Skip to main content

Wearable Sensors

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 13))

Abstract

It has been recognised that body-centric communications (BCC) will play a significant role in 4G and subsequent technologies. BCC is an area of much interest globally, with applications in military, security, space, health care, sports and entertainment already identified. From a technical perspective, many of the problems encountered in BCC systems are relatively independent of the specific application, with some minor distinctions. In particular, space and military applications have particular requirements on robustness and extreme operating conditions that are somewhat more relaxed in other areas. The fundamental design issues are examined in this chapter from the perspective of three main areas: antennas, wireless communication protocols and sensing technologies. Examples from health care and sports applications are used to demonstrate key concepts and challenges. Current and future trends are discussed, with an emphasis on the recently released IEEE 802.15.6 wireless communications standard.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

4G:

Fourth generation mobile communication networks

BCC:

Body-centric communications

BG:

Blood glucose

BP:

Blood pressure

CBGM:

Capillary blood glucose monitoring

DBPSK:

Differential binary phase shift keying

DQPSK:

Differential quadrature phase shift keying

ECG:

Electrocardiograph

EMFi:

Electromechanical film

EMG:

Electromyography

EMI:

Electromagnetic interference

FEC:

Forward error correction

FM-UWB:

Frequency modulated ultra-wide-band

HBC:

Human body communication

ICD:

Implantable cardioverter defibrillator

IR:

Infra-red

IR-UWB:

Impulse radio ultra-wide-band

IS:

Impedance spectroscopy

ISM:

Industrial, scientific and medical

LED:

Light emitting diode

MAC:

Media access control

MBAN:

Medical body area network

MICS:

Medical implant communication service

NB:

Narrow band

PCB:

Printed circuit board

PEP:

Pre-ejection period

PPG:

Photoplethysmogram

PVDF:

Polyvinylidenefluoride

PWTT:

Pulse wave transit time

RF:

Radio frequency

RFID:

Radio-frequency identification

RLC :

Resistor–inductor–capacitor

UWB:

Ultra-wide-band

VNA:

Vector network analyser

WBAN:

Wireless body area network

WBSN:

Wireless body sensor network

WPAN:

Wireless personal area networks

WPMS:

Wireless physiological measurement system

Z :

Impedance

References

  1. Hall PS, Hao Y (2006) Antennas and propagation for body-centric wireless communications. Artech House, Boston

    Google Scholar 

  2. Heath HBM, Schofield I (1999) Healthy ageing: nursing older people. Mosby, London

    Google Scholar 

  3. Fass L (2007) Patient-centric healthcare. Paper presented at the Medical Electrical Devices and Technology, MEDTECH, 2–3 October 2007

    Google Scholar 

  4. Saxby R (2007) How silicon will transform healthcare. Paper presented at the Medical Electrical Devices and Technology, MEDTECH, 2–3 October 2007

    Google Scholar 

  5. Feied R, Jordan N, Kanhouwa M, Kavanagh J (2006) The new world of healthcare work: a Microsoft white paper. UK Focus International Lecture, The Royal Academy of Engineering

    Google Scholar 

  6. Department of Health (2007) What is physiological measurement? The National Health Service (NHS)

    Google Scholar 

  7. Townsend KA, Haslett JW, Tsang TKK, El-Gamal MN, Iniewski K (2005) Recent advances and future trends in low power wireless systems for medical applications. Paper presented at the Fifth International Workshop on System-on-Chip for Real-Time Applications, 20–24 July 2005

    Google Scholar 

  8. Jones V, Shashar N, Ben Shaphrut O, Lavigne K, Rienks R, Bults R, Konstantas D, Vierhout P, Peuscher J, van Halteren A, Herzog R, Widya I (2006) Remote monitoring for healthcare and for safety in extreme environments. In: Istepanian RSH, Laxminarayan S, Pattichis C (eds) M-Health: emerging mobile health systems. Springer, Berlin, pp 561–574

