723–1732. doi: 10.1002/adfm.201002502 CrossRefGoogle Scholar
  39. 39.
    Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L, Babudri F, Palmisano F, Zambonin PG, Naso F (2008) A sensitivity-enhanced field-effect chiral sensor. Nat Mater 7(5):412–417. doi: 10.1038/Nmat2167 CrossRefGoogle Scholar
  40. 40.
    Sokolov AN, Roberts ME, Johnson OB, Cao YD, Bao ZA (2010) Induced sensitivity and selectivity in thin-film transistor sensors via calixarene layers. Adv Mater 22(21):2349–2353. doi: 10.1002/adma.200903305 CrossRefGoogle Scholar
  41. 41.
    Dickey FH (1949) The preparation of specific adsorbents. Proc Natl Acad Sci U S A 35(5):227–229CrossRefGoogle Scholar
  42. 42.
    Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40(3):1547–1571. doi: 10.1039/c0cs00049c CrossRefGoogle Scholar
  43. 43.
    Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36(6):993–1017. doi: 10.1039/b609548h CrossRefGoogle Scholar
  44. 44.
    Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100(7):2495–2504, pii: cr990099wCrossRefGoogle Scholar
  45. 45.
    Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates - a way towards artificial antibodies. Angew Chem Int Ed Engl 34(17):1812–1832. doi: 10.1002/anie.199518121 CrossRefGoogle Scholar
  46. 46.
    Mosbach K, Ramstrom O (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Bio-Technology 14(2):163–170CrossRefGoogle Scholar
  47. 47.
    Kirsch N, Hart JP, Bird DJ, Luxton RW, McCalley DV (2001) Towards the development of molecularly imprinted polymer based screen-printed sensors for metabolites of paths. Analyst 126(11):1936–1941CrossRefGoogle Scholar
  48. 48.
    Barrio RJ, Gomez-Caballero A, Unceta N, Goicolea MA (2008) Evaluation of the selective detection of 4,6-dinitro-o-cresol by a molecularly imprinted polymer based microsensor electrosynthesized in a semiorganic media. Sens Actuators B Chem 130(2):713–722. doi: 10.1016/j.snb.2007.10.036 CrossRefGoogle Scholar
  49. 49.
    Mazzotta E, Malitesta C (2010) Electrochemical detection of the toxic organohalide 2,4-db using a co-porphyrin based electrosynthesized molecularly imprinted polymer. Sens Actuators B Chem 148(1):186–194. doi: 10.1016/j.snb.2010.03.089 CrossRefGoogle Scholar
  50. 50.
    Ulyanova YV, Blackwell AE, Minteer SD (2006) Poly(methylene green) employed as molecularly imprinted polymer matrix for electrochemical sensing. Analyst 131(2):257–261. doi: 10.1039/b510878k CrossRefGoogle Scholar
  51. 51.
    Lee GB, Weng CH, Yeh WM, Ho KC (2007) A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine. Sens Actuators B Chem 121(2):576–582. doi: 10.1016/j.sub.2006.04.111 CrossRefGoogle Scholar
  52. 52.
    Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B (2010) A new molecularly imprinted polymer (mip)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (tnt) in natural waters and soil samples. Biosens Bioelectron 25(5):1166–1172. doi: 10.1016/j.bios.2009.10.003, pii: S0956-5663(09)00534-XCrossRefGoogle Scholar
  53. 53.
    Alizadeh T, Ganjali MR, Norouzi P, Zare M, Zeraatkar A (2009) A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer-carbon paste electrode. Talanta 79(5):1197–1203. doi: 10.1016/j.talanta.2009.02.051, pii: S0039-9140(09)00194-5CrossRefGoogle Scholar
  54. 54.
    Pardieu E, Cheap H, Vedrine C, Lazerges M, Lattach Y, Garnier F, Remita S, Pernelle C (2009) Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Anal Chim Acta 649(2):236–245. doi: 10.1016/j.aca.2009.07.029, pii: S0003-2670(09)00960-XCrossRefGoogle Scholar
  55. 55.
    Pesavento M, D’Agostino G, Biesuz R, Alberti G (2009) Molecularly imprinted polymer-based sensors for amperometric determination of nonelectroactive substances. Electroanalysis 21(3–5):604–611. doi: 10.1002/elan.200804456 CrossRefGoogle Scholar
  56. 56.
    Patel AK, Sharma PS, Prasad BB (2009) Electrochemical sensor for uric acid based on a molecularly imprinted polymer brush grafted to tetraethoxysilane derived sol–gel thin film graphite electrode. Mater Sci Eng C Biomim Supramol Syst 29(5):1545–1553. doi: 10.1016/j.msec.2008.12.008 CrossRefGoogle Scholar
  57. 57.
    Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subrahmanyam S, Piletska EV, Piletsky SA (2009) Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal Chem 81(9):3576–3584. doi: 10.1021/ac802536p CrossRefGoogle Scholar
  58. 58.
    Gholivand MB, Torkashvand M (2011) A novel high selective and sensitive metronidazole voltammetric sensor based on a molecularly imprinted polymer-carbon paste electrode. Talanta 84(3):905–912. doi: 10.1016/j.talanta.2011.02.022, pii: S0039-9140(11)00153-6CrossRefGoogle Scholar
  59. 59.
    Yan H, Chen ZH, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457(7230):679–686. doi: 10.1038/Nature07727 CrossRefGoogle Scholar
  60. 60.