    Google Scholar 

  9. Hao Y, Foster R (2008) Wireless body sensor networks for health-monitoring applications. Physiol Meas 29(11):R27–R56. doi:10.1088/0967-3334/29/11/r01

    Article  Google Scholar 

  10. Yilmaz T, Foster R, Hao Y (2010) Detecting vital signs with wearable wireless sensors. Sensors 10(12):10837–10862

    Article  Google Scholar 

  11. BTS Bioengineering, FREEEMG wireless EMG product webpage. http://www.btsbioengineering.com/BTSBioengineering/Surfaceemg/BTSFREEEMG300/BTS_FREEEMG300.html?gclid=CKbw3s_Fx6wCFQsb4QodFDNpqA. Last accessed Jan 2012

  12. Morris SJ, Paradiso JA (2002) Shoe-integrated sensor system for wireless gait analysis and real-time feedback. Paper presented at the Proceedings of the Second Joint EMBS/BMES Conference: the 24th Annual International Conference of the Engineering in Medicine and Biology Society and the Annual Fall Meeting of the Biomedical Engineering Society, 23–26 October 2002, Houston, Texas, USA

    Google Scholar 

  13. Bamberg S, Benbasat AY, Scarborough DM, Krebs DE, Paradiso JA (2008) Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans Inform Technol Biomed 12(4):413–423

    Article  Google Scholar 

  14. Leszko F, Zingde S, Argenson J, Mahfouz M, Komistek R (2010) Correlation of in vivo patellofemoral kinematics with sound data for TKA and non-implanted knees. Paper presented at the Orthopaedic Research Society Annual Meeting, New Orleans, March 2010

    Google Scholar 

  15. Zingde S, Leszko F, Komistek R, Wasielewski RC, Argenson J, Mahfouz M (2010) Correlation of 3D in vivo kinematics and vibroathrography data in the knee joint. Paper presented at the Orthopaedic Research Society Annual Meeting, New Orleans, March 2010

    Google Scholar 

  16. O’Sullivan JD, Said CM, Dillon LC, Hoffman M, Hughes AJ (1998) Gait analysis in patients with Parkinson’s disease and motor fluctuations: influence of levodopa and comparison with other measures of motor function. Mov Disorders 13(6):900–906. doi:10.1002/mds.870130607

    Article  Google Scholar 

  17. Kauw-A-Tjoe RG, Thalen JP, Marin-Perianu M, Havinga PJM (2007) Sensor Shoe: mobile gait analysis for Parkinson’s disease patients. In: UbiComp 2007 workshop proceedings, Innsbruck, 16 September 2007

    Google Scholar 

  18. Grandez K, Bustamante P, Solas G, Gurutzeaga I, Garcia-Alonso A (2009) Wearable wireless sensor for the gait monitorization of Parkinsonian patients. Paper presented at the 16th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2009, 13–16 December 2009

    Google Scholar 

  19. Stolze H, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Diercks C, Palmié S, Mehdorn HM, Illert M, Deuschl G (2000) Gait analysis in idiopathic normal pressure hydrocephalus—which parameters respond to the CSF tap test? Clin Neurophysiol 111(9):1678–1686. doi:10.1016/s1388-2457(00)00362-x

    Article  CAS  Google Scholar 

  20. Webster JG (ed) (1998) Medical instrumentation: application and design, 3rd edn. Wiley, New York

    Google Scholar 

  21. Hilbel T, Helms TM, Mikus G, Katus HA, Zugck C (2008) Telemetry in the clinical setting. Herzschrittmacherther Elektrophysiol 19(3):146–154. doi:10.1007/s00399-008-0017-2

    Article  Google Scholar 

  22. Zimetbaum PJ, Josephson ME (1999) The evolving role of ambulatory arrhythmia monitoring in general clinical practice. Ann Intern Med 130(10):848–856

    CAS  Google Scholar 

  23. Hua P, Woo EJ, Webster JG, Tompkins WJ (1993) Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. IEEE Trans Biomed Eng 40(4):335–343

    Article  CAS  Google Scholar 

  24. Karilainen A, Hansen S, Müller J (2005) Dry and capacitive electrodes for long-term ecg-monitoring. In: 8th annual workshop on semiconductor advances, vol 8, pp 155–161. http://www.stw.nl/NR/rdonlyres/B1B900A5-6754-4006-94 AD-04970295F6EB/0/karilainen.pdf. Accessed 3 May 2012

  25. Assambo C, Baba A, Dozio R, Burke MJ (2007) Determination of the parameters of the skin-electrode impedance model for ECG measurement. In: Proceedings of the 6th WSEAS international conference on electronics, hardware, wireless and optical communications, 16–19 February 2007, Corfu Island, Greece

    Google Scholar 

  26. Cardu R, Leong PHW, Jin CT, McEwan A (2012) Electrode contact impedance sensitivity to variations in geometry. Physiol Meas 33(5):817–830

    Article  Google Scholar 

  27. Chi YM, Cauwenberghs G (2010) Wireless Non-contact EEG/ECG Electrodes for Body Sensor Networks. Paper presented at the International Conference on Body Sensor Networks (BSN 2010), 7–9 June 2010

    Google Scholar 

  28. Zimetbaum P, Goldman A (2010) Ambulatory arrhythmia monitoring. Circulation 122(16):1629–1636

    Article  Google Scholar 

  29. Lakshmanadoss U, Shah A, Daubert JP (2011) Telemonitoring of the pacemakers. In: Das MR (ed) Modern pacemakers—present and future. InTech. http://www.intechopen.com

  30. Müller A, Helms TM, Wildau H-J, Schwab JO, Zugck C (2011) Remote monitoring in patients with pacemakers and implantable cardioverter-defibrillators: new perspectives for complex therapeutic management. In: Das MR (ed) Modern pacemakers—present and future. InTech. http://www.intechopen.com

  31. Guevara-Valdivia ME, Torres PI (2011) Remote monitoring of implantable pacemaker, cardioverter defibrillator, and cardiac resynchronizer. In: Das MR (ed) Modern pacemakers—present and future. InTech. http://www.intechopen.com

  32. Pickering TG, Shimbo D, Haas D (2006) Ambulatory blood-pressure monitoring. New Engl J Med 354(22):2368–2374. doi:10.1056/NEJMra060433

    Article  CAS  Google Scholar 

  33. Moraes JCTB, Cerulli M, Ng PS (2000) A strategy for determination of systolic, mean and diastolic blood pressures from oscillometric pulse profiles. Comput Cardiol 27:211–214

    Google Scholar 

  34. Franklin DL, Schlegel W, Rushmer RF (1961) Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science 134(3478):564–565. doi:10.1126/science.134.3478.564

    Article  CAS  Google Scholar 

  35. Gribbin B, Steptoe A, Sleight P (1976) Pulse wave velocity as a measure of blood pressure change. Psychophysiology 13(1):86–90

    Article  CAS  Google Scholar 

  36. Poon CC, Zhang YT (2005) Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc 6:5877–5880. doi:10.1109/iembs.2005.1615827

    CAS  Google Scholar 

  37. Carmen CYP, Yee Man W, Yuan-Ting Z (2006) M-Health: the development of cuff-less and wearable blood pressure meters for use in body sensor networks. Paper presented at the Life Science Systems and Applications Workshop, IEEE/NLM, July 2006

    Google Scholar 

  38. Matsubara A, Tanaka S (2002) Unconstrained and noninvasive measurement of heartbeat and respiration for drivers using a strain gauge. Paper presented at the Proceedings of the 41st SICE Annual Conference, SICE, 5–7 August 2002

    Google Scholar 

  39. Jeong JW, Jang YW, Lee I, Shin S, Kim S (2009) Wearable respiratory rate monitoring using piezo-resistive fabric sensor. In: Dössel O, Schlegel WC (eds) World congress on medical physics and biomedical engineering, 7–12 September 2009, Munich, Germany. IFMBE Proceedings, vol 25/5. Springer, Heidelberg, pp 282–284. doi:10.1007/978-3-642-03904-1_78

  40. Karki S, Lekkala J (2008) Film-type transducer materials PVDF and EMFi in the measurement of heart and respiration rates. In: 30th annual international conference of the IEEE engineering in medicine and biology society, EMBS, 20–25 August 2008, pp 530–533

    Google Scholar 

  41. Medtronic, Inc. A medical device and services company. Its diabetes-related services. Webpage: http://www.medtronicdiabetes.com/AboutDiabetes/ManagingDiabetes. Accessed 16th July 2012.

  42. Hillier TA, Abbott RD, Barrett EJ (1999) Hyponatremia: evaluating the correction factor for hyperglycemia. Am J Med 106(4):399–403

    Article  CAS  Google Scholar 

  43. Hayashi Y, Livshits L, Caduff A, Feldman Y (2003) Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes. J Phys D Appl Phys 36(4):369

    Article  CAS  Google Scholar 

  44. Caduff A, Feldman Y (2007) Method and a device for measuring glucose. US Patent 11/070,853, granted 27 February 2007

    Google Scholar 

  45. Caduff A, Donath M, Talary M, Haug S, Huber D, Stahel WA, Dewarrat F, Jonasson LS, Krebs HJ, Klisic J (2007) Multisensor concept for non-invasive physiological monitoring. Paper presented at the IEEE Instrumentation and Measurement Technology Conference Proceedings (IMTC 2007), 1–3 May 2007

    Google Scholar 

  46. Caduff A, Talary MS, Mueller M, Dewarrat F, Klisic J, Donath M, Heinemann L, Stahel WA (2009) Non-invasive glucose monitoring in patients with Type 1 diabetes: a multisensor system combining sensors for dielectric and optical characterisation of skin. Biosens Bioelectron 24(9):2778–2784. doi:10.1016/j.bios.2009.02.001

    Article  CAS  Google Scholar 

  47. Arnold MA, Burmeister JJ, Small GW (1998) Phantom glucose calibration models from simulated noninvasive human near-infrared spectra. Anal Chem 70(9):1773–1781. doi:10.1021/ac9710801

    Article  CAS  Google Scholar 

  48. Barman I, Singh GP, Dasari RR, Feld MS (2009) Turbidity-corrected Raman spectroscopy for blood analyte detection. Anal Chem 81(11):4233–4240. doi:10.1021/ac8025509

    Article  CAS  Google Scholar 

  49. Lin JC (1992) Microwave sensing of physiological movement and volume change: a review. Bioelectromagnetics 13(6):557–565. doi:10.1002/bem.2250130610

    Article  CAS  Google Scholar 

  50. Munoz M, Foster R, Hao Y (2012) Physiological features from an on-body radio propagation channel. In: Proceedings of the 9th international conference on wearable and implantable body sensor networks (BSN 2012), London, 9–12 May 2012

    Google Scholar 

  51. Yilmaz T, Hao Y (2011) Sensing of dielectric property alterations in biological tissues at microwave frequencies. Paper presented at the Loughborough Antennas and Propagation Conference (LAPC 2011), Loughborough, 14–15 November 2011

    Google Scholar 

  52. Yilmaz T, Hao Y (2011) Compact resonators for permittivity reconstruction of biological tissues. In: Proceedings of the XXXth URSI general assembly, Istanbul, August 2011

    Google Scholar 

  53. Topsakal E, Karacolak T, Moreland EC (2011) Glucose-dependent dielectric properties of blood plasma. Paper presented at the 30th URSI General Assembly, Istanbul

    Google Scholar 

  54. Agilent 85070E Dielectric Probe Kit product webpage. Agilent. http://www.home.agilent.com/agilent/product.jspx?nid=−536902475.536883502.00&cc=GB&lc=eng. Accessed Dec 2011

  55. Hancock CP, Chaudhry S (2007) A non-invasive monitoring system. Paper presented at the European Microwave Conference, 9–12 October 2007

    Google Scholar 

  56. Hancock CP (2007) A non-invasive monitoring system. G.B. Patent 2428093, granted 17 January 2007

    Google Scholar 

  57. Jean BR, Green EC, McClung MJ (2008) A microwave frequency sensor for non-invasive blood-glucose measurement. Paper presented at the IEEE Sensors Applications Symposium (SAS), 12–14 February 2008

    Google Scholar 

  58. Hao Y (2006) Body worn antennas & propagation modelling. GE global research project final report. Queen Mary, University of London, London

    Google Scholar 

  59. Alomainy A, Hao Y, Hu X, Parini CG, Hall PS (2006) UWB on-body radio propagation and system modelling for wireless body-centric networks. IEEE Proc Commun 153(1):107–114

    Article  Google Scholar 

  60. Soontornpipit P, Furse CM, You Chung C (2004) Design of implantable microstrip antenna for communication with medical implants. IEEE Trans Microwave Theory Techn 52(8):1944–1951

    Article  Google Scholar 

  61. Karacolak T, Hood AZ, Topsakal E (2008) Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Trans Microwave Theory Techn 56(4):1001–1008

    Article  CAS  Google Scholar 

  62. Pantelopoulos A, Bourbakis NG (2010) A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man Cybernetics C Appl Rev 40(1):1–12

    Article  Google Scholar 

  63. TinyOS website. http://www.tinyos.net. Accessed 16th July 2012

  64. Contiki-OS website. http://www.contiki-os.org/. Accessed 16th July 2012

  65. MoteWorks website. http://www.xbow.com:81/Products/productdetails.aspx?sid=154. Accessed 16th July 2012

  66. Texas Instrument (2007) CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver. http://www.ti.com/lit/ds/symlink/cc2420.pdf. Accessed 16th July 2012

  67. EnOcean GmbH website. http://www.enocean.com. Accessed 16th July 2012

  68. EnOcean Technology (2011) Energy harvesting wireless white paper. http://www.enocean.com/fileadmin/redaktion/pdf/white_paper/WP_EnOcean_Technology_en_Jul11.pdf. Accessed Jan 2012

  69. Lim S, Oh TH, Choi Y, Lakshman T (2010) Security issues on wireless body area network for remote healthcare monitoring. In: IEEE international conference on sensor networks, ubiquitous, and trustworthy computing (SUTC 2010), 7–9 June 2010

    Google Scholar 

  70. Ahamed SI, Talukder N, Kameas AD (2007) Towards privacy protection in pervasive healthcare. In: 3rd IET international conference on intelligent environments, 24–25 September 2007

    Google Scholar 

  71. Witters D, Seidman S, Bassen H (2010) EMC and wireless healthcare. In: Asia-Pacific symposium on electromagnetic compatibility (APEMC 2010), 12–16 April 2010

    Google Scholar 

  72. The Nike+ system on the Apple website. http://www.apple.com/uk/ipod/nike/

  73. Astrin A (2011) IEEE-802.15.6-tutorial. IEEE 802.15 Task Group 6. https://mentor.ieee.org/802.15/documents?is_group=0006. Accessed 12 Dec 2011

  74. IEEE Standard for Local and metropolitan area networks Part 15.6: Wireless Body Area Networks, IEEE Std 802.15.6-2012, Feb. 29 2012 doi:10.1109/IEEESTD.2012.6161600

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foster, R., Yilmaz, T., Munoz, M., Hao, Y. (2012). Wearable Sensors. In: Filippini, D. (eds) Autonomous Sensor Networks. Springer Series on Chemical Sensors and Biosensors, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_28

Download citation

Publish with us

Policies and ethics