    Voigt MM, Guite A, Chung DY, Khan RUA, Campbell AJ, Bradley DDC, Meng FS, Steinke JHG, Tierney S, McCulloch I, Penxten H, Lutsen L, Douheret O, Manca J, Brokmann U, Sonnichsen K, Hulsenberg D, Bock W, Barron C, Blanckaert N, Springer S, Grupp J, Mosley A (2010) Polymer field-effect transistors fabricated by the sequential gravure printing of polythiophene, two insulator layers, and a metal ink gate. Adv Funct Mater 20(2):239–246. doi: 10.1002/Adfm.200901597 CrossRefGoogle Scholar
  61. 61.
    Hambsch M, Reuter K, Stanel M, Schmidt G, Kempa H, Fugmann U, Hahn U, Hubler AC (2010) Uniformity of fully gravure printed organic field-effect transistors. Mater Sci Eng B Adv Funct Solid-State Mater 170(1–3):93–98. doi: 10.1016/j.mseb.2010.02.035 CrossRefGoogle Scholar
  62. 62.
    Zielke D, Hubler AC, Hahn U, Brandt N, Bartzsch M, Fugmann U, Fischer T, Veres J, Ogier S (2005) Polymer-based organic field-effect transistor using offset printed source/drain structures. Appl Phys Lett 87(12). doi: 10.1063/1.2056579, Artn 123508
  63. 63.
    Huebler AC, Doetz F, Kempa H, Katz HE, Bartzsch M, Brandt N, Hennig I, Fuegmann U, Vaidyanathan S, Granstrom J, Liu S, Sydorenko A, Zillger T, Schmidt G, Preissler K, Reichmanis E, Eckerle P, Richter F, Fischer T, Hahn U (2007) Ring oscillator fabricated completely by means of mass-printing technologies. Org Electron 8(5):480–486. doi: 10.1016/J.Orgel.2007.02.009 CrossRefGoogle Scholar
  64. 64.
    Verilhac JM, Benwadih M, Seiler AL, Jacob S, Bory C, Bablet J, Heitzman M, Tallal J, Barbut L, Frere P, Sicard G, Gwoziecki R, Chartier I, Coppard R, Serbutoviez C (2010) Step toward robust and reliable amorphous polymer field-effect transistors and logic functions made by the use of roll to roll compatible printing processes. Org Electron 11(3):456–462. doi: 10.1016/J.Orgel.2009.11.027 CrossRefGoogle Scholar
  65. 65.
    Mannerbro R, Ranlof M, Robinson N, Forchheimer R (2008) Inkjet printed electrochemical organic electronics. Synth Metal 158(13):556–560. doi: 10.1016/J.Synthmet.2008.03.030 CrossRefGoogle Scholar
  66. 66.
    Tobjork D, Osterbacka R (2011) Paper electronics. Adv Mater 23(17):1935–1961. doi: 10.1002/Adma.201004692 CrossRefGoogle Scholar
  67. 67.
    Roberts ME, Mannsfeld SCB, Stoltenberg RM, Bao ZN (2009) Flexible, plastic transistor-based chemical sensors. Org Electron 10(3):377–383. doi: 10.1016/j.orgel.2008.12.001 CrossRefGoogle Scholar
  68. 68.
    Katz HE (2004) Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chem Mater 16(23):4748–4756. doi: 10.1021/Cm049781j CrossRefGoogle Scholar
  69. 69.
    Usta H, Facchetti A, Marks TJ (2011) N-channel semiconductor materials design for organic complementary circuits. Acc Chem Res 44(7):501–510. doi: 10.1021/Ar200006r CrossRefGoogle Scholar
  70. 70.
    Tremblay NJ, Jung BJ, Breysse P, Katz HE (2011) Digital inverter amine sensing via synergistic responses by n and p organic semiconductors. Adv Funct Mater 21(22):4314–4319CrossRefGoogle Scholar
  71. 71.
    Street RA, Mulato M, Lau R, Ho J, Graham J, Popovic Z, Hor J (2001) Image capture array with an organic light sensor. Appl Phys Lett 78(26):4193–4195CrossRefGoogle Scholar
  72. 72.
    Ng TN, Wong WS, Chabinyc ML, Sambandan S, Street RA (2008) Flexible image sensor array with bulk heterojunction organic photodiode. Appl Phys Lett 92(21). doi: 10.1063/1.2937018, Artn 213303
  73. 73.
    Nausieda I, Ryu KK, Da He D, Akinwande AI, Bulovic V, Sodini CG (2011) Mixed-signal organic integrated circuits in a fully photolithographic dual threshold voltage technology. IEEE T Electron Dev 58(3):865–873. doi: 10.1109/Ted.2011.2105489 CrossRefGoogle Scholar
  74. 74.
    Das A, Dost R, Richardson TH, Grell M, Wedge DC, Kell DB, Morrison JJ, Turner ML (2009) Low cost, portable, fast multiparameter data acquisition system for organic transistor odour sensors. Sens Actuators B Chem 137(2):586–591. doi: 10.1016/J.Snb.2009.01.006 CrossRefGoogle Scholar
  75. 75.
    Dost R, Das A, Grell M (2007) A novel characterization scheme for organic field-effect transistors. J Phys D Appl Phys 40(12):3563–3566. doi: 10.1088/0022-3727/40/12/003 CrossRefGoogle Scholar
  76. 76.
    Ricco AJ, Crooks RM, Osbourn GC (1998) Surface acoustic wave chemical sensor arrays: new chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures. Acc Chem Res 31(5):289–296CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hoyoul Kong
    • 1
  • Thomas J. Dawidczyk
    • 1
  • Recep Ozgun
    • 2
  • Andreas G. Andreou
    • 2
  • Howard E. Katz
    • 1
  1. 1.Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations